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Abstract

We characterize the interior eigenvalues of a class of impenetrable, non-absorbing scattering
objects from the spectra of the corresponding far field operators for a continuum of wave numbers.
Our proof simplifies arguments from the original proof for Dirichlet scattering objects given in
[Eckmann and Pillet, Commun. Math. Phys., 1995:283–313] and furthermore extends to the
cases of Neumann and Robin scattering objects. Further, the analytical characterization of
interior eigenvalues of a scatterer can be exploited numerically: We present an algorithm that
approximates interior eigenvalues from far field data without knowing the scattering object,
we give several numerical examples for different scatterers and sound-hard as well as sound-
soft boundary conditions, and we finally show through numerical examples that this algorithm
remains stable under noise.

1 Introduction

It is well-known that direct and inverse exterior scattering problems from impenetrable scatterers
are connected to the interior eigenvalues of the scattering object. Integral equation methods for the
solution of exterior scattering problems might for instance fail at interior eigenvalues, see, e.g., [6, 15].
Further, several solution techniques for inverse shape identification problems as the linear sampling
method, the factorization method, or the method of singular sources might as well fail at interior
eigenvalues [11] (methods working at interior eigenvalues include, e.g., [5, 13, 9]). To indicate a
third connection, it is well-known that the far field operator for impenetrable scattering problems
with wave number k possesses an eigenvalue zero if and only if there is an interior eigenfunction of
the Laplacian for the eigenvalue −k2 that can be represented as a Herglotz wave function. Several
methods tried to exploit this relationship to find interior eigenvalues from the knowledge of far
field operators for many wave numbers, see, e.g. [2], [1], or [3, Chapter 4]. Exploiting this link
is, however, subtle for at least two reasons: First, interior eigenfunctions can in general not be
represented as Herglotz wave functions. Second, the far field operator is a compact operator. Hence,
zero always belongs (and is in fact equal) to the essential spectrum of the far field operator. Thus,
it is numerically difficult to decide whether zero merely belongs to the essential spectrum or even to
the point spectrum.

The aim of this paper is to give a precise mathematically characterization of interior eigenvalues
for Neumann- and Robin-type obstacles using multi-frequency data consisting of a continuum of far
field patterns for positive wave numbers. This relation is called an inside-outside duality, following
the terminology of Eckmann and Pillet in [7, 8], where this duality of the exterior scattering problem
and the interior eigenvalue problem has been found for Dirichlet and Neumann obstacles. Our proof
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to some extent simplifies the arguments from [7]; in particular, the proof avoids the Cayley transform
as well as the scattering operator and is entirely based on the far field operator. We will, however,
still rely on the fact that the scatterer is non-absorbing to profit from the normality of the far field
operator. Let us note that the recent paper [12] already extended Eckmann’s and Pillet’s proof
to penetrable scattering problems, proving an inside-outside duality for transmission eigenvalues
under rather strong assumptions on the contrast. Further, we show in several numerical examples
that the characterization provided by the inside-outside duality can be exploited numerically to
detect interior eigenvalues from far field data for Dirichlet and Neumann obstacles. Finally, several
numerical examples show that the algorithm we give to detect interior eigenvalues from far field data
is able to handle noisy data. A detailed regularization analysis for this nonlinear algorithm goes
beyond the scope of this paper and is postponed to a future paper.

Let us briefly indicate the results presented in the sequel of the paper. We consider a bounded
Lipschitz domain D ⊂ R

3 with connected complement representing the scattering object and a
positive wave number k > 0. We consider an exterior time-harmonic scattering problem for the
Helmholtz equation together with a non-absorbing boundary condition implemented in a boundary
operator B representing either Dirichlet, Neumann, or Robin boundary conditions,

∆u+ k2u = 0 in R
3 \D, Bu = 0 on ∂D.

The total wave field u can be split into a sum of an incident incoming plane wave ui(x, θ) =
exp(ik θ · x) with direction θ ∈ S

2 = {x ∈ R
3, |x| = 1} and a scattered field us(·, θ) that satisfies

Sommerfeld’s radiation condition
(

∂us

∂|x| − ikus
)

= O
(

1

|x|2
)

as |x| → ∞, uniformly in x̂ =
x

|x| ∈ S
2. (1)

In the following, we call solutions to the Helmholtz equation that satisfy (1) radiating solutions.
As a consequence of this radiation condition, the scattered wave us(·, θ) behaves like an outgoing
spherical wave,

us(x, θ) =
exp(ik|x|)

4π|x| (u∞(x̂, θ) +O(1/|x|)) as |x| → ∞,

with a far field pattern u∞(·, θ) ∈ L2(S2). The far field operator is defined by

F : L2(S2) → L2(S2), Fg(x̂) :=

∫

S2

u∞(x̂, θ)g(θ) dS(θ), x̂ ∈ S
2, (2)

and it is well-known that for the scattering problem introduced above this operator is compact
and normal, that is, there exists a complete orthonormal eigensystem (λj , gj)j∈N such that Fg =
∑

j∈N λj(g, gj)gj for all g ∈ L2(S2). It is also well-known that all eigenvalues λj lie on a circle

of radius 8π2/k with center 8π2i/k in the complex plane, see, e.g., [11]. For all three boundary
conditions considered here, the far field operator satisfies a factorization of the form F = GTG∗

with a solution operator G mapping boundary data ψ on ∂D to the far field of the radiating solution
of the following scattering problem,

∆v + k2v = 0 in R
3 \D, B(v) = ψ on ∂D. (3)

The precise form of T , in particular the correct space for ψ, depends on the boundary conditions
implemented in B. All three operators F = F (k), G = G(k) and T = T (k) obviously depend on the
wave number. In all cases under investigation, two important properties hold: First, the eigenvalues
λj = λj(k) converge to zero either from the left or from the right as j → ∞, that is, Reλj ≷ 0 for
j large enough. This allows to order the phases of the λj and to speak of a smallest or a largest
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phase – if, for instance, Reλj < 0 for large j ∈ N, then the smallest phase ϑ∗ = minj∈N ϑj of the
eigenvalues λj = rj exp(iϑj), ϑj ∈ [0, π], is well-defined. Second, one can show that k2 is an interior
eigenvalue of the Laplacian in D,

∆u+ k2u = 0 in D, B(u) = 0 on ∂D, (4)

if and only if there exists ϕ 6= 0 such that Im (T (k)ϕ, ϕ) = 0. Moreover, Im (T (k)ϕ, ϕ) is always
non-negative and the dimension of the eigenspace to (4) equals the dimension of the space of all ϕ
such that Im (T (k)ϕ,ϕ) = 0. Together, these two properties allow to show that a number k20 > 0 is
an interior eigenvalue if and only if the smallest phase ϑ∗ tends to 0 if k > 0 tends to k0 from below
(if the largest phase is well-defined, it tends to π as k tends to k0 from above).

Crucial tools in our analysis will be single- and double layer operators: Using the radiating
fundamental solution Φ to the Helmholtz equation, these potentials are defined via

SLϕ(x) :=

∫

∂D
Φ(x, y)ϕ(y) dS(y), x ∈ R

3 \ ∂D, Φ(x, y) :=
exp(ik|x− y|)

4π|x− y| , x 6= y, (5)

DLψ(x) :=

∫

∂D

∂Φ(x, y)

∂ν(y)
ψ(y) dS(y), x ∈ R

3 \ ∂D. (6)

Here and later on, ν denotes the outwards pointing unit normal vector field toD. It is well-known [14]
that SL and DL are bounded from H−1/2(∂D) and H1/2(∂D) into H1(BR) and H1(BR \ ∂D) for
any ball BR centered in the origin with radius R > 0, respectively. Both potentials are smooth
solutions to the Helmholtz equation in R

3 \ ∂D and radiating in R
3 \D. Let us denote the exterior

and interior trace operator on ∂D by [·]|+ and [·]|−, respectively. Then it is also well-known that

the traces SLϕ
∣

∣

±
, ∂ SLϕ/∂ν

∣

∣

±
and DLϕ

∣

∣

±
, ∂ DLϕ/∂ν

∣

∣

±
are given by

SLϕ
∣

∣

±
= Sϕ in H1/2(∂D), (7)

DLψ
∣

∣

±
= ±1

2
ψ +Kψ in H1/2(∂D), (8)

∂ SLϕ

∂ν

∣

∣

∣

±
= ∓1

2
ϕ+K ′ϕ in H−1/2(∂D), (9)

∂ DLψ

∂ν

∣

∣

∣

±
= Nψ in H−1/2(∂D), (10)

where the boundary integral operator S is bounded from H−1/2(∂D) → H1/2(∂D), K is bounded
on H1/2(∂D), K ′ is bounded on H−1/2(∂D) and N in bounded from H1/2(∂D) → H−1/2(∂D).

To simplify notation, let us in the sequel denote both the duality pairing between H±1/2(∂D)
that extends the L2(∂D)-inner product and the inner product itself by (·, ·) or (·, ·)L2(∂D). The
inner product on L2(S2) is denoted by (·, ·)L2(S2) or by (·, ·) if there is no danger of confusion. As
mentioned above, the open ball of radius R centered in the origin is denoted by BR.

This paper is structured as follows: In the next Section 2 we briefly prove a characterization for
Dirichlet eigenvalues of the Laplacian from far field data, simplifying the original proof from [7]. In
Section 3 we prove a similar characterization for Robin Neumann eigenvalues of the Laplacian form
the corresponding far field data. In Section 4 we show how to exploit these algorithms numerically
to obtain estimates for the interior eigenvalues from discrete far field data without knowing the
scattering object or the boundary condition.

2 Characterizing Dirichlet Eigenvalues from Far Field Data

In this section, we want to briefly present the proof of the inside-outside duality for Dirichlet scatter-
ing objects. Despite we follow in principle the arguments from [7], we believe that there is an interest
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in their simplification (the Cayley transform used in [7] can for instance be avoided). Additionally,
we rewrite these arguments using the common notation of the inverse scattering community. Apart
from giving an easier access to the proof, we also prepare notation for the numerical examples on
the detection of eigenvalues from far field data for the Dirichlet problem.

As noted in the introduction, the scatterer D ⊂ R
3 is a bounded Lipschitz domain with connected

complement and we consider an exterior Dirichlet scattering problem

∆u+ k2u = 0 in R
3 \D, u = 0 on ∂D,

that is, B(u) = u. We denote again by us(·, θ) the radiating scattered field for an incident plane
wave with direction θ, by u∞(·, θ) ∈ L2(S2) its far field pattern, and by F the far field operator,
see (2). Recall the single-layer operator S on ∂D from (7). It is well-known that F can be factorized
as F = −GS∗G∗ where G : H1/2(∂D) → L2(S2) is a solution operator mapping ψ to the far field
pattern v∞ of the unique radiating solution v ∈ H1

loc(R
3 \D) to

∆v + k2v = 0 in R
3 \D, v = ψ on ∂D.

Lemma 1. For all k > 0 and all ϕ ∈ H−1/2(∂D) it holds that

Im (ϕ, Sϕ)L2(∂D) ≤ 0.

The function ϕ 7→ Im (ϕ, Sϕ) vanishes at ϕ 6= 0 if and only if Sϕ = 0, that is, if and only if k2 is an

interior Dirichlet eigenvalue of the Laplacian in D. If Im (ϕ, Sϕ) = 0 for some 0 6= ϕ ∈ H−1/2(∂D),
then the restriction of w = SLϕ to D is an eigenfunction of the Dirichlet-Laplacian, while for any

eigenfunction w ∈ H1
0 (D) it holds that ϕ = ∂w/∂ν|− ∈ H−1/2(∂D) 6= 0 satisfies Im (ϕ, Sϕ) = 0.

Proof. It is well-known that Im (ϕ, Sϕ) ≤ 0 for all ϕ ∈ H−1/2(∂D) due to the Sommerfeld radiation
condition, while Im (ϕ, Sϕ) = 0 for some ϕ 6= 0 ∈ H−1/2(∂D) if and only if k2 is a Dirichlet
eigenvalue of the Laplacian in D, see, e.g., [11, Lemma 1.14], [15, Theorem 3.9.1] or [14, Chapter
9]. Further, the representation theorem implies that any such ϕ yields rise to an interior Dirichlet
eigenfunction via the single layer operator restricted to D, w = SLϕ|D. Vice versa, if w ∈ H1

0 (D)
is an eigenfunction, then ϕ = ∂w/∂ν ∈ H−1/2(∂D) 6= 0 satisfies, again due to the representation
formula, Sϕ = 0 and therefore Im (ϕ, Sϕ) = 0.

Remark 2. Lemma 1 in particular implies that the dimension of the eigenspace of the negative

Dirichlet-Laplacian in D for the eigenvalue k2 equals the dimension of the kernel of ϕ 7→ Im (ϕ, Sϕ)
and that the latter kernel is a linear space.

Recall from the introduction that the eigenvalues λj of F all lie on the circle {z ∈ C : |z −
8π2i/k| = 8π2/k} and they converge to 0 as j → ∞ since F is compact. The fact that Im (ϕ, Sϕ) ≤ 0
allows to show that if k2 is not a Dirichlet eigenvalue of D, then there is N = N(k) such that
Reλj < 0 for j > N , see [11, Theorem 1.23] for a proof. Roughly speaking, the eigenvalues λj hence
converge to zero from the left. We represent these eigenvalues in polar coordinates, such that

λj = rj exp(iϑj), rj ≥ 0, ϑj ∈ [0, π].

For completeness, we define ϑj = π whenever rj = 0 although this case will not be of interest in
the sequel. If k2 is not an interior Dirichlet eigenvalue, then all λj are different from zero and the
phases ϑj are all included in the open interval (0, π). Moreover, since Reλj < 0 for large j ∈ N

these phases converge to π as j → ∞ and there is hence a smallest phase

ϑ∗ = ϑj∗ = min
j∈N

ϑj

among all phases ϑj. The eigenvalue λj∗ with smallest phase is from now on denoted by λ∗.

4



Theorem 3. If k2 is not a Dirichlet eigenvalue of −∆ in D, then

cotϑ∗ = max
g∈L2(S2)

Re (Fg, g)L2(S2)

Im (Fg, g)L2(S2)
. (11)

The maximum is attained at any eigenvector to the eigenvalue λ∗ of F with smallest phase.

By abuse of notation we did not explicitly exclude the zero vector from the maximum in (11).
Note also that the denominator Im (Fg, g)L2(S2) is positive if k2 is not a transmission eigenvalue
due to Lemma 1 and the factorization F = −GS∗G∗: Im (Fg, g) = −Im (G∗g, SG∗g) > 0 for g 6= 0
since G∗ is injective. The proof of the last theorem relies on the following lemma.

Lemma 4. Assume that f, g are continuous functions on I := (0, β) ⊂ R such that g takes positive

values and that α 7→ f(α)/g(α) is strictly monotonically decreasing on I. Assume further that

(αj)j∈N ⊂ I is a sequence such that αj ≥ α∗ > 0 for all j ∈ N. Further let (cj)j∈N be a sequence of

non-negative numbers. If both series
∑

j∈N cjf(αj) and
∑

j∈N cjg(αj) are unconditionally convergent,

then
∑

j∈N cjf(αj)
∑

j∈N cjg(αj)
≤ f(α∗)

g(α∗)
.

Equality holds if and only if cj = 0 whenever αj 6= α∗ and if there is at least one αj that equals α∗.

Proof. Due to the monotonicity of α 7→ f(α)/g(α),

f(αj)

g(αj)
≤ f(α∗)

g(α∗)
(12)

for all j ∈ N. In particular, since g(αj) is positive, f(αj) ≤ f(α∗) g(αj)/g(α∗) for all j ∈ N, that is,

∑

j∈N

cjf(αj) ≤
∑

j∈N

cj
f(α∗)

g(α∗)
g(αj) =

f(α∗)

g(α∗)

∑

j∈N

cjg(αj).

Since
∑

j∈N cjg(αj) is a positive number, the latter inequality implies that

∑

j∈N cjf(αj)
∑

j∈N cjg(αj)
≤ f(α∗)

g(α∗)
. (13)

The strict monotonicity of α 7→ f(α)/g(α) yields that equality in (12) holds if and only if αj = α∗.
Thus, equality in (13) holds if and only if cj = 0 whenever αj 6= α∗ and if there is at least one αj
that equals α∗ > 0.

Proof of Theorem 3. We exploit that the eigenvectors gj ∈ L2(S2) form a complete orthonormal
basis of L2(S2) to represent g ∈ L2(S2) as g =

∑

j∈N(g, gj)gj . Since Fg =
∑

j∈N λj(g, gj)gj this
shows in particular that

(Fg, g) =
∑

j∈N

λj|(g, gj)|2. (14)

Since Re (λj) = rj cos(ϑj) and Im (λj) = rj sin(ϑj) we want to apply Lemma 4 to f(α) = cos(α)
and g(α) = sin(α) on (0, π) and need to check the monotonicity of h(α) := f(α)/g(α) = cot(α).
We find that h′(α) = 2/(cos(2α) − 1) < 0 in (0, π), that is, h is strictly monotonically decreasing.
Setting αj = ϑj, α∗ = ϑ∗ ≤ ϑj and cj = rj |(g, gj)|2 for arbitrary g ∈ L2(S2), Lemma 4 implies that

∑

j∈NRe (λj)|(g, gj)|2
∑

j∈N Im (λj)|(g, gj)|2
=

∑

j∈N cos(ϑj)rj|(g, gj)|2
∑

j∈N sin(ϑj)rj|(g, gj)|2
≤ cos(ϑ∗)

sin(ϑ∗)
= cot(ϑ∗).
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Due to the orthonormality of the eigenfunctions gj and since rj > 0 for all j ∈ N since k2 is not a
Dirichlet eigenvalue of −∆ in D, equality holds if and only if g is chosen as an eigenfunction for the
eigenvalue λ∗ = λj∗ with the smallest phase among all eigenvalues of F .

Remark 5. Due to the factorization F = −GS∗G∗ and the denseness of the range of G∗ in

H−1/2(∂D), (11) can also be expressed using the single-layer operator S: Indeed, (Fg, g)L2(S2) =

−(S∗G∗g, G∗g)L2(∂D) = −(ϕ, Sϕ)L2(∂D) for ϕ = G∗g ∈ H−1/2(∂D); in particular,

cotϑ∗ = max
ϕ∈H−1/2(∂D)

Re (ϕ, Sϕ)L2(∂D)

Im (ϕ, Sϕ)L2(∂D)
.

At this point it becomes crucial to consider the dependence of all the involved quantities on the
wave number k > 0: We write ϑ∗ = ϑ∗(k), S = S(k) and SL = SL(k) to indicate this dependence.
Further, we write k ր k0 to indicate that the positive number k tends to k0 > 0 from below, i.e.,
k0 > k → k0. We start with a crucial auxiliary result that has, in our opinion, an interest in its own:
The derivative of S(k) with respect to k is positive – and hence selfadjoint – when it is restricted to
the kernel of S(k).

Lemma 6. Assume that k20 is a Dirichlet eigenvalue of −∆ in D. Then S(k0) has a non-trivial

kernel and for all elements ϕ0 in this kernel it holds that (ϕ0, S(k0)ϕ0)L2(∂D) = 0. The mapping

k 7→ (ϕ0, S(k)ϕ0)L2(∂D) is differentiable at k0 and

α :=
d

dk
(ϕ0, S(k)ϕ0)L2(∂D)

∣

∣

∣

∣

k=k0

= 2k0

∫

D

|uk0 |2 dx, where uk0 = SL(k0)ϕ0.

Proof. We already saw in Lemma 1 that Im (ϕ, S(k)ϕ)L2(∂D) vanishes for a non-zero ϕ if and only
if S(k)ϕ = 0, that is, if and only if k2 is a Dirichlet eigenvalue of −∆ in D. Set uk = SL(k)ϕ0 ∈
H1

loc(R
3), in particular, uk0 = SL(k0)ϕ0. Since the fundamental solution Φ is weakly singular, we

compute that

d

dk
uk(x) =

d

dk

∫

∂D
Φ(x, y)ϕ0(y) dS(y) =

∫

∂D

d

dk
Φ(x, y)ϕ0(y) dS(y) =

∫

∂D

i

4π
eik|x−y|ϕ0(y) dS(y),

for x ∈ R. The derivative of uk with respect to k is hence well-defined in, e.g., H1
loc(R

3). In
particular, the chain rule implies that

∆u′k + k2u′k + 2kuk = 0, where u′k :=
d

dk
uk ∈ H1

loc(R
3). (15)

Now we compute the derivative with respect to k of k 7→ (ϕ0, S(k)ϕ0)L2(∂D),

d

dk
(ϕ0, S(k)ϕ0)L2(∂D) =

(

ϕ0,
d

dk
S(k)ϕ0

)

=

(

ϕ0,
d

dk
uk

)

=

(

∂uk
∂ν

∣

∣

∣

∣

−

− ∂uk
∂ν

∣

∣

∣

∣

+

,
d

dk
uk

)

L2(∂D)

.

Note that the normal derivative (∂uk0/∂ν)|+ taken from the exterior vanishes, since the radiating
solution uk0 = SL(k0)ϕ0 to the Helmholtz equation vanishes by construction on ∂D and hence by
the unique solvability of the exterior Dirichlet scattering problem everywhere in R

3 \ D. Now we
use Green’s first identity for uk0 ∈ H1

0 (D) and u′k0 and exploit (15) to get that

d

dk
(ϕ0, S(k0)ϕ0)L2(∂D) =

(

∂uk0
∂ν

∣

∣

∣

∣

−

,
duk0
dk

)

L2(∂D)

=

∫

D

[

∆uk0u
′
k0

+∇uk0∇u′k0
]

dx

=

∫

D

[

−k20uk0u′k0 − uk0∆u
′
k0

]

dx

=

∫

D

[

−k20uk0u′k0 + k20u
′
k0
uk0 + 2k0 |uk0 |2

]

dx = 2k0

∫

D
|uk0 |2 dx.
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Lemma 7. Let k0 > 0 and 0 6= ϕ0 ∈ H−1/2(∂D) such that (ϕ0, S(k0)ϕ0)L2(∂D) = 0. Then it holds

that limkրk0 ϑ∗(k) = 0.

Proof. We know from Lemma 1 that (ϕ0, S(k0)ϕ0)L2(∂D) = 0 implies that k20 is a Dirichlet eigen-
value. Assume that I = (k0−ε, k0+ε) is an interval that does not contain other Dirichlet eigenvalues.
We showed in Lemma 4 (see also Remark 5) that

cotϑ∗(k) = max
g∈L2(S2)

Re (Fg, g)L2(S2)

Im (Fg, g)L2(S2)
= max

ϕ∈H−1/2(∂D)

Re (ϕ, S(k)ϕ)L2(S2)

Im (ϕ, S(k)ϕ)L2(S2)
for k ∈ I \ {k0}.

Define f(k) = (ϕ0, S(k)ϕ0)L2(∂D) for k ∈ I and note that the last Lemma 6 states that this function
is differentiable at k0. Taylor’s theorem states that

f(k) = f(k0) + α(k − k0) + r(k),

where f(k0) = 0 by construction and the remainder r(k) satisfies r(k) = o(|k − k0|) as k → k0.
Further, note that Im (r(k)) ≤ 0 due to Lemma 1, because the derivative α = df/dk at k0 is
real-valued and Im f(k) ≤ 0. Hence,

cot ϑ∗(k) = max
ϕ∈H−1/2(∂D)

Re (ϕ, S(k)ϕ)L2(S2)

Im (ϕ, S(k)ϕ)L2(S2)

ϕ=ϕ0

≥ α(k − k0) + Re (r(k))

Im (r(k))
→ ∞ as k ր k0. (16)

Indeed, since α is positive, k ր k0 implies that α(k − k0) ≤ 0 tends slower to zero than 0 <
Im (r(k)) = o(|k − k0|), that is, [α(k − k0) + Re (r(k))]/Im (r(k)) → ∞. Obviously, cotϑ∗(k) → ∞
for ϑ∗(k) ∈ (0, π) implies that ϑ∗(k) → 0.

Our final result in this section is the following characterization of Dirichlet eigenvalues of −∆ in
D. Roughly speaking, this characterization states that interior eigenvalues k20 are characterized by
the fact that the eigenvalue λ∗ = λj∗(k) of F (k) with the smallest phase tends to 0 from the right
as k ր k0. More precisely, the phase ϑ∗(k) ∈ (0, π) of λ∗(k) tends to 0 as k ր k0 – this behavior is
exceptional since the eigenvalues λj usually accumulate from the left at zero, that is, ϑj(k) → π as
j → ∞ for all k > 0.

Theorem 8. Assume that k0 > 0 and that I = (k0 − ε, k0) contains no k such that k2 is a Dirichlet

eigenvalue of −∆ in D. As above, we denote the phases of the eigenvalues λj(k) of F (k) by ϑj(k) ∈
(0, π) and set ϑ∗(k) = minj∈N ϑj(k). Then

k20 is a Dirichlet eigenvalue of −∆ in D if and only if lim
kրk0

ϑ∗(k) = 0. (17)

Proof. If k20 is a Dirichlet eigenvalue, then limkրk0 ϑ∗(k) = 0 follows directly from Lemma 7.
To prove that limkրk0 ϑ∗(k) = 0 implies that k20 is a Dirichlet eigenvalue we argue by contra-

diction: Assume that this limit relation holds but that k20 is not a Dirichlet eigenvalue. Due to
Lemma 7, ϑ∗(k) → 0 as k ր k0 implies that

max
ϕ∈H−1/2(∂D)

Re (ϕ, S(k)ϕ)L2(S2)

Im (ϕ, S(k)ϕ)L2(S2)
→ ∞ as k ր k0.

Hence, there exist sequences kj ∈ I such that kj ր k0 and ϕj ∈ H−1/2(∂D) with ‖ϕj‖H−1/2(∂D) = 1
such that 0 > Im (ϕj , S(kj)ϕj)L2(∂D) → 0 as j → ∞ and Re (ϕj , S(kj)ϕj)L2(∂D) < 0 for j ∈ N large
enough. Since the sequence ϕj is bounded, there exists a weakly convergent subsequence that we
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also denote by ϕj , such that ϕj ⇀ ϕ0 for some ϕ0 ∈ H−1/2(∂D). Define vj = SL(kj)ϕj . Note that
Green’s first identity, the jump relation (9), and the Sommerfeld radiation condition imply that

(ϕj , S(kj)ϕj)L2(∂D) =

∫

∂D

[

∂vj
∂ν

∣

∣

∣

∣

−

− ∂vj
∂ν

∣

∣

∣

∣

+ ]

vj dS =

∫

BR\∂D
[|∇vj |2−k2j |vj|2] dx−

∫

∂BR

∂vj
∂ν

vj dS

=

∫

BR\∂D
[|∇vj |2 − k2j |vj|2] dx− ikj

∫

∂BR

|vj |2 dS +O(1/R) as R→ ∞, (18)

such that the far field v∞j of vj satisfies

Im (ϕj , S(kj)ϕj)L2(∂D) = − kj
4π2

‖v∞j ‖2L2(S2), j ∈ N. (19)

The operator mapping ϕj to v∞j is compact and hence the far fields v∞j converge strongly in L2(S2).

This strong limit equals the weak limit which is v∞0 ∈ L2(S2), the far field of v0 := SL(k0)ϕ0. Note
now that the right-hand side in (19) tends to zero, that is, v∞0 must vanish. Rellich’s lemma then
implies that v0 vanishes in the exterior of D. However, since we assumed that k20 is no interior
Dirichlet eigenvalue, v0 must vanish inside of D, too, and the jump relations for the single-layer
potential imply that ϕ0 must also vanish, that is, ϕj ⇀ 0. Since the single-layer operator SL is
bounded from H−1/2(∂D) into H1(BR) for all R > 0 it is also a compact operator into L2(BR).
Hence, vj → 0 strongly in L2(BR). Due to elliptic regularity results, SL is also bounded from
H−1/2(∂D) into H2(B2R \ BR/2) for R > 0 large enough. Since ϕj ⇀ 0 this mapping property
implies that

∫

∂BR
(∂vj/∂ν)vj dS tends strongly to zero as j → ∞. Note that we already found above

that Re (ϕj , S(kj)ϕj)L2(∂D) ≤ 0. This motivates to take the real part of (18),

0 ≥ Re (ϕj , S(kj)ϕj)L2(∂D) =

∫

BR

[|∇vj |2 − k2|v|2] dx−
∫

∂BR

∂vj
∂ν

vj dS,

to obtain that
∫

BR

|∇vj |2 dx ≤
∫

BR

|vj |2 dx+

∫

∂BR

∂vj
∂ν

vj dS → 0 as j → ∞.

In particular, vj converges strongly to zero in H1(BR), as well as its trace vj|∂D = S(kj)ϕj tends

strongly to zero in H1/2(∂D). Since, by assumption k20 is not a Dirichlet eigenvalue, the single-layer
operator S(k0) is an isomorphism. This allows to conclude that ϕj → 0 strongly in H−1/2(∂D),
which contradicts our initial assumption that ‖ϕj‖H−1/2(∂D) = 1 for all j ∈ N.

Remark 9. One can also prove that the number M of eigenvalue curves k 7→ λj(k) that tend to 0

from the right as k ր k0 equals the dimension N of the eigenspace of the interior Dirichlet eigenvalue

k20. The proof of Lemma 7 together with Lemma 1 implies that N linear independent eigenfunctions

create N eigenvalue curves that tend to 0 from the right, that is, N ≤ M . On the other hand, the

contradiction argument in the proof of Theorem 8 shows that each eigenvalue curve corresponds to

an interior Dirichlet eigenvalue, that is, M ≤ N . This dimensional correspondence also holds for

the Robin scattering problem in Section 3 and is visible in the numerical examples in Section 4, too.

3 Characterizing Robin and Neumann Eigenvalues from Far Field

Data

In this section, we want to apply a technique similar to the one from the last section to extend the
inside-outside duality between the interior eigenvalues and the spectrum of the far field operator to
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the case of Robin obstacles. As we will see, the above arguments require adaptions or extensions at
several points. Note that the important case of (sound-hard) Neumann boundary conditions will be
included in the theory outlined below. The case of absorbing impedance boundary conditions is not
included since we will rely on the fact that non-absorbing boundary conditions yield a normal far
field operator that possesses in particular an eigenvalue decomposition.

Once again let D ⊂ R
3 be a bounded Lipschitz domain with connected complement and let the

boundary operator B take the form B(u) = ∂u/∂ν+τu on ∂D for a real-valued function τ ∈ L∞(∂D).
This choice yields the exterior Robin scattering problem

∆u+ k2u = 0 in R
3 \D, ∂u

∂ν
+ τu = 0 on ∂D. (20)

Since we do not exclude the special case τ = 0, all succeeding arguments also hold true for the
Neumann case B(u) = ∂u/∂ν. Our goal in this section is to provide a characterization of the
interior Robin eigenvalues k2 > 0 corresponding to this scattering problem, e.g. of those wave
numbers k > 0 for which there is a non-trivial solution to

∆u+ k2 = 0 in D,
∂u

∂ν
+ τu = 0 on ∂D.

Since τ is real-valued, the far field operator F from (2) is a compact and normal operator [4]. We
denote its eigensystem again as (λj , gj)j∈N, that is, Fg =

∑

j∈N λj(g, gj)gj . Due to [4] we know that

the λj again lie on the circle {z ∈ C, |z − 8π2i/k| = 8π2/k}.
As mentioned in the introduction, there is a factorization of the far field operator F corresponding

to the above-introduced Robin boundary conditions,

F = −GT ∗G∗. (21)

Here, G : H−1/2(∂D) → L2(S2) is the compact and injective solution operator, defined in (22),
mapping a Robin boundary datum ψ to the far field v∞ of the unique radiating solution to the
exterior Robin boundary value problem,

∆v + k2v = 0 in R
3 \D, ∂v

∂ν
+ τv = ψ on ∂D. (22)

Moreover, the operator T : H1/2(∂D) → H−1/2(∂D) is given by

Tψ = Nψ +K ′(τψ) + τKψ + τS(τψ), (23)

where N,K ′,K and S are the boundary integral operators defined in (7)–(10). For the proof of this
factorization we refer to [11, Theorem 2.6]. Before we proceed to exploit this factorization to describe
the behavior of the eigenvalues λj of F , we note that for a fixed wave number k the imaginary part
ImF is positive, since

Im (Fg, g) =
k

16π2
‖Fg‖2L2(S2) =

k

16π2
‖F ∗g‖2L2(S2) ≥ 0 for all g ∈ L2(S2). (24)

The equalities in the equation above are a direct consequence of [11, Theorem 2.5].

Lemma 10. If D is a Lipschitz domain, then T : H1/2(∂D) → H−1/2(∂D) is Fredholm of index

zero. Moreover, T can be represented as T = N(0) + C where N(0) is the hypersingular boundary

integral operator N from (10) for wave number k = 0 and C is a compact operator. The operator

−N(0) is strictly positive and self-adjoint,

−
(

N(0)ψ, ψ
)

≥ c0‖ψ‖2H1/2(∂D)
for all ψ ∈ H1/2(∂D). (25)
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Proof. The mapping properties of the boundary integral operators S, K and K ′ on the Lipschitz
boundary ∂D from (7)–(10), the boundedness of the multiplication by τ on L2(∂D), and the compact
embeddings H1/2(∂D) →֒ L2(∂D) →֒ H−1/2(∂D) imply that ψ 7→ K ′(τψ) + τKψ + τS(τψ) is
compact from H1/2(∂D) into H−1/2(∂D). Further, N = N(k) is a Fredholm operator due to [15,
Prop. 3.5.5] and Lemma 3.9.8 in [15] shows that the difference N(k) − N(0) is compact, too.
Finally, [15, Theorem 3.5.4] shows that −N(0) is strictly positive and hence also self-adjoint.

The next lemma is the corresponding result to Lemma 1 for Robin boundary conditions.

Lemma 11. For all k > 0 and all ψ ∈ H1/2(∂D) it holds that

Im (Tψ, ψ)L2(∂D) ≥ 0. (26)

The function ψ 7→ Im (Tψ, ψ) vanishes at ψ 6= 0 if and only if Tψ = 0. Further, T fails to be an

isomorphism if and only if k2 is an interior Robin eigenvalue of −∆ in D.

Proof. Inequality (26) follows from (24), the factorization of F and the dense range of G∗,

0 ≤ k

16π2
‖Fg‖2L2(S2) = Im (Fg, g)L2(S2) = −Im (T ∗G∗g, G∗g)L2(∂D) = Im (TG∗g, G∗g)L2(∂D) (27)

for g ∈ L2(S2). Assume now that Im (Tψ, ψ) = 0 for a 0 6= ψ ∈ H1/2(∂D). Since the range of G∗ is
dense in H1/2(∂D), there exists {gj}j∈N ⊂ L2(S2) such that G∗gj → ψ as j → ∞. Due to (27),

0 ≤ k

16π2
‖Fgj‖2L2(S2) = Im (TG∗gj , G

∗gj)L2(S2) → Im (Tψ, ψ)L2(S2) = 0 as j → ∞.

We conclude that Fgj → 0 as j → ∞ and (24) shows that F ∗gj → 0 as well. For arbitrary g ∈ L2(S2)
this implies that −(G∗g, TG∗gj)L2(∂D) = (g, F ∗gj)L2(S2) → 0 as j → ∞. Since G∗gj → ψ as j → ∞,
it follows that (G∗g, Tψ) = 0 for all g ∈ L2(S2) and the denseness of the range of G∗ shows that
Tψ = 0. The other direction is trivial: If Tψ = 0, then Im (Tψ, ψ) = 0.

Let now k2 be an interior Robin eigenvalue of −∆ in D and w ∈ H1(D) a corresponding
eigenfunction. Due to the representation theorem, w can be written as

w = SL

(

∂w

∂ν

∣

∣

∣

∣

−)

−DL(w|−) in H1(D).

Since ∂w/∂ν = −τw on ∂D, we find that w = − SL(τ w|−) − DL(w|−). Setting ψ = w|− and
exploiting the jump relations (7)–(10) we obtain that

w|− = −S(τψ) + 1

2
ψ −Kψ in H1/2(∂D),

∂w

∂ν

∣

∣

∣

∣

−

= −1

2
τψ −K ′(τψ)−Nw in H−1/2(∂D).

Using these equations, we deduce that

∂w

∂ν

∣

∣

∣

∣

−

+ τw|− = −
[

τS(τψ) + τKψ +K ′(τψ) +Nψ
]

= −Tψ.

Since w satisfies homogeneous Robin boundary conditions we obtain that Tψ = 0. The representa-
tion w = − SL(τψ)−DLψ on the other hand implies that ψ 6= 0, since otherwise w would vanish in
D, contradicting the assumption that w is an eigenfunction. Hence, the kernel of T is non-trivial. If
we finally assume that Tψ = 0 in H−1/2(∂D) for some 0 6= ψ ∈ H1/2(∂D), then the same arguments
show that w = − SL(τψ)−DLψ defines a Robin eigenfunction of −∆ in D.
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Contrary to the Dirichlet case from Section 2, the eigenvalues λj now tend to zero from the right.

Lemma 12. Assume that k2 is no interior Robin eigenvalue of −∆ in D. Then the eigenvalues λj
of F converge to zero from the right, i.e., Reλj > 0 for j ∈ N large enough.

Proof. Recall that gj ∈ L2(S2) is the eigenfunction corresponding to the eigenvalue λj and define
ψj = G∗gj/

√

|λj |. Then

(Tψj , ψℓ)L2(∂D) =
1

√

|λj | |λℓ|
(TG∗gj , G

∗gℓ)L2(∂D) =
1

√

|λj | |λℓ|
(GTG∗gj , gℓ)L2(S2)

= − 1
√

|λj | |λℓ|
(Fgj , gℓ)L2(S2) = − λj

|λℓ|
δj,ℓ = −sjδj,ℓ

where sj := λj/|λj |. By construction, |sj | = 1 and Im (sj) > 0. Since λj converges to zero, the only
possible accumulation point of sj is either 1 oder −1. In the remainder of this proof we will show
that the accumulation point is 1, which implies the statement of the lemma.

We exploit the splitting T = N(0) + C from Lemma 10 where −N(0) and C are self-adjoint,
strictly positive and compact operators, respectively, to note that

sj = (−N(0)ψj , ψj)L2(∂D) − (Cψj , ψj)L2(∂D), j ∈ N. (28)

This implies in particular that Re (sj) ≥ c0‖ψj‖2H1/2(∂D)
− Re (Cψj , ψj)L2(∂D). Next, we show that

the sequence ψj is bounded using a contradiction argument: Assume that there is a subsequence,
also denoted by ψj , such that ‖ψj‖H1/2(∂D) → ∞ as j → ∞. Then ψ′

j := ψj/‖ψj‖H1/2(∂D) satisfies

c0 +Re (Cψ′
j , ψ

′
j)L2(∂D) ≤ − Re (sj)

‖ψj‖2H1/2(∂D)

→ 0 as j → ∞. (29)

Since the sequence ψ′
j is bounded, we can extract a weakly convergent subsequence, again denoted

by ψ′
j such that ψ′

j ⇀ ψ′ as j → ∞. Since C is compact, the image sequence Cψ′
j converges strongly

in H−1/2(∂D) and (Cψ′
j, ψ

′
j)L2(∂D) → (Cψ′, ψ′)L2(∂D). Now, (29) allows to conclude that

c0 + lim
j→∞

Re (Cψ′
j , ψ

′
j)L2(∂D) = c0 +Re (Cψ′, ψ′)L2(∂D) ≤ 0. (30)

Since c0 > 0, this means that Re (Cψ′, ψ′)L2(∂D) < 0. Similar arguments applied to the imaginary
part of (28) yield

0 = − lim
j→∞

Im (sj)

‖ψj‖2H1/2(∂D)

= lim
j→∞

Im (Tψ′
j , ψ

′
j)L2(∂D) = Im (Tψ′, ψ′)L2(∂D).

Our assumption that k2 is no interior eigenvalue together with Lemma 11 now implies that ψ′ = 0.
This contradicts the fact that Re (Cψ′, ψ′)L2(∂D) < 0 and finally shows that {ψj}j∈N is bounded.

To conclude, consider again the imaginary part of (28) and exploit that (−N(0)ψj , ψj)L2(∂D) is
real-valued together with Im sj → 0 to deduce that Im (Cψj , ψj)L2(∂D) → Im (Cψ, ψ) = 0 as j → ∞.
This shows that Im (Tψ, ψ) = Im (Cψ, ψ) = 0. Since k2 is no interior eigenvalue, Lemma 11 implies
that ψ = 0. Hence, (Cψj , ψj) → 0 and Re (sj) ≥ c0‖ψj‖2 ≥ 0 as j → ∞, such that the accumulation
point of sj has to be 1.

Let us again represent the eigenvalues λj of F in polar coordinates,

λj = rj exp(iϑj), rj ≥ 0, ϑj ∈ (0, π),
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assuming that k2 is no interior Robin eigenvalue such that none of the eigenvalues λj vanish. Since
Reλj > 0 for large j ∈ N, the phases ϑj converge to 0 as j → ∞ and therefore we can define the
largest phase

ϑ∗ = ϑj∗ = max
j∈N

ϑj

among all phases ϑj. As in the previous section we denote the eigenvalue corresponding to the
largest phase ϑ∗ as λ∗. Adapting the arguments of Theorem 3 and Lemma 4 to the different phase
behavior for the Robin boundary conditions, we obtain the following characterization of the largest
phase ϑ∗.

Theorem 13. If k2 is not a Robin eigenvalue of −∆ in D, then

cotϑ∗ = min
g∈L2(S2)

Re (Fg, g)L2(S2)

Im (Fg, g)L2(S2)
, (31)

where the minimum is attained at any eigenvector g∗ corresponding to the eigenvalue λ∗ of F with

smallest phase.

Remark 14. Inserting the factorization (21) of the far field operator and using the denseness of the

range of G∗, the equality in (31) can equivalently be expressed as

cotϑ∗ = min
ψ∈H1/2(∂D)

Re (ψ, Tψ)L2(S2)

Im (ψ, Tψ)L2(∂D)
. (32)

where the minimum is attained at ψ = G∗g∗.

To indicate the dependency of the relevant quantities on the wave number k, we write from now
on again ϑ∗ = ϑ∗(k), SL = SL(k), DL = DL(k) as well as T = T (k). Further, we write k ց k0 to
indicate that the positive wave number k tends to k0 from above, that is, k0 < k → k0.

Similar to the Dirichlet case – see Lemma 6 – one shows that the derivative of T (k) with respect
to k is positive when it is restricted to the kernel of T (k).

Lemma 15. Assume that k20 is a Robin eigenvalue of −∆ in D. Then T (k0) has a non-trivial

kernel and for all elements ψ0 ∈ H1/2(∂D) in this kernel it holds that (ψ0, T (k0)ψ0)L2(∂D) = 0. The

mapping k 7→ (ψ0, T (k)ψ0)L2(∂D) is differentiable at k0 and

d

dk
(ψ0, T (k)ψ0)L2(∂D)

∣

∣

∣

∣

k=k0

= 2k0

∫

D

|uk0 |2 dx, where uk0 = SL(k0)(τψ0) + DL(k0)ψ0.

Proof. We have already proven in Lemma 11 that Im (ψ, T (k)ψ)L2(∂D) = 0 for a non-trivial ψ ∈
L2(∂D) implies that k2 is an interior Robin eigenvalue. Define uk := SL(k)(τψ0) + DL(k)ψ0 ∈
H1

loc(R
3 \ ∂D). In Lemma 6 we have shown that the single layer potential SL(k) is differentiable in

k. A similar calculation for the double layer potential DL(k) shows that

d

dk
DL(k)(x) =

d

dk

∫

∂D

∂

∂ν
Φ(x, y)ψ0(y) dS(y) =

∫

∂D

∂

∂ν

d

dk
Φ(x, y)ψ0(y) dS(y)

=

∫

∂D

i

4π

∂

∂ν
exp(ik|x− y|)ψ0(y) dS(y), x ∈ R

3,

implying that the derivative of uk with respect to k is also well-defined in, e.g. H1
loc(R

3 \ ∂D). In
particular, u′k := duk/dk ∈ H1(D) and we can use the chain rule to obtain

∆u′k + k2u′k + 2kuk = 0 in D. (33)
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Since uk = SL(k)(τψ0) + DL(k)ψ0 one easily verifies the jump relation

uk|− − uk|+ = ψ0. (34)

Moreover, we have already computed in the proof of Lemma 11 that

T (k)ψ0 =
∂uk
∂ν

∣

∣

∣

∣

−

+ τ uk|− .

These two relations allow to compute the derivative with respect to k of k 7→ (ψ0, T (k)ψ0)L2(∂D),

d

dk

(

ψ0, T (k)ψ0

)

L2(∂D)
=

(

ψ0,
d

dk
T (k)ψ0

)

=

(

uk|− − uk|+ ,
d

dk

∂uk
∂ν

∣

∣

∣

∣

−

+ τ
d

dk
uk|−

)

L2(∂D)

.

For k = k0 the trace uk0 |+ taken from the exterior of D vanishes because k20 is an interior eigenvalue.
Indeed, the radiating solution uk0 to the homogeneous Robin boundary value problem (20) vanishes
outside of D and hence its trace vanishes on ∂D. Now we can apply Green’s first identity for
uk0 ∈ H1

0 (D), use (33) and the boundary condition ∂uk0/∂ν = −τuk0 to compute that

d

dk
(ψ0, T (k0)ψ0)L2(∂D) =

(

uk0 |− ,
d

dk

∂uk0
∂ν

∣

∣

∣

∣

−

+ τ
d

dk
uk0 |−

)

L2(∂D)

= −
∫

D

[

∆u′k0uk0 +∇uk0∇u′k0
]

dx−
∫

∂D
τuk0

′uk0 |− dS

= −
∫

D

[

∆u′k0uk0 −∆uk0u
′
k0

]

dx−
∫

∂D

∂uk0
∂ν

∣

∣

∣

−
u′k0 dS +

∫

∂D

∂uk0
∂ν

∣

∣

∣

−
u′k0 dS

=

∫

D

[

2k0uk0uk0 + k2u′k0uk0 − k2u′k0uk0

]

dx = 2k0

∫

D
|uk0 |2dx.

Lemma 16. Let k0 > 0 and 0 6= ψ ∈ H1/2(∂D) such that (ψ0, T (k0)ψ0)L2(∂D) = 0. Then it holds

that limkցk0 ϑ
∗(k) = π.

Proof. Using Lemma 15 one can easily adapt the proof of Lemma 7 to get the desired result.

In the following Theorem 17 we obtain a similar characterization of interior Robin eigenvalues of
−∆ in D as we have already shown for Dirichlet eigenvalues in Theorem 8. In the Dirichlet case we
found that the Dirichlet eigenvalues can be characterized by the behavior of the smallest phase of the
eigenvalues of the far field operator. In contrast the Robin eigenvalues k20 (or Neumann eigenvalues
for the special case τ = 0) can be characterized by the fact that the largest phase ϑ∗ converges to π
as k approaches k0 from above.

Theorem 17. Assume that k0 > 0 and that I = (k0, k0 + ε) contains no k such that k2 is a

Robin eigenvalue of −∆ in D. As above, we denote the phases of the eigenvalues λj(k) of F (k) by

ϑj(k) ∈ (0, π) and set ϑ∗(k) = maxj∈N ϑj(k). Then

k20 is a Robin eigenvalue of −∆ in D if and only if lim
kցk0

ϑ∗(k) = π. (35)

Proof. If k20 is a Robin eigenvalue, limkցk0 ϑ
∗(k) = π follows directly from Lemma 16.

Assume now that limkցk0 ϑ
∗(k) = π but that k20 is no Robin eigenvalue. From Lemma 13 it

follows that

min
ψ∈H1/2(∂D)

Re (ψ, T (k)ψ)L2(∂D)

Im (ψ, T (k)ψ)L2(∂D)
→ −∞ as k ց k0.
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Hence, there is a sequence {kj}j∈N ⊂ I with kj ց k0 as j → ∞ and functions ψj ∈ H1/2(∂D) with
‖ψj‖H1/2(∂D) = 1 such that

0 > Im (ψj , T (kj)ψj)L2(∂D) → 0 as j → ∞, (36)

and such that Re (ψj , T (kj)ψj)L2(∂D) > 0 for j large enough. Since the range of G∗ is dense in

H1/2(∂D), there exist sequences {gj,ℓ}ℓ∈N ⊂ L2(S2) such that ψj = limℓ→∞G∗(kj)gj,ℓ. Since the
sequence {ψj}j∈N is bounded in H1/2(∂D) we can extract a weakly convergent subsequence, still
denoted by ψj , such that ψj ⇀ ψ0 ∈ H1/2(∂D). Define

vj = DL(kj)ψj + SL(kj)(τψj), j ∈ N0. (37)

Since DL(kj) and SL(kj) from sequences of uniformly bounded linear operators, vj converges weakly
in H1(BR \ ∂D) to v0 = DL(k0)ψ0 +SL(k0)(τψ0) ∈ H1(BR \ ∂D) for R > 0 large enough such that
D ⊂ BR. Due to the jump relations (7)–(10) it holds that ∂vj/∂ν|+ + τ vj|+ = T (kj)ψj . Thus, the
far fields of the radiating solutions vj to the Helmholtz equation are given by

v∞j = G(kj)T (kj)ψj = lim
ℓ→∞

G(kj)T (kj)G
∗(kj)gj,ℓ = − lim

ℓ→∞
F ∗(kj)gj,ℓ. (38)

Since T is an isomorphism and G is compact, the mapping ψj 7→ v∞j is compact and v∞j → v∞0 ∈
L2(S2) strongly in L2(S2). According to (24) and (26),

0 <
kj

16π2
‖F ∗(kj)gj,ℓ‖2L2(S2)

(24)
= Im (F (kj)gj,ℓ, gj,ℓ)L2(∂D)

ℓ→∞−→ −Im (T ∗(kj)ψj , ψj)L2(∂D)

= −Im (ψj , T
∗(kj)ψj)L2(∂D) → 0 as j → ∞ due to (36).

Hence, limℓ→∞ F ∗(kj)gj,ℓ = v∞j tends to zero in L2(S2) as j → ∞, that is, v∞0 = 0. Rellich’s

lemma implies that v0 vanishes in R
3 \D. Moreover, k20 is no Robin eigenvalue, that is, v0 vanishes

everywhere. The jump relations (7)–(10) imply that ψ0 = 0 must vanish, too, that is, ψj ⇀ 0 in
H1/2(∂D).

We will now show that vj converges strongly to zero in H1(BR \ ∂D). First we note that, up
to extraction of a subsequence, τψj converges weakly to zero in L2(∂D) and therefore strongly to
zero in H−1/2(∂D). Thus, SL(kj)(τψj) also converges strongly to zero in H1(BR \ ∂D). Second,
we show that DL(kj)wj converges strongly to zero in H1(BR \ ∂D), too (the weak convergence to
zero is clear). To this end, let us recall from the proof of Lemma 10 that T (kj) can be written as
T (kj) = N(kj) + C(kj) with a compact operator C(kj). Thus,

Re (ψj , T (kj)ψj)L2(∂D) = Re (ψj , N(kj)ψj)L2(∂D) +Re (ψj , C(kj)ψj)L2(∂D).

Since ψj ⇀ 0 in H1/2(∂D), the sequence C(kj)ψj converges strongly in H−1/2(∂D) to C(k0)ψ0 = 0.
Setting v′j = DL(kj)ψj , Green’s first identity shows that

Re (ψj , T (kj)ψj)L2(∂D) =−
∫

BR\∂D

[

|∇v′j |2 − k2j |v′j |2
]

dx

+Re (ψj , C(kj)ψj)L2(∂D) +Re

∫

∂BR

∂v′j
∂ν

v′j dS.

The last surface integral tends to zero as j → ∞ since ψj ⇀ 0 and since both mappings ψj 7→ v′j |∂BR

and ψj 7→ ∂v′j/∂ν|∂BR
are compact due to elliptic regularity results. Exploiting the positivity of

Re (ψj , T (kj)ψj)L2(∂D) > 0 for j ∈ N large enough yields that

∫

BR\∂D
|∇v′j|2 dx ≤

∫

BR\∂D
|v′j |2 dx for j ∈ N large enough.
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Since v′j = DL(kj)ψj converges weakly to zero in H1(BR \ ∂D), this series of functions converges

strongly to zero in L2(BR \ ∂D) and from the last inequality we get that v′j = DL(kj)ψj converges

even strongly in H1(BR \ ∂D). Now it follows that vj = DL(kj)ψj + SL(kj)(τψj), defined in (37),
converges strongly to 0 = v0 = DL(k0)ψ0+SL(k0)(τψ0) in H1(BR \∂D). The jump relation (34) for
the combined single- and double-layer potential implies that ψ0 = v0|− − v0|+ = 0. Hence, ψj → 0
strongly in H1/2(∂D) as j → ∞. This, however, contradicts our assumption ‖ψj‖H1/2(∂D) = 1.

4 Numerically Detecting Interior Eigenvalues from Far Fields

In this section we provide numerical examples to verify the theoretical results from the previous
sections. In particular, we show that it is possible to numerically compute the interior eigenvalues in
a domain D of −∆ for Dirichlet and Neumann boundary conditions from far field operators for many
wave numbers. We also show that the corresponding algorithm remains stable under perturbation
of the data by synthetic noise.

To use the theory from the previous sections, we need to numerically approximate the radiating
solution us to an exterior scattering problem with Dirichlet or Neumann boundary conditions,

∆us + k2us = 0 in R
3 \D, B(us) = −B(ui) on ∂D.

Measurements of radiating waves (or, alternatively, numerical approximations to the solution of this
problem) for several incident plane waves ui(·, θℓ) yield approximations u∞appr(θj, θℓ) to the far field
patterns u∞(·, θℓ) that allow to approximate the far field operator F : Choose a regular, triangular
surface mesh Γ = {Γj , j = 1, . . . , N} of the unit sphere (see, e.g. [15, Ch. 4.1]) consisting of N ∈ N

patches Γj ⊂ S
2 and define PN to be the L2(S2)-orthogonal projection on the space of bounded

functions on S
2 that are constant on each surface patch Γj. Denote by 1Γj : S2 → C the indicator

function of the jth surface patch Γj , by PN [g](j) the value of the projection PN [g] on the jth patch
and define θj , j = 1, . . . , N to be the midpoint of the jth surface patch Γj (defined as the image of
the centroid of the reference triangle under the parametrization of the patch). Then

FNg =

N
∑

j=1

1Γj

N
∑

ℓ=1

u∞appr(θj, θℓ)PN [g](ℓ) (39)

is a finite-dimensional approximation FN : L2(S2) → L2(S2) to the far field operator F defined via
an interpolation projection.

Assume for a moment that we deal with a sequence of discretizations FN such that ‖FN −
F‖L2(S2)→L2(S2) tends to zero in the operator norm as n→ ∞. (Such sequences could be constructed,
e.g., using a sequence of regular surface meshes of S2 with mesh width tending to zero and a sequence
of approximate far fields tending to the exact far-field patterns.) Under this assumption, standard
perturbation results [10] imply that the spectra of F and FN also converge to each other in the
Hausdorff distance, that is,

max

[

sup
j∈N

inf
ℓ∈N

|λj − λNℓ |, sup
ℓ∈N

inf
j∈N

|λj − λNℓ |
]

≤ ‖FN − F‖L2(S2)→L2(S2) → 0 as N → ∞. (40)

Since both F and FN together with their eigenvalues obviously depend on the wave number k, we
write F (k), FN (k), λj(k) and λNj (k) from now on whenever this is appropriate.

In our experiments, we computed the numerical approximation to a scattered field using bound-
ary integral equations and we briefly sketch here which equations we solved numerically. For the
exterior Dirichlet problem, any radiating solution us to

∆us + k2us = 0 in R
3 \D, us|+∂D = ψ ∈ H1/2(∂D)
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can be represented as a single layer potential SLϕ if k2 is not an interior Dirichlet eigenvalue. Indeed,
under this assumption, the boundary integral equation of the first kind

Sϕ = ψ in H1/2(∂D) (41)

is always uniquely solvable for ψ ∈ H1/2(∂D). For all computations, we opted to use integral
equations of the first kind since the resulting eigenvalue approximations showed in our experiments
to be always more accurate than those computed via equations of the second kind. Except for values
of k2 closer than about 1e − 4 to an interior eigenvalue we did not observe stability problems of
equations of the first kind at interior eigenvalues. (For the case of the cube, we used the normality
error of ‖F ∗

NFN −FNF ∗
N‖/‖F ∗

NFN‖ as error and stability indicator.) To illustrate that the accuracy
of the eigenvalue computations does not depend on the choice of a direct or an indirect method, we
use an integral equation of the first kind coming from a direct method to solve for radiating solutions
to the exterior Neumann problem

∆u+ k2u = 0 in R
3 \D, ∂u

∂ν

∣

∣

∣

∣

+

∂D

= φ ∈ H−1/2(∂D),

more precisely,

−Nψ =
1

2
Idφ+K ′φ in H−1/2(∂D), (42)

which is uniquely solvable in H1/2(∂D) if k2 is not an interior Neumann eigenvalue.
We solved the boundary integral equations (41) and (42) using the software package BEM++ (see

[16]). BEM++ discretizes (41) and (42) using a Galerkin discretization and solves the linear system
using H-matrix compression and preconditioning techniques. The far-field pattern at points θj ⊂ S

2

of the numerical solution can directly be computed in BEM++ using its potential representation
and yields the data (u∞appr(θj, θℓ))

120
j,ℓ=1 we require to construct FN as in (39). In the following

examples, we always choose the same set of N = 120 uniformly distributed directions on the unit
sphere. To indicate the good accuracy of the resulting eigenvalues of FN , we plot in Figures 1(a)
and (b) the analytically computed eigenvalues of F (k) when the scatterer D is the open unit ball
B, together with the N largest (that is, non-zero) eigenvalues of FN (k) for k = 5. Since later
on we will investigate the stability of the eigenvalue computations with respect to synthetic noise,
we also indicate in Figures 1(c) and (d) how the numerically computed eigenvalues behave under
artificial noise. To this end, we perturb the numerically computed data (u∞appr(θj , θℓ))

120
j,ℓ=1 by adding

a random matrix of size 120× 120 containing normally distributed entries with mean zero such that
the relative noise level in the spectral matrix norm equals 10%. These figures indicate that it is
difficult to obtain precise phase approximations for the eigenvalues close to zero. Below, we present
a stabilization technique that is able to handle this problem.

To verify the main assertions of this paper from Theorem 8 and Theorem 17 we compute the
eigenvalues λNj (k), j = 1, . . . , N , of FN (k) for several k and examine how their phases depend on
the wave number.

Theorem 8 states, roughly speaking, that k20 is an interior Dirichlet eigenvalue if and only if the
eigenvalue λ∗(k) of F (k) with smallest phase converges to zero as k tends to k0 from below. To verify
this statement, we convert the positions of the eigenvalues in polar coordinates and plot the resulting
phases. For eigenvalues close to zero, small position errors produce large phase errors, as we already
discussed above. Since we are interested only in the phase behavior, we hence must stabilize the
phase computations and proceed as follows: Assuming that the noise level ‖FN (k)−F (k)‖ =: ε(k) is
known, the perturbation bound (40) implies that eigenvalues can be perturbed at most by a distance
of ε(k). We hence omit all eigenvalues λNj (k) such that

λNj (k) ∈ R+(ε(k)) := {z ∈ C, |z| ≤ ε(k), Re z ≥ 0} ⊂ C.
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Figure 1: Eigenvalues of the far field operator F (k) and of FN (k) for k = 5, N = 120, and D = B
(the unit ball). Red circles and blue crosses mark analytically computed eigenvalues of F (k) and
numerically computed eigenvalues of FN (k), respectively. For (c) and (d) we perturbed FN (k)
by adding artificial noise with a relative noise level of 10%. (a) Dirichlet boundary conditions,
no artificial noise. (b) Neumann boundary conditions, no artificial noise. (c) Dirichlet boundary
conditions, relative noise level of 10%. (d) Neumann boundary conditions, relative noise level of
10%.

In principle, we could also omit all eigenvalues inside the circle {|z| ≤ ε(k)}. However, for the
characterization of interior eigenvalues we are merely interested in eigenvalues with small phases
and hence do not care about wrong phase information for eigenvalues in the left half-plane. To
further stabilize the phase computations, we afterwards exploit the a-priori knowledge that the
exact eigenvalues λj(k) lie on the circle {z ∈ C, |z − 8π2i/k| = 8π2/k} in the complex plane and
project the eigenvalues λNj (k) outside R+(ε(k)) orthogonally onto this circle, using the mapping

Q : λ 7→ 8π2i

k
+

8π2

k

λ− 8π2i/k

|λ− 8π2i/k| . (43)

Finally, we compute the phases of the projected eigenvalues Q[λNj (k)] such that λNj (k) 6∈ R+(ε(k)).
Following Theorem 8, interior eigenvalues are characterized by the fact that the exact eigenvalue
λ∗(k) with smallest phase tends to zero from the right. To be able to compare the resulting values
of k in our computations with the true interior eigenvalues, we choose the scatterer to be either the
unit ball B or the cube C = (0, 1)3, such that the interior Dirichlet eigenvalues are known exactly:
For the unit ball B, the eigenvalues are given as positive roots of spherical Bessel functions and the
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Figure 2: Blue dots mark the phases of the projected numerical eigenvalues Q[λNj (k)] with λNj (k) 6∈
R+(ε(k)) for Dirichlet boundary conditions, N = 120. Red dots make the exact phases ϑj. Red
circles on the k-axis mark the exact positions of the smallest five interior Dirichlet eigenvalues. (a)
Phases of the projected numerical eigenvalues for the unit ball B. (b) Phases of the analytically
known eigenvalues of F for the unit ball B. (c) Phases of the projected numerical eigenvalues for the
unit cube. (d) Only the smallest phase from (c) was plotted. Vertical red lines mark the smallest
five interior Dirichlet eigenvalues.

first five eigenvalues appear at wave numbers

k
(1)
B = π, k

(2)
B ≈ 4.49, k

(3)
B ≈ 5.76, k

(4)
B ≈ 6.28, k

(5)
B ≈ 6.99.

For the cube C = (0, 1)3 the wave numbers kC at which k2C is an interior Dirichlet eigenvalue are
given by kC =

√
k1 + k2 + k3 where k1,2,3 is one of the numbers π2(n+1)2, n ∈ N0. Hence, the first

five Dirichlet eigenvalues arise at the wave numbers

k
(1)
C =

√
3π, k

(2)
C =

√
6π, k

(3)
C = 3π, k

(4)
C =

√
11π, k

(5)
C =

√
12π.

Figure 2 shows plots of the phases of the projected eigenvalues Q[λNj (k)] such that λNj (k) 6∈ R+(ε(k))

against the wave number k. In these computations, the value of ε(k) has been set to 10−4 · 16π2/k.
The phases of the projected eigenvalues plotted in Figure 2(a) for wave numbers in between 0 and,
roughly speaking, 6 cannot be distinguished visually from the exact ones plotted in Figure 2(b).
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Further, for wave numbers larger than 8 it is obvious that the numerical accuracy is not sufficient
anymore to yield correct phases for eigenvalues lying in the left complex half-plane, that is, where
the eigenvalues accumulate. However, Figures 2(a) and (c) show that the smallest phase tends to
zero when k tends to an eigenvalue from below. Figure 2(d) shows that the location of the jumps
in the curve of the smallest phase (that might, e.g., be found numerically using discrete derivatives)
yield enclosures of the exact eigenvalues.
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Figure 3: Blue dots mark the phases of the projected numerical eigenvalues Q[λNj (k)] with λNj (k) 6∈
R−(ε(k)) for Neumann boundary conditions, N = 120. Red dots make the exact phases ϑj . Red
circles on the k-axis mark the exact positions of the smallest five interior Neumann eigenvalues. (a)
Phases of the projected numerical eigenvalues for the unit ball B. (b) Phases of the analytically
known eigenvalues of F for the unit ball B. (c) Phases of the projected numerical eigenvalues for
the unit cube. (d) Only the smallest phase from (c) was plotted. Vertical red lines mark the exact
positions of the smallest five non-zero interior Neumann eigenvalues.

In the case of Neumann boundary conditions on ∂D, Theorem 17 states that the phase ϑ∗(k)
of the eigenvalue λ∗(k) of the far field operator with largest phase converges to π if and only if k
tends to an interior Neumann eigenvalue from above. In Figure 3 we show plots of the phases of the
projected eigenvalues Q[λNj (k)] for

λNj (k) 6∈ R−(ε(k)) := {z ∈ C, |z| ≤ ε(k), Re z ≤ 0} ⊂ C

for Neumann boundary conditions against the wave number k, again for the unit ball B and the cube
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C. As in the Dirichlet case, the simplicity of the domain allows to compute the interior Neumann
eigenvalues explicitly. For the unit ball, the wave numbers k at which interior eigenvalues arise are
given by the roots of the derivative of the spherical Hankel function. The first few of those wave
numbers are

k
(1)
B = 0, k

(2)
B ≈ 2.08, k

(3)
B ≈ 3.34, k

(4)
B ≈ 4.49, k

(5)
B ≈ 4.51.

For the cube C, the wave numbers kC at which k2C is an interior Neumann eigenvalue are given by
kC =

√
k1 + k2 + k3 where k1,2,3 is one of the numbers π2n2 for n ∈ N0. Therefore the first few

Neumann eigenvalues arise at the wave numbers

k
(1)
C = 0, k

(2)
C = π, k

(3)
C =

√
2π, k

(4)
C =

√
3π, k

(5)
C = 2π.

Figure 3 shows that both for the unit ball B and the cube C these values correspond to the wave
numbers for which the largest phase tends to π. Again, the jumps in the curve of the largest phase
shown in Figure 3(d) can be used to derive enclosures of the exact interior eigenvalues.

Finally we want to test the stability of the computation of interior eigenvalues via the behavior
of the smallest or largest phase when adding artificial noise to the data (u∞appr(θj , θℓ))

120
j,ℓ=1. As a test

case we choose the unit cube with Neumann boundary conditions as a test object. To obtain two
instances of noisy data from the numerically computed data (u∞appr(θj , θℓ))

120
j,ℓ=1, we added a matrix

with random numbers following a normal distribution with mean zero and variance such that the
relative error in the spectral matrix norm equals once 5% and once 10%. For the phase computations,
we applied the same stabilization technique used above: We first omitted the eigenvalues λNj (k) in
R−(ε(k)) := {|z| ≤ ε(k), Re z ≤ 0} and then projected the remaining eigenvalues onto the circle
{|z−8π2i/k| = 8π2/k} using the projection Q from (43). The number ε(k) was set to 0.025 ·16π2/k
and 0.05 · 16π2/k. Of course, the interior Neumann eigenvalues are not as precisely identifiable as
in Figure 3(c). However, by, e.g., choosing the jump of the largest phase as an approximation to

the exact interior eigenvalues yields an acceptable absolute error of less than 0.1 and 0.2 for λ
(j)
C ,

j = 2, . . . , 5, for the two noise levels of 5% and 10%, respectively.
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Figure 4: Computed phase curves after adding synthetic noise to the numerically computed far field
data for the cube C with Neumann boundary conditions, N = 120. Blue dots mark the phases of
the projected numerical eigenvalues Q[λNj (k)] with λNj (k) 6∈ R−(ε(k)). Red circles on the k-axis
mark the exact positions of the smallest five interior Neumann eigenvalues. (a) Relative noise level
5%. (b) Relative noise level 10%.
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