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Abstract
We present a computational framework for the inverse medium problem in scattering, i. e. we look

at discretization, reconstruction and numerical performance. The Helmholtz equation in two and three
dimensions is used as a physical model of scattering. Point sources as well as plane waves are taken
into account as incident fields. Further, near and far field measurements are considered. For the
reconstruction of the medium, we set up a variational regularization scheme. The underlying paradigm
is, roughly speaking, to minimize the discrepancy between the reconstruction and measured data while,
at the same time, taking into account various structural a-priori information via suitable penalty terms.
In particular, the involved penalty terms are designed to promote information expected in real-world
environments. To this end, a combination of sparsity promoting terms, total variation, and physical
bounds of the inhomogeneous medium, e. g. positivity constraints, is employed in the regularization
penalty. A primal-dual algorithm is used to solve the minimization problem related to the variational
regularization. The computational feasibility, performance and efficiency of the proposed approach is
demonstrated for synthetic as well as experimentally measured data (from Institute Fresnel) in two and
three dimensions.

Keywords Inverse Scattering Problem, Sparsity Regularization, Total Variation, Primal-Dual Algorithm

1 Introduction
Inverse medium scattering problems seek to identify the refractive index of a penetrable medium from
measurements of waves scattered from that medium. In acoustics, such parameter identification problems
for instance are crucial for various non-destructive testing procedures based on ultrasound measurements.
However, the numerical treatment of inverse medium scattering problems is challenging due to their intrinsic
non-linearity and ill-posedness. Further, any inversion algorithm in addition needs to cope with huge system
sizes arising after discretization. This is especially true for problems modelling all three space dimensions. In
this paper, we propose a complete computational framework for inverse medium scattering at fixed frequency.
The employed methods allow to take into account a-priori known structural properties of the searched-for
refractive index in the variational reconstruction step via suitable penalty terms. Such properties for instance
include (physical) bounds for the values of the refractive index, its sparsity in an a-priori known basis, or the
presence of sharp edges.

Numerous algorithms solving inverse medium scattering problems are already established, all having specific
advantages and disadvantages. A first class of algorithms (including ours) exploits Fréchet differentiability of
the operator mapping the refractive index to the measured data. This allows to set up one of the various existing
variants of regularized Newton-like inversion schemes that are typically locally convergent, see [CK13, Hoh01].
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This class includes popular techniques as Kleinman and van den Berg’s CG-based modified gradient method
or Gutman and Klibanov’s simplified gradient method. A second class of algorithms implements constructive
uniqueness proofs for (features of) the refractive index, see, e. g. [dLS+16], which also includes so-called
quantitative methods that merely identify spatial sets where the refractive index differs from its background
values, see [CK13, KG08, KS03]. Finally, a third class of algorithms relies on a high or low frequency
assumption to linearize the inversion problem in the corresponding asymptotic regime (e. g., physical optics
approximation or Born approximation). This allows to use particular linear inversion methods for inverse
medium scattering problems but remains of limited use if the wavelength is in the range of the size of the
scattering object.

Whenever an inversion algorithm for the inverse medium scattering problem relies on multi-static data,
see Figure 1 below, then it is backed up by uniqueness results for the searched-for refractive index, both in
two and three dimensions, see [Häh96, Buk08].

Our minimization-based reconstruction approach is known in inverse problems as (non-linear) Tikhonov
regularization. For given near or far field measurements, we rely on the non-linear forward operator mapping
the refractive index to the field measurements. As the refractive index n equals one outside the scatterer,
we actually prefer to solve for the contrast q := n2 − 1 of compact support, such that the forward operator
F maps q to the measurements. Naturally, we tackle the inversion problem by seeking a contrast q such
that F(q) matches measured data Fmeas, i. e. ‖F(q)− Fmeas‖ is small in some appropriate norm. To cope
with ill-posedness (i. e., instability) of the inversion problem, this functional must be stabilized by adding a
suitable penalty term, see [EHN96]. Considering sparse refractive indices with respect to a pixel or wavelet
basis, it is by now well-known that traditionally choosing the square of a Hilbert space norm yields worse
results than choosing `p-norms for p ∈ [1, 2) close to one, see [LKK13] for a resulting algorithm based on
soft-shrinkage iteration. We show in this paper that including further a-priori features of the refractive
index further improves the reconstruction quality. This allows for instance to join total variation based with
sparsity-promoting regularization. However, coping with additional penalties requires to use a more general
minimization algorithm than the soft-shrinkage iteration used in [LKK13]. To this end, we rely on a so-called
primal-dual algorithm due to Pock, Bischof, Cremers and Chambolle, see [PCBC09, CP11], which offers
enough flexibility for our setting while at the same time improving computation times considerably when
compared with soft-shrinkage iterations. This algorithm is hence in particular applicable for three-dimensional
inverse scattering problems.

For any inverse problem dealing with parameter identification in differential equations, efficient inversion
algorithms rely on an efficient solver for the underlying differential equation. For our setting, we describe
solutions to the time-harmonic (direct) scattering problem via the so-called Lippmann-Schwinger equation.
This volumetric integral equation can be efficiently discretized using a Fourier-based collocation scheme,
which, in its original version, is due to Vainikko [Vai00]. The resulting numerical scheme avoids several
disadvantages of standard discretizations as, e. g., finite element or finite difference schemes: Numerical
integration of singular functions or of the contrast is avoided, resulting solutions automatically satisfy the
radiation condition, and the fast Fourier transform allows for fast matrix-vector multiplication. The resulting
dense system matrix hence needs not to be set up, as the arising discrete system can be efficiently tackled by
iterative techniques (we rely on the GMRES algorithm).

We will test feasibility and performance of our inversion algorithm via reconstructions from synthetic data
in two and three dimensions as well as from experimentally measured data in two dimensions from Institute
Fresnel, see [BS01]. Although the run-times should be taken with a pinch of salt because our computations
rely on MATLAB, they give an impression of the performance of our algorithm. All numerical examples
contained in this paper are computed by the MATLAB toolbox that is available on demand and contains
both the mentioned inversion algorithms (primal-dual algorithm, soft-shrinkage iteration), as well as the
mentioned integral equation solver for the direct scattering problem.

The rest of this paper is structured as follows: In Section 2 we give a brief introduction to direct and
inverse scattering from inhomogeneous media. We tackle the discretization of the forward problem in Section 3
and the reconstruction in Section 4, where we develop a suitable penalty term, show explicitly how to apply
the mentioned primal-dual algorithm, and introduce suitable stopping rules. We test our inversion algorithm
with synthetic data in Section 5 in two and three dimensions. In Section 6 we apply the inversion algorithm
to experimentally measured data.
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Notation: We denote standard Lebesgue spaces with integrable pth power on a domain D by Lp(D).
The corresponding Sobolev spaces are W s,p(D) for s ≥ 0 and p ∈ [1,∞]; for p = 2, we abbreviate
Hs(D) = W s,2(D). The notation of inner products is 〈·, ·〉. In Section 3 vector and array quantities are
denoted by an underlined symbol. To select an element in such quantities we employ an subindex or, where
it is beneficial for readability, a bracket, i. e. q

j
and q(j) both denote the jth element of q. Sometimes we use

the notation f · g to point out the pointwise multiplication of functions. The notation (f ·) is used to denote
the operator of pointwise multiplication (with a function f). In the same vein, f � g and (f � ) is used for
element-wise multiplication of vector, matrix or array quantities as well as the related operator. Of course,
for vectors the notation (f � ) is the same as the diagonal operator diag(f). Further, except it is explicitly
stated otherwise, I denotes the identity operator on an appropriate space.

2 Direct and inverse scattering from inhomogeneous media
This section contains a brief description of the direct and inverse scattering problems we consider in the rest
of the paper, following [CK13, Ch. 8]. We consider a time-harmonic incident wave ui : Rd → C in dimension
d = 2, 3 with time-dependence exp(−iωt), where ω > 0 is the angular frequency. Omitting time-dependence,
the incident field satisfies the Helmholtz equation with constant wave number k > 0,

∆ui(x) + k2ui(x) = 0, x ∈ Rd. (1)

When the incident wave interacts with a scattering object, described by a refractive index function
n : Rd → C which equals 1 outside a bounded domain, a scattered wave us is generated. Consequently, the
total wave

ut := ui + us (2)

admits the Helmholtz equation
∆ut + k2n2ut = 0 in Rd (3)

and the scattered wave us satisfies Sommerfeld’s radiation condition

lim
|x|→∞

|x|(d−1)/2
(

∂

∂|x|
− ik

)
us(x) = 0, (4)

uniformly in all directions x̂ = x/|x| ∈ S := {y ∈ Rd : |y| = 1}, where |y| :=
√
y2

1 + . . .+ y2
d. (By abuse of

notation, we do not explicitly denote the dimension of the sphere.) The latter condition implies that us

behaves like an outgoing spherical wave with a far field u∞ : S→ C,

us(rx̂) = exp(ikr)
r

(
u∞(x̂) +O

(
1
r

))
as r →∞, uniformly in x̂.

The direct scattering problem is defined as finding a solution u to equations (2)–(4). Instead of considering
the above PDE directly, the problem can be reformulated as the equivalent Lippmann-Schwinger equation,
which will be introduced in the next section. Therefore, we solve the direct scattering problem by solving
the related Lippmann-Schwinger equation. Throughout this paper, we make the quiet assumption that the
refractive index n is piece-wise continuous in Rd such that the contrast

q := n2 − 1 in Rd

has compact support and satisfies that 1 + Re(q) = Re(n2) > 0 and Im(q) = Im(n2) ≥ 0.

Inverse problem and experimental data Clearly, the total field ut, modeled by the solution to (3)–(4) is
a quantity, which is accessible to physical measurements. Here, we further assume that the incident field itself
can also be made accessible, e. g., by reference measurements without the scattering object. Consequently, due
to the equation us = ut − ui we assume in the sequel that (near or far field) measurements of the scattered
field are available. These measurements of the scattered field are then used as data for the following inverse
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problem: Reconstruct the contrast function q from several measurements of the scattered field. Since we
aim to reconstruct a space-dependent function q, we will generally require multi-static measurements, which
means that we assume to know measurements of scattered fields for several incident fields. The experimental
set-up is shown in Fig. 1.

Figure 1: Measurement set-up for
multi-static measurements: Several
transmitters (red filled circles) prop-
agate incident fields one after the
other and the generated scattered
fields are measured by several re-
ceivers (black hollow circles).

The introduced Helmholtz equation models two physical settings:
Firstly, the equation describes acoustic waves with fixed frequency
that are interacting with an inhomogeneous medium with constant
density, both in two and three dimensions. Secondly, it can further be
used to describe scattering of electromagnetic waves in transverse mag-
netic (TM) polarization from some penetrable non-magnetic material
independent of one space direction. Note that the second case fits to
the experimental data measured in TM polarization by the Institute
Fresnel, see [BS01], which we consider in Section 6.

3 Discretization of the forward problem
In this section we tackle the direct scattering problem and discuss its
analysis and discretization. We approach the scattering problem by
means of the Lippmann-Schwinger equation that equivalently describes
the solution to (3). To this end, we consider the volume potential
for the radiating fundamental solution of the Helmholtz equation.
For the discretization of the related integral equation a collocation
scheme similar to the one in [Vai00] is considered. As we will see later,
approaching the solution of the direct scattering problem via an integral
equation allows for an efficient solution of the inverse medium problem, since the involved wave fields and the
contrast are considered within the medium on the same mesh. The final aim of this section is to present
continuous and discretized versions of the forward operator of the scattering problem, its Fréchet derivative,
and the adjoint of that derivative. The material of this section follows [LKK13, Vai00], and [CK13, Ch. 8].

3.1 Lippmann-Schwinger equation
As we aim to reconstruct the contrast q from indirect measurements, we assume to a-priori possess information
about a region of interest (ROI) denoted by D ⊂ Rd containing the support of the contrast q. Without loss of
generality we further assume that D itself is strictly contained in a ball with radius R centered in the origin

BR := {x ∈ Rd : |x| < R}.

For the sake of simplicity, we set
D := 1√

2
[−R,R)d (5)

to be the biggest cube contained in BR. By Φ we denote the radiating fundamental solution of the Helmholtz
equation,

Φ(x) =
{

i
4H

(1)
0 (k|x|) if x ∈ R2, x 6= 0,

1
4π

exp(ik|x|)
|x| if x ∈ R3, x 6= 0,

(6)

where H(1)
0 is the Hankel function of first kind and order 0. The fundamental solution defines the volume

potential V by
v(x) := (V f)(x) := k2

∫
D

Φ(x− y)f(y) dy, x ∈ Rd. (7)

Remark 3.1. For a function f ∈ Lt(D) with t > 1 the volume potential v = V f belongs to W 2,t
loc (Rd) = {v :

Rd → C : v|B ∈W 2,t(B) for all balls B ⊂ Rd} if the function is extended by zero outside of D. Moreover,
the function v is the unique radiating solution to ∆v+k2v = −k2f in Lt(Rd), see [LKK13, CK13]. Thus, the
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radiating scattered field us can be found as a solution of the Lippmann-Schwinger equation: By (3) and (1),
there holds ∆us + k2us = −k2q(ui + us), such that us − V (q · us) = V (q · ui) holds in Rd. The corresponding
equation for the total field reads ut − V (q · ut) = ui in Rd, see [CK13].

We consider this integral equation in D. Under the assumption that Im(q) ≥ 0 in D it is then well-known
that the Lippmann-Schwinger equation is uniquely solvable for all right-hand sides.

Theorem 3.2 (Existence and uniqueness of solution [LKK13]). Let the contrast q be in Lp(D) for p > d/2(≥ 1)
such that Im(q) ≥ 0 in D and extend q by zero to all of Rd. Furthermore choose t > max {p/(p− 1), 2d/(d+ 2)}
and an incident field ui ∈ Lt(D). Then the Lippmann-Schwinger equation

v − V (q · v) = V (q · ui) in Lt(D) (8)

has a unique solution v ∈ Lt(D). Setting us := V (q · (v+ui)) defines a radiating solution us ∈W 2,tp/(t+p)
loc (Rd)

to the Helmholtz equation ∆us + k2(1 + q)us = −k2qui in Ltloc(Rd).

3.2 Periodization of the volume potential

D2R

D

BR

B2R

R 2R

R

2R

x1

x2

Figure 2: Areas in 2D: computational domain D2R,
region of interest D and balls BR and B2R.

Remember that supp(q) ⊂ D. This implies that
supp(f) ⊂ D for f = qui or f = qus. Plugging such
f into the integral operator V from (7), we conclude
that the source term f vanishes outside BR ⊃ D.
In addition, a close inspection of (7) reveals that to
evaluate V f(x) the values of Φ do only have to be
known in the ball B2R. This is the case since if the
points x, y are in BR the difference x − y belongs
to B2R. Consequently, as in [Vai00], we define a
modified kernel Φ2R by cutting off Φ outside of B2R
and multiplying it by k2,

Φ2R(x) :=
{
k2Φ(x) if x ∈ B2R,

0 if x ∈ D2R \B2R,
(9)

This allows us to define an equivalent periodized
integral operator V2R in the computational domain
D2R, where D2R is a square or cube with side length
4R containing B2R,

D2R := {x ∈ Rd : −2R ≤ x` < 2R, ` = 1, . . . , d}.

The relations between the computational domain D2R, the region of interest D and the balls BR and B2R,
are illustrated in Fig. 2. Extending both Φ2R and q from D2R to Rd as 4R-periodic functions with respect to
x1, . . . , xd, we define this periodized integral operator V2R : L2(D2R)→ L2(D2R) by

(V2Rf)(x) :=
∫
D2R

Φ2R(x− y)f(y) dy, x ∈ D2R. (10)

We use the same symbol for the original and extended versions since it is clear form the context which one is
meant.

As discussed in the beginning of this section, (V f)|D = (V2Rf)|D for all f ∈ L2(D) (and even for all
f ∈ BR), if they are extended by zero to all of D2R. Since, the operator V2R is a 4R-periodic convolution
operator acting on functions in L2(D2R) it can be evaluated by means of the convolution theorem. To that
end, we consider the complete orthogonal system in L2(D2R):

ϕj(x) := 1
(4R)d/2

exp
(

2πi
4R 〈j, x〉

)
, j ∈ Zd . (11)
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Figure 3: Real (blue solid and dotted) and imaginary part (red dashed and dash-dotted) of Fourier coefficients
Φ̂2R over pj = π|j| ≥ 0 with R = 1, k = 1, such that κ = 2Rk = 2. We see that the Fourier coefficients decay
in j.

Then for every f ∈ L2(D2R) the representation f =
∑
j∈Zd f̂(j)ϕj holds, where the Fourier coefficients

f̂(j) are defined as
∫
D2R

f ϕj dx. Further, the convolution theorem for that system shows that the Fourier
coefficients of V2Rf are given via

V̂2Rf(j) = (4R)d/2 Φ̂2R(j) f̂(j), j ∈ Zd. (12)

Further, the Fourier coefficients of the convolution kernel can be explicitly computed, see [Vai00, Hoh01].
They decay in j as |Φ̂2R(j)| ≤ C(1 + |j|)−3/2 for d = 2 and |Φ̂2R(j)| ≤ C(1 + |j|)−2 for d = 3, see Fig. 3. To
omit repeating the factor (4R)d/2 we define

Ψ2R := (4R)d/2 Φ̂2R (13)

and pj := π|j| and κ := 2Rk. Then in the two-dimensional setting

Ψ2R(j) =


κ2

p2
j
−κ2

(
1 + iπ

2

[
pjJ1(pj)H(1)

0 (κ)− κJ0(pj)H(1)
1 (κ)

])
if pj 6= κ,

iπκ2

4

[
J1(κ)H(1)

1 (κ) + J0(κ)H(1)
0 (κ)

]
if pj = κ,

for d = 2, (14)

where Jν and H(1)
ν are the cylindrical Bessel and Hankel functions. Further, in three dimensions Ψ2R(0) =

(1− iκ)exp(iκ)− 1 and

Ψ2R(j) =
{

κ2

p2
j
−κ2

(
1− eiκ

[
cos(pj)− iκ

pj
sin(pj)

])
if 0 6= pj 6= κ,

1
2eiκ (κ sin(κ) + i[κ cos(κ)− sin(κ)]) if pj = κ,

for d = 3. (15)

Note the correction in the above formula for d = 3 in case of pj = κ of the value given in [Vai00, Hoh01].

3.3 Discretization of the Lippmann-Schwinger equation
We exploit the convolution structure of the volume potential for its discretization via the fast Fourier
transform. The periodized volume potential V2R allows to consider in D2R the Lippmann-Schwinger equation
corresponding to (8),

v − V2R(q · v) = V2R(q · ui) in L2(D2R). (16)

As previously, the functions q and qui are understood to be extended 4R-periodically to Rd where necessary.
As in [Vai00], one shows that (16) is well-posed in Lt(D2R) whenever (8) is well-posed in Lt(D). Moreover, a
solution v to (16) equals the scattered field us solving (8) on BR, and in particular on D.
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To discretize (8), we define in the domain D2R a mesh of Nd regularly spaced collocation points with
step size hN := 4R/N for N ∈ N,

x
(N)
j := hN j = 4R

N
j ⊂ D2R for j ∈ ZdN :=

{
j = (j1, . . . , jd)> ∈ Zd : −N2 ≤ j` <

N

2 , ` = 1, . . . , d
}
. (17)

Moreover, we introduce the approximation space

TN :=
{ ∑
j∈Zd

N

cjϕj : cj ∈ C
}
, N ∈ N, (18)

which is, roughly speaking, the space of trigonometric polynomials up to degree N/2. Clearly, since the basis
functions ϕj from (11) are orthonormal, every vN ∈ TN has a representation vN =

∑
j∈Zd

N
cjϕj , where the

representation coefficients cj are unique and are just the Fourier coefficients v̂N (j) =
∫
D2R

vNϕj dx of vN .
The key to the discretization of the Lippmann-Schwinger equation is the fact that every function in TN can
equivalently be characterized by its Fourier coefficients as well as its point values on the above introduced
mesh. To be exact, for every set of point values vN := (vN (j))j∈Zd

N
there exists exactly one vN ∈ TN such that

vN (x(N)
j ) = vN (j). Since ϕj(x(N)

` ) = 1/(4R)d/2ω−j·`N with ωN = exp(−2πi/N) and j, ` ∈ Zd, the following
relations hold between the collocation values and the Fourier coefficients of vN :

vN (x(N)
` ) =

∑
j∈Zd

N

v̂N (j)ϕj(x(N)
l ) = 1

(4R)d/2
∑
j∈Zd

N

v̂N (j)ω−j·`N , v̂N (j) = (4R)d/2

Nd

∑
`∈Zd

N

vN (x(N)
` )ωj·`N . (19)

Clearly, one recognizes in these equations, up to a scaling factor, the discrete forward and inverse Fourier
transform.

To discretize (16) we replace v there by an vN ∈ TN . Still, the term qvN will in general fail to belong to
TN and we will not be able to use fast evaluation of the operator V2R. To remedy this we project qvN onto
TN . With similar argumentation we project qui too. However, it is of uttermost importance that not the
standard projection is used but the interpolation projection QN , which for piece-wise continuous f is defined
by

(QNf)(x(N)
j ) := f(x(N)

j ), j ∈ ZdN .

This interpolation then discretizes the periodized integral equation (16) by collocation,

vN − V2R(QN (q · vN )) = V2R(QN (q · ui)) in TN . (20)

The point evaluations of v, ui, and q at the grid points x(N)
j are denoted vN , ui

N , and q
N

and are d-dimensional
complex-valued arrays of size N ×N in 2D and N ×N ×N in 3D. We write CdN for the space of such arrays.
Of course when considered as elements of a vector space these arrays will still be called vectors. Defining the
array ΨN via

ΨN := (Ψ2R(j))j∈Zd
N
,

allows the equation (20) to be equivalently reformulated in a fully discrete way,

vN − VN (q
N
� vN ) = VN (q

N
� ui

N ) in CdN , where VN := F−1
N (ΨN � )FN . (21)

Here, A�B denotes the element-wise multiplication of two arrays and (A� ) the operator of pointwise multi-
plication with A. Further, FN denotes the d-dimensional discrete Fourier transform (FNx)l =

∑
j∈Zd

N
xjω

`·j
N ,

where l ∈ ZdN and ωN = exp(−2πi/N). The changes necessary to evaluate VN by the fast Fourier transform
will be discussed in the next subsection. With respect to the solution method of (21) we remark that the
resulting system matrix is a full matrix of size Nd ×Nd. Therefore, it is advisable to tackle the arising linear
system by an iterative solver. For example, in our numerical experiments we employ the GMRES algorithm.

Convergence analysis of the latter scheme is typically done in the Sobolev spaces Hs(D2R), see [Vai00,
Hoh01, LN11] for closely related methods. Roughly speaking, the smoother the contrast the higher the
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convergence rate: If, e. g., qui belongs to Hs(D2R) with s > d/2, then the solution v to (16) belongs to
Hs+(d+1)/2(D2R), d = 2, 3, and there is N0 ∈ N such that for all N ≥ N0 the solution vN to (20) exists
and satisfies ‖vN − v‖L2(D2R) ≤ CN−s−(d+1)/2‖qui‖Hs(D2R). Of course, the approximation rate is dimension-
dependent, similar to the decay rate of the Fourier coefficients of Φ2R, see (14) and (15) in combination
with (13).

3.4 Implementation of the collocation scheme
When implementing the discrete scheme (21), two technical issues become quickly evident. Firstly, considering
the indexing of the Fourier transforms observes that the standard implementation of the fast Fourier transform
(FFT) uses shifted indices as compared to the formulas in (19). Explicitly, FFT uses indices j` = 0, . . . , dN/2e−
1, d−N/2e, . . . ,−1, see [FJ05], where discrete Fourier transform employs j` = d−N/2e, . . . , dN/2e − 1 as
defined in (17). Both issues have to be addressed in efficient implementations. Secondly, at first glance the
equation (21) seems to imply that vN has to be solved for the Nd degrees of freedom in CdN related to the
point evaluations in the computational domain D2R. However, recalling that by assumption the support of
q is contained in D together with (20) reveals that vN has at most support in D. Therefore, it suffices to
consider and store the point evaluations of vN on D only and extend/restrict them between that space and
CdN where necessary for means of (21).

First, we tackle the indexation issue for the discrete Fourier transform. For a d-dimensional array f ∈ CdN
the d-dimensional forward and inverse FFT is defined via (FFTNf)(j) :=

∑
f(`)ω`·jN and (FFT−1

N f)(j) :=
1
Nd

∑
f(`)ω−j·`N , where ωN = exp (−2πi/N), the summation is carried over all ` with 0 ≤ `1, . . . , `d ≤ N − 1

and the evaluation index j is such that 0 ≤ j1, . . . , jd ≤ N − 1. Hence, if SN is the operator on CdN shifting
cyclically by d(N − 1)/2e in every dimension, then FN = SN FFTN S−1

N . This implies that the operator
VN can be implemented via VNfN = FFT−1

N

[
S−1
N

(
ΨN

)
� FFTNfN

]
, since SN (A�B) = SN (A)� SN (B)

and there exist A1 and A2, such that A2 is the entry-wise inverse of A1, and SNFFTN = FFTN (A1 � ),
FFTNS−1

N = (A2 � )FFTN . The last statement is true since a circular shift is a circular convolution and a
version of the convolution theorem applies to FFTN .

RN

EN
2R

2R

D2R

R√
2

R√
2

D

Figure 4: Restriction RN (mapping grid values in CdN
into CND) and extension EN (mapping CND into CdN )
in case d = 2.

Concerning the second problem, we introduce
restriction operators RN that restrict point values
vN ∈ CdN of vN ∈ TN to grid points inside D. The
corresponding extension operators EN extend point
values on grid points inside D by zero to elements
of CdN . We denote by

CND with ND := bN/(2
√

2)cd (22)

the space of point values related to grid points x(N)
j

insideD. ThenRN maps CdN into CND and EN maps
CND into CdN . Fig. 4 visualizes the action of RN and
EN . Both operators are adjoint to each other with
respect to the standard inner products of CdN and
CND .

Altogether, we arrive at the final formulation of the discretized Lippmann-Schwinger equation (21): with

Φ̂N := S−1
N

(
ΨN

)
and

VND : CND → CND with VND := RNFFT−1
N (Φ̂N � )FFTNEN , (23)

it is given by
vND
− VND

(
q
ND
� vND

)
= VND

(
q
ND
� ui

ND

)
in CND . (24)
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3.5 Single-layer and measurement operators for multi-static data
In the last section we presented an efficient way to discretize the physical model for the effects of scattering
within the region of interest D. To present the full model, in this section, we discuss the operators involved
with the propagation from point sources (“transmitters”) to D and the propagation from D to measurement
points (“receivers”). Our discussion is focused on the multi-static case, i. e. data originating from several
incident fields. In this approach we are motivated by the well-known fact that unique determination of the
contrast q without a-priori information requires multi-static scattering data, see, e. g., [CK13, LKK13].

As mentioned in the introduction, the first type of incident fields are point sources ui
j(x) = Φ(x− pj),

where Φ is the fundamental solution presented in (6) and x ∈ Rd, j = 1, . . . , Ni. We assume that these
Ni fields originate from source points pj outside of BR and are placed on a manifold Γi. Therefore, linear
combinations of the Ni fields yield approximations to single-layer potentials on Γi

SLΓi→D : L2(Γi)→ L2(D), (SLΓi→D g)(x) :=
∫

Γi

Φ(x− y)g(y) dS, x ∈ D. (25)

The second type of incident fields are plane waves ui
j(x) = exp(ik〈x, θj〉), radiating from Ni directions

θj ∈ S, j = 1, . . . , Ni. For plane waves, it is sensible to replace Γi in (25) by S and Φ(x − y) by the plane
wave exp(ik〈x, y〉). To keep the notation simple, we do not introduce a separate symbol for the single-layer
potential, since it is clear from the context which kind of incident fields is used, i. e. for plane waves the
symbol SLS→D is employed. In both cases the operator is discretized directly by quadrature resulting in

SLNi,ND : CNi → CND , (SLNi,ND gNi
)(`) :=

Ni∑
j=1

ωi
ju

i
j(x`)gNi

(j) , (26)

where the weights ωi
j approximate the surface element on Γi in a neighborhood of pj . In general, one is well

advised to store the operator as matrix. Then the evaluation of the operator reduces to a matrix-vector
multiplication.

Having discussed the propagation from the sources to the region of interest, next we consider the operators
responsible for the physical action in the region of interest itself. To this end, we remark that for a given
incident field the periodized Lippmann-Schwinger equation (16) is uniquely solvable for contrasts q in the
closed and convex set

LpIm≥0(D) := {q ∈ Lp(D) : Im(q) ≥ 0 in D} ⊂ Lp(D), p > d/2,

where, as previously, such contrasts are extended by zero to the computational domain D2R. The restriction
to D of such solution coincides with the corresponding scattered field on D. Let (q ·) denote the operator of
pointwise multiplication with the contrast q, then the operator

Tq : Lt(D)→W 2,tp/(t+p)(D), Tq := (I − V2R(q ·))−1

denoting the inverse of the left hand side of (16) is bounded for t large enough, cf. Theorem 3.2. Applying
Tq to an incident field yields the corresponding total field on D, i. e., ut|D = Tq

(
SLΓi→D g

)
, cf. Remark 3.1.

The discretization of Tq is given by

Tq : CND → CND , Tq := (I − VND(q � ))−1, where q ∈ CND . (27)

With the Lippmann-Schwinger equation (24) for the scattering field and Remark 3.1 in mind it is clear
that the mappings Tq SLNi,ND and (I + TqVND(q � )) SLNi,ND coincide. The former is more convenient for
analytical purposes, the latter is more suitable for numerics.

Finally, we model the near and far field measurement operators. The near field measurements of the
scattered field us are assumed to be carried out on a non-empty, closed Lipschitz surface Γs. Assuming that
Γs does not intersect D, we choose Ns points (“receivers”) x1, . . . , xNs on Γs. Then, near field measurements
are modeled via the representation (8) of the scattered field, which implies that

VD→Γs : L2(D)→ L2(Γs), (VD→Γsf)(x) := k2
∫
D

Φ(x− y)f(y) dx, x ∈ Γs, (28)
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satisfies us|Γs = VD→Γs(q ·ut) = VD→Γs(q ·Tq(SLΓi→D g)). To model far field measurements, we replace Γs by S,
choose Ns directions x̂1, . . . , x̂Ns ∈ S, and replace Φ(x−y) in the definition of VD→Γs by γ ·exp(−ik〈x̂`, x(N)

j 〉),
where the dimension-dependent factor γ is exp(iπ/4)/

√
8πk in 2D and 1/(4π) in 3D, see [CK13, Ch. 3.5, 8.4].

In a similar way as for the single-layer potential, we do not introduce an explicit symbol for far field
measurements. Explicitly we employ VD→S to that end. As for the single-layer potential we also discretize
the measurement operator by quadrature,

VND,Ns : CND → CNs , (VND,NsfND
)(`) := hdNk

2
∑

j∈Zd
N

Φ(x` − x(N)
j )f

ND
(j), (29)

where hdN is the dth power of the grid size introduced in (17) and x(N)
j are the points introduced in that same

equation. For near/far field measurements Φ has to be chosen/modified according to the remarks of the last
paragraph. As the discretization of the single-layer potential the measurement operator VND,Ns is also in
general stored as a matrix. Consequently, its evaluation is a matrix-vector multiplication.

The scattered field us on Γs (or the far field on S) in a multi-static setting then equals us|Γs
= VD→Γs(q · ut) =

VD→Γs

(
q ·Tq

(
SLΓi→D g

))
, and is therefore approximated by its discrete variant VND,Ns

(
q � Tq

(
SLNi,ND gNi

))
.

3.6 The forward scattering operator and its derivative
With the operators discussed in the last subsection and their discretizations we are now ready to present the
full, nonlinear, multi-static contrast-to-measurement operator

F : LpIm≥0(D)→ HS(L2(Γi), L2(Γs)), F(q) := VD→Γs(q·)Tq SLΓi→D,

where HS is the space of Hilbert-Schmidt operators from L2(Γi) into L2(Γs). Consequently, for every q the
value F(q) is a bounded, linear operator from L2(Γi) to L2(Γs). The corresponding discretized operator

F : CND → CND×Ni , F(q) := VND,Ns(q � )Tq SLNi,ND (30)

maps q ∈ CND , the point evaluations of the contrast on D, to the measurement data, a matrix in CNs×Ni .
After presenting the forward operator, we now direct our attention to its derivative and its adjoint. For

q ∈ LpIm≥0(D) with p > d/2 the operator F is Fréchet differentiable [LKK13] with

F ′(q)[h]g = VD→Γs(I + (q·)TqV2R)(h·)Tq SLΓi→D g, g ∈ L2(Γi) (31)

and the linear operator F ′(q) from Lp(D) into HS(L2(Γi), L2(Γs)) is bounded. To formally deduct the
last formula the product rule [F � G]′(q)[h] = F (q) � G′(q)[h] + F ′(q)[h] � G(q) and the inverse rule
(F−1)′(q)[h] = F (q)−1 F ′(q)[h]F (q)−1 are helpful. Further, the derivative of the discretized operator F is
given via

F ′(q)[h] = AND,Ns(h� )BND,Ni in CNs×Ni for h ∈ CND (32)

where

AND,Ns := VND,Ns

(
I + (q � )TqVND

)
∈ CNi×ND and BND,Ni := Tq SLNi,ND ∈ CND×Ni .

The reader should be aware that AND,Ns and BND,Ni are functions of the discretized contrast q. Due to the
above factorization the adjoint [F ′(q)]∗ of the derivative with respect to the standard inner products is given
by

[F ′(q)]∗H =
Ns∑
j=1

Ni∑
`=1

Hj,`AND,Ns(j, ·)BND,Ni(·, `) for H ∈ CNs×Ni ,

where A(j, ·) denotes the jth row and A(·, `) the `th column of a matrix A. To see this, we recall that
A(h� )B =

∑
i hiA(·, i)B(i, ·) holds.

Up until this point all complex spaces involved in definitions of discretized operators were equipped with
the standard inner product. However, for the definition of the full forward operator F one could also consider
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weighted versions which mimic the behavior of the spaces involved in the definition of the operator F . The
discretization of the norm in the pre-image space LpIm≥0 yields the norm

‖x‖roi,p :=
(
hdN
∑
i

|xi|p
) 1

p

, x ∈ CND ,

for the space CND . In particular for p = 2 the following inner product discretization

〈x, y〉roi := hdN
∑
i

xiyi, x, y ∈ CND , (33)

is sensible. For the space CNs×Ni we propose the discretization of the inner product in HS(L2(Γi), L2(Γs)) by
the weighted Frobenius product

〈A,B〉dis := trace
(
B∗ ωsA) =

Ns∑
j=1

ωs
j

Ni∑
`=1

Aj`Bj`, A,B ∈ CNs×Ni , (34)

where the diagonal weight matrix ωs = diag((ωs
j)
Ns
j=1) is due to the weights approximating the surface element

on Γs. The letter combination “dis” is due to the fact that the induced norm ‖·‖dis is used as discrepancy term
in the reconstruction scheme discussed in the next section. Formally, the change of norms can be incorporated
into the above definitions by introducing the embeddings ι1 : (CND , ‖ · ‖roi,p)→ (CND , ‖ · ‖p) with ι1(h) := h
and ι2 : (CNs×Ni , ‖ · ‖Fro)→ (CNs×Ni , ‖ · ‖dis) with ι2(H) := H, where ‖ · ‖Fro is the unweighted Frobenius
norm. Clearly, prepending ι2 and appending ι1 to the definitions to the discretized forward operator will not
change the computed result. The only changes will occur in the adjoint operators, since ι∗1(g) = g/hdN and
ι∗2(G) = ωsG. For example the adjoint of the derivate with respect to the new norms is given by

[F ′(q)]∗H =
Ns∑
j=1

ωs
j

hdN

Ni∑
`=1

Hj,`AND,Ns(j, ·)BND,Ni(·, `) for H ∈ CNs×Ni . (35)

The above representations will turn out to be especially helpful for the reconstruction algorithm, cf.
Section 4.4, for which repeated evaluations of F ′(q)[h] and [F ′(q)]∗[F(q)] are necessary. We remark that the
expensive computation of the matrices AND,Ns ∈ CNS×ND and BND,Ni ∈ CND×Ni can be set up by solving
Ns and Ni forward problems, which makes the full derivative efficiently computable.

3.7 Generation of operators
We finish this section by proposing a possible generation sequence for the discretized operators. To keep the
notation simple we consider the three-dimensional space R3 (i. e., d = 3) and even N ∈ N.

First one chooses six grid parameters: the Ni locations of the sources (point sources or plane waves),
the computational domain/region of interest parameters R and N , and the Ns measurement locations xs

`,
` = 1, . . . , Ns and their type (near of far field measurement).

The region of interest parameters generate two index sets I = −N/2, . . . , N/2 − 1, shifted IS =
0, . . . , N/2 − 1,−N/2, . . . ,−1, the grid resolution hN and volume element hdN with d = 3, the grid points
of the computational domain x(N)

j with j = (j1, j2, j3), j1, j2, j3 ∈ I, see (17), and points of the region of
interest x` for ` = 1, . . . , ND, see (22) for ND. Further, these parameters also determine the operators EN
and RN responsible for the data transport between the computational domain and the region of interest, cf.
Section 3.4. These operators can be implemented via a mask marking the region of interest points within the
computational domain.

Then, the kind of sources determines the source functions ui
j , j = 1, . . . , Ni, as discussed in Section 3.5.

The locations of the sources induce then the approximations ωi ∈ RNi of the infinitesimal element of Γi.
Consequently the system matrix of the operator SLNi,ND , see (26), is given by (ωi

ju
i
j(x`))`=1,...,ND, j=1,...,Ni .

Next, the array Φ̂N = (Ψ2R(IS(j1), IS(j2), IS(j3)))j1,j2,j3=1,...,N is computed which is necessary for the
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potential operator VND : CND → CND with VNDf = RNFFT−1
N

[
Φ̂N � FFTNENf

]
, see (23). Its adjoint with

respect to the standard inner product is given by V ∗ND
f = RNFFT−1

N

[
Φ̂N � FFTNENf

]
. These operators

then determine the Lippmann-Schwinger operator Tq = (I − VND(q � ))−1 and its adjoint with respect to
the standard inner product is given by T ∗q = (I − V ∗ND

(q � ))−1, see (27). Finally, the measurement type
determines the form of the measurement function Φ, see (28) and the paragraph afterwards. The measurement
locations xs

` gives ωs ∈ RNs the approximations of the infinitesimal element of Γs. Together these yield the
system matrix of the operator VND,Ns , see (29), which is given by (hdNk2Φ(x` − x(N)

j ))`=1,...,Ns,j=1,...,ND . The
adjoints of the operators SLNi,ND and VND,Ns are given by transposing the related system matrices and
possibly accounting for weighted norms as discussed at the end of last section.

4 Reconstruction with a primal-dual algorithm
To solve the inverse problem we aim to minimize a Tikhonov functional with adapted penalty terms. For
minimization we will employ the primal-dual algorithm (PDA) by Pock, Bischof, Cremers and Chambolle,
see [PCBC09] or [CP11, Alg. 1]. Before discussing this algorithm, we introduce important concepts from
convex analysis. Readers familiar with this theory might want to omit the next section.

4.1 Subgradient, Fenchel conjugate
The following definitions can be found in [SKHK12, Ch. 2] and [Roc67, Ch. 2]. A functional f : X → R∪{+∞}
on a Banach space X is convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and all λ ∈ [0, 1].
A convex functional f on X is lower semi-continuous (l.s.c.) if the convex level set {x ∈ X : f(x) ≤ c} is
closed for every c ∈ R.

For a convex functional f : X → R ∪ {∞} the effective domain of f is defined as dom(f) := {x ∈ X :
f(x) <∞} and f is called proper if dom(f) 6= ∅. An element x∗ of the dual space X∗ is a subgradient of f
at x ∈ X if the relation f(y) ≥ f(x) + 〈x∗, y − x〉 holds for all y ∈ X. Further, the set of all subgradients of
f at x is called the subdifferential of f at x and is denoted by

∂f(x).

The notions of subgradients and subdifferentials are a generalization of the gradient to (possibly) non-smooth
convex functions. In particular, if X is finite-dimensional and f continuously differentiable at x, then the
subdifferential ∂f(x) has exactly one element, namely the gradient ∇f(x). In fact, in that case we do not
distinguish between the set and its sole element and write ∂f = ∇f . Finally, for a convex function f on X
the Fenchel conjugate is defined via

f∗(x∗) = sup
x∈X

[〈x, x∗〉 − f(x)] , x∗ ∈ X∗. (36)

Sometimes, in the literature the term “Fenchel dual” or “convex conjugate” is employed for this quantity. It
turns out that f∗ is convex on the dual space X∗. Further, if f is l.s.c then f∗ is l.s.c., too. In a similar way
the Fenchel biconjugate is defined via f∗∗(x) = supx∗∈X∗ [〈x, x∗〉 − f∗(x∗)] for x ∈ X. It turns out that the
Fenchel conjugation is a bijection between l.s.c. proper convex functions. In particular, for such functions
f = f∗∗.

4.2 A primal-dual algorithm
In this section we discuss a primal-dual algorithm (PDA) from [CP11, Alg. 1]. To this end, let the two
finite-dimensional real vector spaces X, Y be equipped with inner products 〈·, ·〉X and 〈·, ·〉Y and associated
norms and let K : X → Y be a continuous linear operator with operator norm ‖K‖ := max0 6=x∈X

‖Kx‖Y

‖x‖X
.
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Problem formulations Let G : X → [0,∞] be a proper, convex and l.s.c. functional and F : X → [0,∞)
convex and l.s.c. The (nonlinear) primal problem we want to solve is

min
x∈X

F (Kx) +G(x). (37)

We assume that the Fenchel conjugate F ∗ : Y → [0,∞] of F is proper. Then, replacing F (z) by F ∗∗(z) =
maxy∈Y [〈z, y〉 − F ∗(y)] with z := Kx in the primal problem yields the so called primal-dual problem

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y), (38)

which is an example of a saddle-point problem. Assuming the order of min and max in (38) can be changed
without influencing the result and exploiting the fact that 〈Kx, y〉 = 〈x,K∗y〉 one obtains the dual-primal
problem

max
y∈Y

min
x∈X
〈x,K∗y〉 − F ∗(y) +G(x). (39)

Primal-dual algorithm (PDA) The following algorithm was proposed for the solution of the above
problems:
Algorithm 4.1 (Primal-dual algorithm (PDA) for convex problems, see [CP11, Alg. 1]).
• Initialization: Choose step sizes τ, σ > 0, initial vectors (x0, y0) ∈ X × Y and set x̄0 = x0.

• Iterations (n ≥ 0): Update xn, yn, x̄n as follows:
1. yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n),
2. xn+1 = (I + τ∂G)−1(xn − τK∗yn+1), (40)
3. x̄n+1 = 2xn+1 − xn.

To motivate this algorithm assume that (38) and (39) have at least one solution (x̂, ŷ) ∈ X × Y , such
that 0 belongs to the subdifferential of the functionals in (38) with fixed x = x̂ and (39) with fixed y = ŷ.
Then the corresponding extremality conditions are Kx̂ ∈ ∂F ∗(ŷ) and −(K∗ŷ) ∈ ∂G(x̂). Multiplying both
sides of the first condition with σ 6= 0 and adding ŷ we get ŷ + σKx̂ ∈ ŷ + ∂F ∗(ŷ), which yields the following
implicit equation for ŷ,

ŷ = (I + σ∂F ∗)−1(ŷ + σKx̂).
Similarly the second condition gives x̂ = (I + τ∂G)−1(x̂ − τK∗ŷ) with τ 6= 0. The primal-dual algorithm
connects then alternating fixed-point iterations for x̂, ŷ with an extrapolation step. In particular, the above
algorithm can be interpreted as a fixed-point iteration with an over-relaxation step in the last line, see [HH14,
Sec. 2].
Theorem 4.2 (Convergence of PDA). We assume that the primal-dual problem (38) has a saddle-point
(x̂, ŷ) and the step sizes τ ,σ are such that τσ‖K‖2 < 1. Then there exists a saddle-point (x∗, y∗), such that
xn → x∗ and yn → y∗ as n→∞.

A proof of Theorem 4.2 for real vector spaces can be found in [CP11, Th. 1]. We stress that the real vector
spaces are indeed crucial for Algorithm 4.1, as the symmetry of the inner product is exploited in the proof
and both subgradient and Fenchel conjugate are real-valued concepts. We will present a related minimization
scheme for complex-valued functionals later on in Section 4.5. Further, to compute the inverses in (40) the
following characterization turns out to be useful.
Lemma 4.3 (Proximal mapping, resolvent operator, see [BL11, Lemma 6.134]). Let X be a real Hilbert
space and G : X → R ∪ {+∞} proper, convex and l.s.c. For all τ > 0 and all w ∈ X,

(I + τ∂G)−1(w) = arg min
z∈X

[
‖z − w‖2X

2 + τG(z)
]
.

In the literature sometimes a distinction is made between the left hand side operator (I + τ∂G)−1 and the
operator implicitly defined by the right hand side variational problem. The former is called resolvent operator
while the latter is called proximal mapping. Since the assumptions of the lemma will always be fulfilled in
our setting we will uniformly use the term proximal mapping.
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Indicator functions The proximal mapping may be viewed as a generalization of the orthogonal projection.
To see this, proximal mappings of indicator functions are considered.
Definition 4.4 (Indicator function). For a subset C ⊂ X of Hilbert space X we define an indicator function

δC(w) :=
{

0 if w ∈ C,
+∞ otherwise.

Slightly overloading the notation we define for real-valued vectors w the element-wise indicator function on
[a, b],

δ[a,b](w) :=
∑
i

δ[a,b](wi). (41)

In other words, δ[a,b](w) is zero if every element wi is in interval [a, b], δ[a,b](w) is ∞ otherwise.
Remark 4.5. We recall that the orthogonal projection PC onto the closed convex set C ⊂ X, see [LMM12,
Sec. 2.1], is defined as PC(w) = 1

2 arg minz∈C ‖z − w‖2X . Clearly, with the help of the indicator function
δC the projection operator PC can also be written as an unconstrained minimization problem PC(w) =
arg minz∈X

[ 1
2‖z − w‖

2
X + τδC(z)

]
, with arbitrary τ > 0. However, this is exactly the definition of the

proximal mapping for the indicator function.

4.3 The Tikhonov functional
With the preparations of the last section, we are now ready to state the variational problem and the involved
Tikhonov functional essential for the reconstruction of the contrast in the scattering problem. As we are
focused on the implementational aspects of the proposed algorithm, we only consider finite-dimensional spaces
both for the searched-for contrast and the multi-static measurements. For simplicity, omit to denote this
discrete setting explicitly. We also remark that due to the shape of the region of interest the elements of the
contrast can be considered a vector or tuple and at the same time a rectangular array. To avoid overloading
notation we will avoid to differentiate between these notations, whenever it is clear from the context which
one is meant.

Forward operator and his spaces Therefore, we do no longer need to differentiate in the notation
between functions and their discretizations. To simplify notation in what follows, we no longer underline
discrete quantities. In particular, from now on q shall refer to the discrete version of the contrast and F ,
F ′ to the discretized(!) forward operator and its derivative, see (30) and (32). The forward operator F is
assumed to map between finite-dimensional spaces X and Ydis with

X := CND equipped with the inner product (33) and
Ydis := CNs×Ni equipped with the inner product (34). (42)

The related norms are denoted as ‖ · ‖roi,2 and ‖ · ‖dis. In both cases we identify the dual space of these
Hilbert spaces with the spaces themself. Sometimes, in cases where the inner product is not important, we
will overload the notation and write X = CND and Ydis = CNs×Ni to make the dimension of the space explicit.

Discrepancy, Tikhonov functional We assume that a noisy version of the data F δmeas ∈ Ydis = CNs×Ni

is available. We quantify the defect between the data F(q) and the measured data Fmeas by the ‖ · ‖dis
norm, 1

2‖F(q)− F δmeas‖2dis. Of course, it is well-known that the minimization of the discrepancy (for fixed
measured data and variable q) will in general not yield reasonable reconstructions, see e. g. [DDD04]. To
stabilize the process, a convex regularization penalty term R is added to the discrepancy. In literature, this
general paradigm is called variational regularization or Tikhonov regularization. The resulting functional
1
2‖F(q)− F δmeas‖2dis + αR(q), is called Tikhonov functional. The number α > 0 is a regularization parameter.
It controls the pay-off between the approximation in the discrepancy and the regularization term, [CP11,
Sec. 6.2.1]. In general, the penalty term is chosen to take into account a-priori information on q. In the
remainder of this section penalty terms and the related Tikhonov functional are presented, that are sensible in
the context of inverse medium problems. In particular, separate regularization parameters for every a-priori
information/regularization term will be considered.
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A-priori information: sparsity We assume that the contrast array q ∈ X = CND has only few non-zero
entries. In other words it can be represented in the pixel basis with only few non-zero coefficients. This is
called sparsity (with respect to the pixel basis) and will be enforced in the reconstructions by means of the
penalty term, see [SKHK12, Ch. 1.5], α ‖q‖spa, where

‖x‖spa := hdN
∑
i

|Rexi|+ |Im xi|, x ∈ CND ,

and α > 0 is a regularization parameter.

A-priori information: sharp edges In addition to the sparsity assumptions we also assume that the
ground truth contrasts exhibit sharp edges. Therefore, we introduce the total variation semi-norm, see [CP11,
Sec. 6.2.1], as a further penalty term. We only present the 2D case, as the extension to 3D is straightforward.
In particular, in this paragraph the elements of X are interpreted as multi-dimensional arrays. A discretization
of the gradient acting on square arrays is defined by

(∇a)i,j =
(

(∇a)(1)
i,j

(∇a)(2)
i,j

)
with (∇a)(1)

i,j :=
{
ai+1,j−ai,j

h if i < N,

0 if i = N,
and (∇a)(2)

i,j :=
{
ai,j+1−ai,j

h if j < N,

0 if j = N,

where N is the size of the matrix in one direction and h is the size of the underlying grid, cf. [CP11, Sec. 6.1].
The above operators can be efficiently implemented via shift operations. When implementing the proposed
algorithm the practitioners should keep in mind that the above definitions differ from the definition of the
gradient routine in MATLAB, see [Mat].

Next, the total variation (TV) semi-norm is defined,

‖∇q‖tv := h2
N

∑
i,j

|(∇q)i,j |, with |(∇q)i,j | :=
√
|(∇q)(1)

i,j |2 + |(∇q)(2)
i,j |2, (2D case), (43)

where the factor h2
N is due to the two-dimensional volume measure on the region of interest D. (For the 3D

case is has to be replaced by h3
N .) The reader should be aware that, in general, ‖∇q‖tv differs from the `1

norm of ∇q, if ∇q is written as a single vector. To promote sharp edges in the reconstruction the penalty
β ‖∇q‖tv, where β > 0 is an additional regularization parameter, is introduced to the Tikhonov functional.

A-priori information: physical bounds Finally, in general characteristic physical bounds of the values
for the contrast are known. We incorporate this information with the indicator functions defined in (41). To
this end, we introduce the (convex) functional δ[a,b](Re(q)) + δ[c,d](Im(q)), where a ≤ b and c ≤ d describe
physical bounds for the real and imaginary part. For example, with the assumption Im(q) ≥ 0 of the
Theorem 3.2 in mind one may consider c ≥ 0 a sensible choice.

Tikhonov functional, linearization Collecting the functionals from the previous paragraphs yields the
problem

min
q∈X

1
2‖F(q)− F δmeas‖2dis + α‖q‖spa + β‖∇q‖tv + δ[a,b](Re(q)) + δ[c,d](Im(q)), (44)

where α, β > 0 are regularization parameters. Unfortunately, the functional in (44) involves a nonlinear
operator and will therefore in general fail to be convex. To be able to use the PDA of (40) we linearize the
problem. Thus, we replace F(q) by the linearization at q given by F(q) + F ′(q)[h] and successively minimize
min
h∈X

1
2‖F

′(q)[h] +F(q)−F δmeas‖2dis +α‖q+h‖spa +β‖∇(q+h)‖tv + δ[a,b](Re(q+h)) + δ[c,d](Im(q+h)). (45)

Alternative discrepancy and penalty terms Of course it is possible to use other discrepancy and
penalty terms in (45) respectively (44). For example, for different noise statistics other discrepancy terms
could be appropriate, e. g. unweighted Frobenius norm, Schatten norm etc. For the penalty, one could
consider the sparsity of the contrast in another system, e. g. a wavelet or other advanced harmonic basis. For
example, for wavelets this results in the penalty function α‖W(q + h)‖1 of h, where W is the forward wavelet
operator. However, in our experiments with the Cohen-Daubechies-Feauveau-9/7 wavelets we obtained
slightly worse results than for the presented functionals. Hence, we omit this approach here.
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4.4 Proposed iterative reconstruction scheme
The proposed scheme then iteratively interleaves the linearization and variational step. The idea is to improve
the current iterate q(m) ∈ X by a step h(m) ∈ X that minimizes the functional in (45) for q = q(m) (inner
iteration) and update q(m+1) := q(m) + h(m) (outer iteration). This successively computes the linearization of
F at q(m+1). Since the PDA of (45) is formulated for real vector spaces we transform the linearized problem
into a minimization problem on a real vector space, i. e. we seek for q in XR := RND × RND instead of q in
X := CND . The details of that step are presented in the next section. In the following we will look at the
complete inversion scheme. Then, the remainder of this section is devoted to the motivation of this scheme.

1. Initialization of the outer iteration:
Set outer iteration number m = 0 and initial contrast q(0) = 0 ∈ XR := RND × RND .

2. Inner iteration solving the linearized minimization problem (45) employing primal-dual algorithm
(PDA):

(a) Initialization of the inner iteration: Set inner iteration number n = 0. Remember F(q(m)) in (30).
Compute AND,Ns and BND,Ni for fast computation of F ′(q(m))[h] and [F ′(q(m))]∗H, see (32)
and (35). Choose step sizes τ, σ > 0 as in (71). Set x̄[0] = x[0] = 0 ∈ XR, y[0]

dis = 0 ∈ Ydis,R =
RNs×Ni ×RNs×Ni , and y[0]

tv = 0 ∈ Ytv,R = XR×XR (in 2D case) as initial vectors. That means, we
consider a tuple ((y(1),Re, y(1),Im), (y(2),Re, y(2),Im)) ∈ Ytv,R. For the definitions of vdis, vtv, Kdis,
Ktv see (52) in combination with (51) and for their adjoints K∗dis and K∗tv see (61).

(b) Dual step (x̄[n], y
[n]
dis, y

[n]
tv ) → (x̄[n], y

[n+1]
dis , y

[n+1]
tv ) with dual step size σ > 0:

wy,dis := y
[n]
dis + σKdis(x̄[n]),

y
[n+1]
dis = (I + σF ∗dis)−1(wy,dis) = wy,dis + σvdis

1 + σ
, (46)

wy,tv := y
[n]
tv + σKtv(x̄[n]),

z := wy,tv + σvtv,

(y[n+1]
tv )(k),`

i = ((I + σF ∗tv)−1(wy,tv))(k),`
i = z

(k),`
i

max{1, |zi|}
(47)

with k = 1, . . . , d, ` is Re or Im, and |zi| as defined in (57). (48)

(c) Primal step (x[n], y
[n+1]
dis , y

[n+1]
tv ) → (x[n+1], y

[n+1]
dis , y

[n+1]
tv ) with primal step size τ > 0:

wx = x[n] − τ(K∗dis(y
[n+1]
dis ) +K∗tv(y[n+1]

tv )), (49)
κ := τα hdN , NR := {1, . . . , ND}, NC := {ND + 1, . . . , 2ND}

x
[n+1]
j = (I + τG)−1(wx,j) = −qj +

{
I[a,b]Sκ(wx,j + qj) if j ∈ NR,

I[c,d]Sκ(wx,j + qj) if j ∈ NC,
(50)

= −qj +
{

max{a,min{b, sign(z) max{|z| − κ, 0}}} with z := wx,j + qj if j ∈ NR,

max{c,min{d, sign(z) max{|z| − κ, 0}}} with z := wx,j + qj if j ∈ NC.

(d) Extrapolation step: x̄[n+1] = 2x[n+1] − x[n].
(e) Stop the inner iteration by tolerance-based rules, which we will present in Section 4.10 as outer or

inner tolerance principle, and set
h(m) := x[n+1].

Otherwise set n := n+ 1 and go to step (2b) again.

3. Outer iteration step:

(a) q(m+1) = q(m) + h(m) and m := m+ 1.
(b) Stop the outer iteration by the discrepancy principle, see Section 4.9. Otherwise go to step 2 again.
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4.5 Transformation of the complex problem
In oder to construct the operator K in PDA as an operator between real vector spaces we transform
complex-valued quantities by means of the identification of C as R2.

Transformation of complex into real vectors Formally, the transport between complex and real-valued
form is carried out by the transformations:

T : C→ R× R, T(x) := (Re(x), Im(x)),
T−1 : R× R→ C, T−1(y) = yRe + i yIm where y = (yRe, yIm). (51)

Of course, as usual the above pair extends by element-wise application to vectors, matrices and arrays. For
example, Cn is identified with Rn × Rn, where the first Rn is responsible for the real parts and the second
Rn for the imaginary part. We hasten to stress that in the above definitions the set of complex numbers
is considered to be a vector space over the field of real numbers and not (as is usually the case) over the
complex numbers. This setting is necessary to ensure that the operators are linear. Formally this can only be
the case if the related operator maps between vector spaces over the same field.

Reformulated Tikhonov problem In the next step we formulate the post-linearization problem (45) in
real vector spaces. For the remainder of this section we assume that the linearization point q as well the
minimization variable h are already in the transported real vector space. Firstly, we define the auxiliary
quantities

Kdis := T[F ′(T−1q)]T−1, vdis := T(F(T−1q)− F δmeas),
Ktv := β T∇T−1, vtv := β T∇T−1q.

(52)

Secondly, transporting the functionals of (45) into the real vector space XR := RND × RND yields the

discrepancy (linearized problem) fdis(h) := 1
2‖Kdish+ vdis‖2dis,R,

the sparsity penalty fspa(h) := α‖h+ q‖spa,R, (53)
the TV-penalty ftv(h) := ‖Ktvh+ vtv‖tv,R,

and the penalty for physical bounds fphy(h) := δ[a,b,c,d](h+ q).

Roughly, the norms with the subindex R are real-valued identifications of their complex counterparts, i. e.
‖x‖ = ‖Tx‖R. Of course, in the next step these terms are defined explicitly.

Firstly, due to (42), the transported version of XR is given by the space

XR := RND × RND .

To equip this space with an inner product we rely on the original inner product of X, cf. (42) and (33),

〈x, y〉roi,R := Re〈T−1x,T−1y〉roi = hdN
∑
i

(
xRe
i yRe

i + xIm
i yIm

i

)
, x, y ∈ XR. (54)

Of course, this is done so to ensure that the topology on the original and transported space is the same. This
ensures especially that the derivatives do not change. Next we define

‖x‖spa,R(x) := hdN
∑
i

|xRe
i |+ |xIm

i |, x = (xRe, xIm) ∈ XR (55)

and
δ[a,b,c,d](x) := δ[a,b](xRe) + δ[c,d](xIm), x = (xRe, xIm) ∈ XR.

In the next step we define ‖ · ‖tv,R. For the sake of simplicity we discuss the 2D case, since the changes
necessary for the 3D case are obvious. First we recall that in 2D the ‖ · ‖tv norm operates on the gradients of
vectors from X, i. e. the space X ×X. Consequently, the norm ‖ · ‖tv,R must operate on

Ytv,R := XR ×XR.
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This results in the definition, cf. (43),

‖a‖tv,R := h2
N

∑
i

|(a(1),Re
i , a

(1),Im
i , a

(2),Re
i , a

(2),Im
i )|, (2D case) (56)

where of course ((a(1),Re, a(1),Im), (a(2),Re, a(2),Im)) ∈ Ytv,R and

|(a(1),Re
i , a

(1),Im
i , a

(2),Re
i , a

(2),Im
i )|2 := |a(1),Re

i |2 + |a(1),Im
i |2 + |a(2),Re

i |2 + |a(2),Im
i |2 . (57)

In the same way as for the space X, we get for Ydis

Ydis,R := RNs×Ni × RNs×Ni

and the inner product on YR, cf. (34),

〈x, y〉dis,R := Re〈T−1x,T−1y〉dis, x, y ∈ Ydis,R. (58)

All the above elementary, but indispensable, work allows us to identify the three main ingredients of the
primal problem (37), the operator K with its pre-image and image space and the functionals F and G. The
remainder of the section is devoted to that task.

Operator K and its adjoint We begin with the definition of the related operator K. In our approach it
shall be given by

K := (Kdis,Ktv),

where Kdis and Ktv are as in (52). All operators involved in the definition of K are R-linear. Therefore the
operator K is R-linear too. Of course, some operators are even C-linear, which doesn’t bother us here. (Note
that T−1 is C-linear, but T only R-linear.)

For the sake of the proposed algorithm we also need the exact form of the adjoint of K. Therefore,
we need to discuss closely the pre-image space and the image space of K together with their related inner
products/norms. After the considerations of the previous paragraph it is clear that the canonical choice
for the pre-image space is the space XR. The canonical choice for the image space is the product space
Y := Ydis × Ytv, since Kdis maps into Ydis and Ktv maps into Ytv. Of course, instead of the penalty ‖ · ‖tv,R
the space Ytv is equipped with the norm generated by the inner product

〈x, y〉tv,R := 〈x(1), y(1)〉roi,R + 〈x(2), y(2)〉roi,R, x, y ∈ Ytv,R. (59)

Of course, the reader should be aware that the norm induced by that inner product is not the functional
‖ · ‖tv,R in (56). The indices “tv” were chosen in both cases to indicate on which objects both quantities act.

In a similar way to (59) the inner product on Y is generated by

〈(ydis, ytv), (zdis, ztv)〉Y := 〈ydis, zdis〉dis,R + 〈ytv, ztv〉tv,R (60)

with the inner products (58) and (59). Altogether

K : XR → Ydis,R × Ytv,R.

The pre-image and image space are both Hilbert spaces and we identify their duals with the spaces themselves.
Since

〈Kh, y〉Y = 〈(Kdish,Ktvh), (ydis, ytv)〉Y = 〈h,K∗dis ydis〉roi,R + 〈h,K∗tv ytv〉roi,R,

the adjoint of K is given by

K∗ : Ydis,R × Ytv,R → XR, K∗(ydis, ytv) = K∗dis(ydis) +K∗tv(ytv) . (61)

To determine the explicit form ofK∗dis one connects the definition ofKdis = T[F ′(T−1q)]T−1, see (52), with the
efficient evaluation of [F ′(q)]∗, see (32) and (35). For K∗tv, on the other hand, one has to consider the adjoint
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of the discrete gradient operator, which is the discrete divergence operator because of 〈∇a, b〉Y = −〈a,div b〉X ,
see [CP11, Sec. 6.1]. For the sake of brevity we present the form of div for 2D case only, the 3D holds mutatis
mutandis. For arrays of size N (with underlying grid size h) the 2D version of div is given by

div b = (div b)(1) + (div b)(2),

where

(div b)(1) :=


b
(1)
1,j/h if i = 1,

(b(1)
i + b

(1)
i−1,j)/h if 1 < i < N,

−bN−1,j/h if i = N,

(div b)(2) :=


b
(2)
i,1 /h if j = 1,

(b(2)
i + b

(2)
i,j−1)/h if 1 < j < N,

−bi,N−1/h if j = N.

Remark 4.6 (Compatibility of adjoint K∗). We defined F ′(q) and its adjoint [F ′(q)]∗ in a complex vector
space, see (31) and (35), but consider K in real vector space. We show the compatibility of the adjoint
K∗ before and after identification of C with R× R via the operator T. Therefore we consider the operator
KC := (Kdis,C,Ktv,C) with Kdis,C = F ′(q) and Ktv = β∇. (Note that this operator is C-linear in comparison to
the corresponding K, that is only R-linear.) For this remark we will consider in general KC = ReKC+i ImKC
and the complex vector q = Re q + i Im q:

KC q = (ReKC + i ImKC)(Re q + i Im q) = ReKC Re q + i ImKC Re q + i ReKC Im q − ImKC Im q,

T[KC q] =
(

ReKC −ImKC
ImKC ReKC

)
︸ ︷︷ ︸

=:KR

(
Re q
Im q

)
= KR[Tq].

Finally, we show for a complex vector w that

〈KC q, w〉C =
∑
i

(KC q)i wi =
∑
i

∑
j

KCi,j
qj wi

=
∑
j

∑
i

qj KCi,j wi =
∑
j

∑
i

qj K∗Cj,i
wi =

∑
j

qj (K∗C w)j = 〈q,K∗C w〉C.

Note that we used K∗Cj,i
= KCi,j

= KCi,j
in the last equation.

Functionals F and G Remembering (53), in the next step we are ready to identify the functionals F and
G of the primal problem (37) as

F (Kh) = fdis(h) + ftv(h), G(h) = fspa(h) + fphy(h). (62)

Consequently, F splits into two terms

F (ydis, ytv) := Fdis(ydis) + Ftv(ytv), Fdis(y) := 1
2‖y + vdis‖2dis,R, Ftv(y) := ‖y + vtv‖tv,R, (63)

where ydis ∈ Ydis,R, ytv ∈ Ytv,R and vtv, vdis are as in (52).
We remark that the above identification of K,F,G is not the only possible. However, it turned out to be

especially favorable numerically in our experiments. To implement the PDA we need the explicit form of the
mappings (I + σ∂F ∗)−1 and (I + τ∂G)−1 for the proposed functionals F and G. The next two sections are
devoted to that subject.

4.6 The operator (I + σ∂F ∗)−1

In this section we determine the form of the proximal mapping of F ∗ necessary for Algorithm 4.1. First
we remark that both the Fenchel conjugate F ∗ and the subgradient ∂F ∗ are well-defined, since we consider
finite-dimensional real vector spaces. Next we determine the explicit form of the Fenchel conjugate. The form
F (ydis, ytv) = Fdis(ydis) + Ftv(ytv) of the functional F , cf. end of last section, implies that F ∗(ydis, ytv) =
F ∗dis(ydis) + F ∗tv(ytv) where still ydis ∈ Ydis,R and ytv ∈ Ytv,R. To see this consider the following lemma:
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Lemma 4.7 (Sum of Fenchel conjugates, [RW98, Prop. 11.22]). Let Y1 and Y2 be finite-dimensional real
Hilbert spaces, with Y ∗1 = Y1, Y ∗2 = Y2, further, Y := Y1 × Y2 be equipped with the inner product 〈x, y〉Y =
〈x1, y1〉Y1 + 〈x2, y2〉Y2 where x = (x1, x2) ∈ Y , y = (y1, y2) ∈ Y and, finally, F1, F2 be convex functionals. If
F (y) = F (y1, y2) := F1(y1) + F2(y2) for all y ∈ Y , then F ∗(y) = F ∗(y1, y2) = F ∗1 (y1) + F ∗2 (y2) for all y ∈ Y .

Proof. Recalling the definition of the Fenchel conjugate and

F ∗(y1, y2) = sup [〈(y1, y2), (x1, x2)〉Y1×Y2 − F (y1, y2) : (x1, x2) ∈ Y1 × Y2]
= sup [〈y1, x1〉Y1 + 〈y2, x2〉Y2 − F1(x1)− F2(x2) : x1 ∈ Y1, x2 ∈ Y2]
= sup [〈y1, x1〉Y1 − F1(x1) : x1 ∈ Y1] + sup [〈y2, x2〉Y2 − F2(x2) : x2 ∈ Y2] = F ∗1 (y1) + F ∗2 (y2)

proves the claim.

Remark 4.8. Clearly, the above element-wise split implies that the proximal mapping splits too,

(I + σ∂F ∗)−1(y1, y2) = ((I + ∂F ∗1 )−1(y1), (I + ∂F ∗2 )−1(y2)).

Then, the decomposition of F ∗ together with the definition of Y implies (I + σ∂F ∗)−1(ydis, ytv) =
((I + ∂F ∗dis)−1(ydis), (I + ∂F ∗tv)−1(ytv)). Consequently, we need to determine the proximal mappings of Fdis
and Ftv. Further, one recalls that for shift function f(y) = g(y + b) one has f∗(y) = g∗(y)− 〈b, y〉, see [BL06,
Tab. 3.2]. Therefore

f(y) = g(y + b) implies (I + σ∂f∗)−1(y) = (I + σ∂g∗)−1(y + σb) . (64)

Proximal mapping of Fdis To compute the proximal mapping of Fdis, see (63), we have (I+σ∂F ∗dis)−1(y) =
(I + σ∂( 1

2‖ · ‖
2
dis,R)∗)−1(y + σvdis). For Hilbert norms the functional 1

2‖ · ‖
2 has as the Fenchel dual the same

term but with dual norm. Therefore the derivative of the Fenchel dual is the identity in the dual space. In
our case this means that ( 1

2‖ · ‖
2
dis,R)∗ = 1

2‖ · ‖
2
dis,R and therefore ∂( 1

2‖ · ‖
2
dis,R)∗ = I, since Ydis,R was identified

with its dual. Therefore
(I + σ∂F ∗dis)−1(y) = y + σvdis

1 + σ
, (65)

with vdis as in (52).

Proximal mapping of Ftv For the proximal mapping of Ftv we can again invoke (64) which gives
(I + σ∂F ∗tv)−1(y) = (I + σ∂(‖ · ‖tv,R)∗)−1(y + σvdis). Next, we remember y ∈ Ytv,R, the notation in (56), and
define tuples yi ∈ Yi via Ytv,R = Y1 × . . .× YND and

yi := (y(1),Re
i , y

(1),Im
i , y

(2),Re
i , y

(2),Im
i ), (2D case), (66)

with the obvious modification for the 3D case. Then, the functional ‖ · ‖tv,R, see (56), splits into a sum of
terms of the form hdN |yi| with yi ∈ Yi and norm | · | as defined in (57). Consequently, Remark 4.8 applies in
extension and implies that the proximal mapping of (‖ · ‖tv,R)∗ can be discussed for the tuples separately.

Remembering that Y is equipped with an inner product, see Section 4.2, we have to look for the Fenchel
conjugate to the induced norm by the inner product corresponding to Yi, i. e. using (59) and (54),

〈xi, yi〉Yi = hdN 〈xi, yi〉2.

The induced norm is ‖x‖Yi
= (hdN )1/2|x|, where x means a tuple xi.

This means, we look for the Fenchel conjugate of hdN‖yi‖2 = (hdN )1/2(hdN )1/2|x| = (hdN )1/2‖x‖Yi
= a ‖ · ‖

with a = (hdN )1/2 and ‖ · ‖ = ‖x‖Yi
corresponding to the inner product 〈·, ·〉Yi

.
To this end, we see that the proximal mapping (a ‖ · ‖) is the orthogonal projection onto the ball with

radius a onto the pre-dual norm of ‖ · ‖, if the dual pairing between the pre-dual and the norm itself is the
same as the inner product used for the orthogonal projection and the inner product used in the definition of
the Fenchel conjugate (36). To see this denote ‖ · ‖∗ the pre-dual norm. Then a ‖x‖ = sup‖x∗‖∗≤1〈ax∗, x〉 =
sup‖x∗‖≤a〈x∗, x〉 = sup〈x∗, x〉 − δC(x∗), where C = {x∗ : ‖x∗‖∗ ≤ a}. A close inspection of (36) reveals that
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(a) step[a,b] (blue solid) and step−1
[a,b]
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(c) (I + τ∂g)−1

Figure 5: Illustration of step[a,b] (blue solid) and step−1
[a,b] (red dotted) in (a). We consider g(x) = αhdN |x|+

δ[a,b](x) for x ∈ R, keep in mind that τ step−1
[a,b](x) = step−1

[a,b](x) and plot (I + τ∂g)(x) = x+ κ step[−1,1](x) +
step−1

[a,b](x) with κ = τ α hdN in (b). The inverse (I + τ∂g)−1 is the proximal mapping and illustrated in (c).

δC is the Fenchel conjugate of (a ‖ · ‖). Remark 4.5 then gives the claim. Of course this projection can be
explicitly expressed by x/max(1, ‖x‖∗/a), respectively componentwise xi/max(1, ‖x‖∗/a).

In our case the inner product is as mentioned 〈xi, yi〉Yi = hdN 〈xi, yi〉2, see above. Clearly since the norm
in the term (a‖ · ‖) is exactly the norm induced by the inner product, its pre-dual is the norm itself, i. e.

‖x‖∗/a = ‖x‖Yi
/(hdN )1/2 = (hdN )1/2|x|/(hdN )1/2 = |x|.

Together with the previous considerations this yields for Ftv componentwise

((I + σF ∗tv)−1(y))(k),`
i = y

(k),`
i + σ(vtv)(k),`

i

max{1, |yi + σ(vtv)i)|}
, (67)

where the norm | · | is as defined in (57) and vtv as in (52), the indexing is in parallel to (66), k = 1, . . . , d,
and ` is Re or Im.

4.7 The operator (I + τ∂G)−1

After having computed the proximal mapping for F ∗ we now direct our attention to the proximal mapping of G,
which is needed for the second step of Algorithm 4.1. To this end, one observes that G separates in an element-
wise sum with terms of the form αhdN |xRe + vRe|+ δ[a,b](xRe + vRe) and αhdN |xIm + vIm|+ δ[c,d](xIm + vIm),
where xRe, xIm, vRe, vIm are real-valued, see (62) and (55). By the same argumentation that led to Lemma 4.7
and Remark 4.8 the proximal mapping of G splits into element-wise proximal mappings of the terms of the
previous two forms. Since both term kinds are structurally similar we consider the first one only.

First, we observe, complementary to (64), if f(x) = g(x+v) then (I+ τ∂f)−1(x) = (I+ τ∂g)−1(x+v)−v.
Therefore, we consider the subgradient of g(x) := αhdN |x|+ δ[a,b](x). To this end, the auxiliary, set-valued
step function step[a,b] and their inverse step−1

[a,b], both illustrated in Fig. 5(a), defined by

step[a,b](x) :=


a if x ≤ 0,
[a, b] if x = 0,
b if x ≥ 0,

and step−1
[a,b](x) :=


(−∞, 0] if x = a,

0 if x ∈ (a, b),
[0,∞) if x = b,

∅ otherwise, i. e. x /∈ [a, b],

turns out to be useful. An elementary computation, see [DDD04], shows that the subgradient of the first
term is given by ∂(αhdN |x|) = αhdN step[−1,1](x). Further computation confirms that the subgradient of the
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second term is given by ∂(δ[a,b](x)) = step−1
[a,b](x). As can be seen in Fig. 5(c) the inverse of I + τ∂g exists.

To express it we introduce two operators: the interval projection is defined for real-valued x and a ≥ b by

I[a,b](x) :=


a if x < a,

x if x ∈ [a, b],
b if x > b,

(68)

and the soft-shrinkage operator, see [DDD04], is defined for real-valued x and a ≥ 0 by

S(x, a) :=


x+ a if x ≤ −a,
0 if x ∈ (−a,+a),
x− a if x ≥ a.

(69)

Of course, for both operators, element-wise application is assumed if x is a vector. In any case the interval
projection can be implemented by I[a,b](x) = max{a,min{b, x}}, whereas the shrinkage operator can be
implemented by S(x, a) = sign(x) max{|x| − a, 0}. Then one can write (I + τ∂g)−1(x) = I[a,b](S(x, ταhdN )).
Accommodating for the shift +v in the original terms results in the following formula for (I + τ∂G)−1(x):

((I + τ∂G)−1(x))Re = I[a,b](S(xRe + vRe, ταhdN ))− vRe,
((I + τ∂G)−1(x))Im = I[c,d](S(xIm + vIm, ταhdN ))− vIm.

(70)

4.8 Norm estimation and choice of step sizes
The reconstruction scheme proposed in Section 4.4 converges if the step sizes τ and σ are chosen such that
τσ‖K‖2 < 1. The norm of ‖K‖2 is given by ‖K‖2 = max0 6=x∈X

‖Kx‖2
Y

‖x‖roi,2
, where the Hilbert norm on Y is as

induced by the inner product (60), see (52). It is possible to estimate the norm of K by breaking it down to
the norm of the involved operators. However, this rough estimate turned out to be too inefficient for our
purposes. Of course, one can proceed to reformulate the problem in spaces with standard inner product,
which then enables to employ power iteration for the estimation of the biggest eigenvalue. For our purposes
it sufficed to test the operator with a sample of vectors of two kinds, i. e., random vectors, and vectors of
the form (1, . . . , 1, 0, . . . , 0). (We omit to use all unit basis vectors because they deliver a much too low
estimate.) This coarse estimate was then multiplied by a safety factor, in general equal to 2. Empirically, in
our experience, if ‖K‖2 was estimated too low the proposed PDA diverged sometimes evidently.

In our experiments the choice of step sizes

σ = τ both slightly smaller than ‖K‖−1 (71)

yielded the best results. Because a less severe condition than (71) is sufficient to guarantee convergence, an
adaptive step size choice proposed in [BH15, Sec. 2.2] is possible. We tested this choice in our numerical
examples, but the requirement for activation was not satisfied.

4.9 Stopping the outer iteration
Recall from Subsection 4.4 that the iterative reconstruction scheme consists of outer iterations, responsible
for re-linearization of the forward problem, as well as inner iterations, responsible for update/minimization
step within a linearized problem. In general, for the strict analysis of this approach one needs to assume
that an infinite number of re-linearizations (outer iteration) and an infinite number of minimization steps
(inner iteration) within each linearized minimization problem has been carried out. Clearly, this approach is
computationally not feasible. To provide an efficient reconstruction scheme the number of outer and inner
iteration steps has to be restricted. To that end, we discuss stopping strategies for the outer and the inner
iteration.

To construct an efficient reconstruction scheme we propose to employ Morozov’s discrepancy principle as
the stopping criterion for the outer iteration. Let m = 1, . . . , Nout be the index of the outer iteration, then
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that iteration is stopped after iteration m = Nout if the relative discrepancy,

dis(m) := ‖F(q(m))− F δmeas‖dis

‖F δmeas‖dis
,

is for the first time less than a tolerance τdis > 1 times the relative noise level δ > 0,

‖F(q(Nout))− F δmeas‖dis ≤ τdis δ ‖F δmeas‖dis

whilst ‖F(q(m))− F δmeas‖dis > τdis δ ‖F δmeas‖dis for m = 0, . . . , Nout − 1.
(72)

In our numerical examples satisfactory results were achieved for the choice τdis = 2.5.

4.10 Stopping the inner iteration
In analogy to the previous section, let the index of the inner iterations with m-th outer iteration be given by
n = 1, . . . , N (m)

in . We then propose the following three stopping strategies for the inner iteration.

Constant iteration number A straight forward stopping is given after a fixed number of inner iterations.
In our experience, the choice N (m)

in = 50 for all outer iterations turned out to be sufficient to robustly and
reasonably update the linearized problem.

Stopping strategy 1 The next strategy assumes that an a-priori choice for the number of inner iterations
in the m-th outer iteration step was made. We denote this choice by N (m)

in . After this number of inner
iteration steps was computed this choice is a-posteriori evaluated. We consider the choice “good”, if the
difference between the linearized and original problem gives approximately the same difference. To quantify
this we consider the linearized discrepancy dislin := ‖F ′(q(m))[h(m)] + F(q(m))− F δmeas‖dis/‖F δmeas‖dis and
the non-linearized discrepancy disnonlin := ‖F(q(m) + h(m)) − F δmeas‖dis/‖F δmeas‖dis, where q(m), h(m) are
the results of the inner iteration. To keep the notation simple, we omitted the iteration index for both
discrepancies. Then, the number of inner iteration steps is considered “good” if the quotient

disrel := dislin/disnonlin

is approximately 1. Only in that case a higher number of inner iterations “pays off” with respect to the
reconstruction quality. Consequently, the number of inner iterations is then updated via

N
(m+1)
in =

{
dµ↑N (m)

in e if disrel ∈ (1− τout, 1 + τout),
bµ↓N (m)

in c otherwise

with µ↑ = 1 +
√

1/m ln(m) and µ↓ = (min{1/disrel,disrel})2. In our experiments the outer tolerance τout
was set to 0.05. Since the above update tends to be too optimistic in the first outer steps, we start with
the conservative choice N (1)

in = 1. The number of inner iteration is additionally limited to 250 for all outer
iteration steps.

Stopping strategy 2 We also propose a stopping strategy which controls the number of necessary inner
iteration steps from within the inner iteration. Our idea follows the inexact stopping rule for a Newton-
like method, cf. [Rie03, Ch. 7.5.3]. Similar to the previous strategy, the idea is to compute the quotient
dislin/disnonlin after each inner iteration. To keep the computational effort moderate, however, the non-
linearized discrepancy is fixed within the inner iteration disnonlin := ‖F(q(m) + h(m))− F δmeas‖dis/‖F δmeas‖dis,
where q(m), h(m) are again the results of the last outer iteration step. The linearized discrepancy is then
reevaluated after every inner iteration step dis(n)

lin := ‖F ′(q(m))[h(n)] +F(q(m))− F δmeas‖dis/‖F δmeas‖dis, where
h(n) is the current iterate within the inner iteration. The inner iteration is stopped if dis(n)

lin /disnonlin < Θm

for some inner tolerance Θm ∈ (0, 1]. The inner tolerances Θm are computed via the following algorithm.
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Algorithm 4.9 (Compute inner tolerances Θm). Set Θstart ∈ (0, 1), Θmax ∈ (Θstart, 1), and γtol ∈ (0, 1]. For
m = 1, 2 set auxiliary tolerances Θ̃m = Θstart and compute, for m ≥ 3,

Θ̃m =
{

1− (1−Θm−1)N (m−2)
in /N

(m−1)
in if N (m−1)

in ≥ N (m−2)
in ,

γtol Θm−1 otherwise,

where N (m−2)
in and N (m−1)

in are the number of steps in the inner iteration for the two previous outer iteration
steps. Finally, set

Θm = Θmax max
{
τ δ/dis(m)

nonlin, Θ̃m

}
, m ∈ N.

As previously, since inner iterations should contribute to the overall reconstruction, the maximal number
of inner iterations is capped to 250. Further, in our experiments the parameters were set to Θstart = 0.925,
Θmax = 0.95, and γtol = 0.90.

5 Numerical performance for synthetic data
We test the performance of the presented reconstruction algorithm on synthetic as well as experimentally
measured data from the Fresnel database. In this section we focus on the synthetic data.

Synthetic data The synthetic data was generated via

F δmeas = Fmeas + δ

∥∥Fmeas
∥∥

dis
‖NRe + iNIm‖dis

(
NRe + iNIm

)
, (73)

where Fmeas = F(q) ∈ CNs×Ni is the noise free measured data and NRe, NIm ∈ RNs×Ni are two real
matrices sampled from standard, normal distribution. Consequently, the considered relative noise level is
δ = ‖F δmeas − Fmeas‖dis/‖Fmeas‖dis.

Relative error To measure the error of the reconstruction the relative error is defined via,

err(m) := ‖q
(m) − qexa‖2
‖qexa‖2

,

where qexa is the exact contrast, i. e. the ground truth.

Avoiding the “inverse crime” The inverse crime is a paradigm which describes the effects of the mismatch
between the forward operator/physical model assumed for the reconstruction and the “true” model from
which the measured data was generated. Of course, in general the reconstruction model is chosen to be more
well-behaved than the true model. In practice, this leads to reconstructions which are “too good to be true”,
see [KS06] or [MS12]. Of course, this is easily avoided if experimentally measured data and ground truth
is considered for the performance tests. We do this later on by testing against Fresnel data, see Chapter 6
(p. 29). To avoid the inverse crime for synthetic data, one should generate the synthetic data using a forward
solver that has as little as possible to do with the solver employed in the inverse problem, see [CK13, Ch. 5.4].
A simple implementation of this philosophy is to generate the synthetic data using a fine discretization
operator and reconstruct the data on a coarse discretization operator, see [MS12, Ch. 2.3.6]. We have used
this approach in our experiments for synthetic data. We generated the synthetic data on a computational
domain D2R discretized by N = 1024 points in each dimension in 2D (N = 512 in 3D), and for reconstruction
discretized by N = 256 (in 2D and 3D).

Setting and parameters The wave number was set to k = 250. Consequently, we consider fields with
wavelength of about 0.025. Further, we fix 35 identical source/receiver points for incident point sources
distributed evenly on a circle with radius 5 centered in the origin. (Near field data is considered for the
measurement.) The radius R determining the region of interest D is set to R = 0.1 and the computational
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domain D2R is discretized by N = 256 points in each dimension. Synthetic data is produced with relative
noise level δ = 0.01. We set physical bounds assuming that the contrast q satisfies −1 ≤ Re(q) ≤ 3 and
0 ≤ Im(q) ≤ 3. The exact form of the phantom for the ground truth will be described in Subsection 5.1
for the 2D case and in Subsection 5.2 for the 3D case. If not given explicitly otherwise the regularization
parameters of the Tikhonov functional were set to α = 500 and β = 10−5. These parameters were determined
manually. A high regularization parameter β influences the operator norm ‖K‖ (otherwise the discrepancy
dominates) and therefore step sizes τ and σ will decrease, which results in a slow iteration. Therefore, we
recommend to set firstly α = 0 and find a suitable β, and afterwards find a convenient α. Determining the
parameters semi-automatically or automatically was outside of the scope of this paper. However, it is the
subject of ongoing research. Finally, we remark that all computations were carried out on a workstation with
an Intel(R) Core(TM) i7-3770 CPU with 3.40GHz and 32GByte RAM.

5.1 Synthetic 2D examples
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Figure 6: Test phantom for
2D synthetic data (corner with
non-constant contrast q, ball
and broken corner q=1.0).

As the test phantom in 2D we use the scattering object depicted in Fig. 6,
that consists of a corner with non-constant contrast q, a ball and a broken
corner with q = 1. The imaginary part of the phantom vanishes. In what
follows we describe the influence of several parameters of the reconstruction
algorithm on the reconstruction time and quality as measured by relative
discrepancy and relative error.

Reconstruction of scatterer in imaginary part We observed in case
of wave number k = 250 that the scatterer appears in the imaginary part (i. e.
physical absorption) after the first outer iteration. (This behavior decreases
for smaller wavelengths.) Then the scatterer appears successively in the real
part. Finally, the imaginary part vanishes as expected. The same behavior
is delivered by soft-shrinkage iteration.

Influence of the inner iteration stopping First, in Figure 7 the influence of the stopping criterion
for the inner iteration is presented. (The outer iteration was stopped by Morozov’s discrepancy principle.)
Visually clearly, all three stopping criteria provide similarly satisfactory results. Quantitative description of
this similarity is provided by the graphs below. In all three cases the remaining parameters were δ = 0.01,
α = 500, β = 10−5, τdis = 2.5.

Influence of parameter choices α and β The next step is the study of the influence of the sparsity
regularization parameter α and the TV regularization parameter β on the reconstruction time and quality.
It is well known that, all other things being equal, the reconstructions will exhibit the typical sparsity or
TV artifacts if the related other regularization is switched off by the according parameter is set to zero. In
our experience, there is further an interesting dependency between the choice of α and β and related “good”
choice of the parameter τdis in the Morozov’s discrepancy principle. In particular, in our experiments a
sensible value for τdis increases/decreases as the values of α and β increase/decrease. This is depicted in
Figure 8.

Further we notice, that if α = 0 (instead of the default value α = 500) the sensible value for τdis
also decreases to 1.5. However, even with this adaptation reconstruction contains obvious “ripples” in the
background, see Fig. 8(a). As mentioned above these artifacts are expected in this underregularization case.
On the other hand, using α = 2500 in Fig. 8(c), the discrepancy parameter had to be increased to τdis = 6.0
to stop early enough to get artifact-free reconstruction.

On the other hand, the choice of β = 0 leads to the reconstruction in Fig. 8(d). In comparison to the
reconstruction in Fig. 8(e) one can observe slightly less artifacts in the background, but a hole in the ball. The
result of setting β = 5 · 10−5 is presented in Fig. 8(f). One can observe a hint of “ripples” in the background.
Note that it was necessary to set the discrepancy principle parameter to τdis = 6.0.
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(a) constant.
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(b) stop. crit. 1.
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Figure 7: Effect of the stopping criterion for the inner iterations. Upper row: real part of the reconstructed
synthetic contrast. Lower row: relative discrepancy (blue solid) and error (red dotted) as functions of the
outer iteration number (x-axis). Run-times, relative discrepancies and relative errors were in (a) 3.3min,
dis. 0.024, err. 0.397, (b) 3.6min, dis. 0.025, err. 0.399, and (c) 4.1min, dis. 0.024, err. 0.399.
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(a) α = 0, τdis = 1.5.
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(b) α = 500, τdis = 2.5.
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) α = 2500, τdis = 6.0.
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(d) β = 0, τdis = 1.5.
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(e) β = 1 · 10−5, τdis = 2.5.
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(f) β = 5 · 10−5, τdis = 6.0.

Figure 8: Influence of the sparsity regularization parameter α and the TV regularization parameter β. The
upper row deals with changes in α, the lower row with changes in β. If not given explicitly the other parameter
is given as α = 500, β = 10−5. In all cases Morozov’s discrepancy principle was employed for stopping the
outer iteration and stopping criterion 2 for the inner iteration. (Of course the Subfigures (b) and (e) are the
same and were duplicated for sake of easier in-row comparison.) Run-times, relative discrepancies and relative
errors were in (b) and (e) 3.3min, dis. 0.024, err. 0.397, in (a) 5.7min, dis. 0.014, err. 0.446, (c) 2.9min,
dis. 0.056, err. 0.401, (d) 7.9min, dis. 0.015, err. 0.348, and (f) 2.7min, dis. 0.057, err. 0.430.
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Balanced penalty terms We expect visible effects of the sparsity promoting and TV penalty term, while
this penalty terms have the same scale, i. e. they are balanced. The previous choices of regularization
parameters as in Fig. 7 and 8 leads into highly unbalanced penalty terms of scale fspa = 1 and ftv = 10−5.
Especially for a visible sparsity effect during balanced penalty terms, the primal-dual algorithm needs a high
iteration number at least in the last outer step. We demonstrate this in Fig. 9 choosing β = 10−5 (as before),
and comparing α = 3 · 10−3 to α = 0. For the first 10 outer iterations we employed 50 inner iterations, and
for the last outer step 5 · 105 inner iterations, which takes 13 h. For α = 3 · 10−3 we see a good reconstruction
of the squares, and typical step-artifacts of TV-penalty in the non-constant part of the corner. In this case
penalty terms are balanced: fspa = 4.2 · 10−6 and ftv = 4.1 · 10−6. The discrepancy was fdis = 3.2 · 10−7, the
relative discrepancy 0.061, and the relative error 0.321. In case of α = 0 the relative discrepancy was 0.204,
and the relative error 0.519.

To get a rapid algorithm we relinquish the balance of the penalty terms and increase the regularization
parameter α to 500 as in the examples before. This enables the utilization of sparsity with a much lower
number of inner iterations.
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(a) Test phantom as in Fig. 6.
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(b) α = 3 · 10−3.
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(c) α = 0.

Figure 9: Visible effects of the sparsity promoting and TV penalty term, while this penalty terms have the
same scale, i. e. they are balanced, are achieved with sparsity regularization parameter α = 3 · 10−3 and TV
regularization parameter β = 10−5, see Fig. (b). A comparison to α = 0 is given in Fig. (c).
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Figure 10: Reconstruction
with grid scaling (halved num-
ber of discretization points in
each dimension for inversion).

Grid scaling To save CPU time the inversion process for the contrast q
can be carried out on a coarser grid than the one used for the wave fields.
To that end, the contrast is scaled down for the inversion process, and scaled
up for the direct scattering problem. For fast downscaling we employed the
MATLAB function imresize with interpolation method nearest in 2D. In
case of 3D we applied imresize on the slices of the grid. To analyze the
effects of this approach we considered with fixed 9 outer iterations (and
fixed number of inner iterations) to compare it to the example from Fig. 7(a).
The related reconstruction with halved number of discretization points in
each dimension for the inversion process is depicted in Fig. 10. Altogether, a
slight speed up can be reported (about 15%), but the reconstruction quality
significantly decreased.

5.2 Synthetic 3D examples
In the last part of this section we consider synthetic 3D data. To this end, we consider two phantoms. First
a “tripod” phantom, see Fig. 11(a), with contrast q = 1.0 in the first horizontal arc, q = 0.8 in the second
one, and q = 0.6 in the (entire) vertical one. The second “cross” phantom, see Fig. 11(i), has the following
properties: the first horizontal bar has a contrast q = 0.8, the second one q = 0.6, and the vertical one q = 1.0.
To our best knowledge, the reconstruction of the second phantom is especially challenging.

In both cases the same reconstruction parameters were employed. The radius determining the compu-
tational domain D is set to R = 1. The computational domain is discretized by N = 256 points in every
dimension. Further, near field data is used, with 50 transmitters and receivers distributed on a circle with
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(a) Ground truth. (b) Const. (c) Stop. crit. 1. (d) Stop. crit. 2.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(e) Grou. truth (plane).
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(f) Const. (plane).
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(g) Stop. crit. 1 (plane).
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(h) Stop. crit. 2 (plane).

(i) Ground truth. (j) Const. (k) Stop. crit. 1. (l) Stop. crit. 2.
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(m) Grou. truth (plane).
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(n) Const. (plane).
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(o) Stop. crit. 1 (plane).
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(p) Stop. crit. 2 (plane).

Figure 11: Influence of the stopping criterion for the inner iteration. In all cases the real part of ground
truth/reconstruction for the tripod phantom (top row) and cross phantom (bottom row) is depicted. Further,
in all cases, the employed parameters were δ = 0.01, α = 500 and β = 10−5, τdis = 1.25. For visualization we
computed isosurface data with isosurface value 0.3, see (a)–(d) and (i)–(l). The contrast on a sectional plane
through the scatterer is presented in (e)–(h) (plane through 1st horizontal and vertical arm) and (m)–(p)
(plane through 2nd horizontal and vertical arm). Run-times, relative discrepancies and relative errors were in
(b)/(f) 4.8 h, dis. 0.012, err. 0.635, (c)/(g) 4.4 h, dis. 0.011, err. 0.606, (d)/(h) 6.6 h. dis. 0.012, err. 0.619,
(j)/(n) 5.3 h, dis. 0.012, err. 0.656, (k)/(o) 4.4 h, dis. 0.011, err. 0.636, (l)/(p) 6.5 h, dis. 0.012, err. 0.649.
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radius 5 around the target. The wave number is set to k = 10, such that the wavelength roughly equals 0.63.
As in the 2D case we use the relative noise level δ = 0.01, physical bounds −1 ≤ Re(q) ≤ 3 and 0 ≤ Im(q) ≤ 3.
The regularization parameters α = 500 and β = 10−5 turned out to be suitable for the reconstruction process.
Further, we set τdis = 1.25 to stop the outer iteration by discrepancy principle. For the inner stopping criteria
the same default settings as in the 2D case were employed.

The results for both phantoms are depicted in Fig. 11. In particular, we focus on the dependency of
the quality and efficiency of the reconstruction scheme with respect to the stopping criterion in the inner
iteration. Run-times, relative discrepancies and relative errors are given in the caption. The only difference
was noticeable for the run-times.

6 Numerical performance on measured data

(a) Transmitter 1 (at 0◦) active,
receivers at 60◦ to 300◦ active.

(b) Transmitter 5 (at 40◦) active,
receivers at 100◦ to 340◦ active.

Figure 12: Experimental set-up for
Fresnel data: transmitters in 10◦
steps (inner circle) and receivers in
5◦ steps (outer circle). Active re-
ceivers (red) are shown for two posi-
tions of active transmitters (blue).

In this final section, we test the presented reconstruction algorithm
with experimentally measured two-dimensional data published by the
Institute Fresnel in a special issue of the journal Inverse Problems, see
[BS01]. We sum up the main parameters of the Fresnel data set. The
part of the data set employed for our reconstruction scheme consists
of scattering of electromagnetic waves from long cylindrical objects in
TM polarization. The transmitters and receivers are distributed on
a circle around the scatterer. In particular, the data set contains the
measurements of real and imaginary part of the total electric field ut|Γs

and the incident field ui|Γs on a circle Γs with radius of 760 ± 3 mm
around the scattering object. The distance between the transmitter
and the centre of the experimental set-up is 720± 3 mm. Of course, for
measurements of the incident field, no scattering object is present and
the incident field merely illuminates the experimental set-up.

The measurements were devised in an anechoic chamber. In the
realization of the Institute Fresnel, the transmitter is fixed and emits
incident fields while the scatterer is rotated and the receiver (a double
ridged horn antenna) is moved on a circular rail around the scatterer.
The experimental set-up prevents the receiver from getting close to
the transmitter (the aperture is 240◦). Thus, in dependence of the em-
ployed transmitter, several receiver measurements are missing. Further
details of the experimental set-up, in particular details on the geometry,
can be found in [BS01]. We give an illustration of the experimental
set-up in Fig. 12. For this set-up, the multi-static scattering data is
hence contained in an array F δmeas ∈ CNs×Ni . It includes Ni = 36 field
measurements corresponding to 36 transmitter positions in its columns.
Each column vector includes Ns = 49 measurements at receiver posi-
tions depending on the transmitter position. Note, however, that the
transmitter/receiver set-up is merely rotated from one measurement to
the next one, such that the angles in between any transmitter/receiver
are the same for each measurement.

For simplicity, we denote in the following each individual measurement (which is a complex vector of
length Ns = 49) of the total and incident field by ut|Γs and ui|Γs ∈ CNs×1. In particular we omit the variable
receiver positions in the notation, as the appropriate setting is clear from the context.

6.1 Matching the incident fields
The forward operator discussed in Sections 3.5 and 3.6 was designed for point sources. However, the
Fresnel data set was generated by real-word antennae. This necessitates to deduce the incident field on the
region of interest D from the measurements ui|Γs of that field at the receivers. In consequence, to apply
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our reconstruction scheme to the Fresnel data set we must change/match the functions employed in the
single-layer potential operator, cf. Section 3.5.

A multi-pole model for incident point sources As the measurement set-up is rotation invariant, it is
sufficient to detail this matching procedure merely for a single unknown incident field generated by a point
source on Γi, which yields measurements ui|Γs at Ns receivers with positions Bj ∈ R2, j = 1, . . . , Ns. By
shifting the coordinate system, we can moreover assume that the source position is the origin.

Let us then denote polar coordinates corresponding to (x, y) as (ϕ, r), represent Bj as (rj , ϕj), and
consider the Hankel functions H(1)

ν of the first kind and order ν ∈ Z. It is then well-known that the products

Hν(ϕ, r) = i
4H

(1)
ν (kr) exp(iνϕ), r > 0, ϕ ∈ [0, 2π),

as well as any linear combination of these products, are solutions of the Helmholtz equation (3) in R2 \ {0}
that satisfy Sommerfeld’s radiation condition, see [CK13]. We use these solutions to match the measured
incident fields at the receiver positions.

To this end, we choose ξ ∈ N to restrict ν to the 2ξ + 1 values ν = −ξ, . . . ,+ξ, represent a synthetic
incident field as (ϕ, r) 7→

∑+ξ
ν=−ξ cνHν(ϕ, r), and seek coefficients cν ∈ C such that this synthetic incident

field matches the measurements ui|Bj
,

ui|Bj

!=
+ξ∑

ν=−ξ
cνHν(ϕj , rj), j = 1, . . . , Ns. (74)

Defining the matrix V ∈ CNs×(2ξ+1) by Vj,ν = Hν(ϕj , rj) for j = 1, . . . , Ns, ν = −ξ, . . . , ξ we hence seek a
coefficient vector c = (c−ξ, . . . , c+ξ)> ∈ C(2ξ+1)×1 such that

Vc ≈ ui|Γs . (75)

Given c, the incident field on the region of interest D is given via ui|D =
∑+ξ
ν=−ξ cνHν(ϕ, r)|D.

Freq. Rel. err. of
Vc = ui|Γs

in %

Rel. err. of
data in %

in
GHz

Method,
iterations

mean real
part

imag.
part

3 (M1) 1.3 14.9 15.3
3 (M2) 1.8 15.0 15.7
3 (M3), 105 1.6 14.9 15.7
3 (M3), 108 1.5 14.9 15.5
5 (M1) 3.4 20.1 22.4
5 (M2) 21.2 20.5 26.9
5 (M3), 105 15.2 19.1 23.1
5 (M3), 108 10.4 18.8 21.2

Table 1: Comparison of methods computing coef-
ficients c using Fresnel data of a single dielectric
dielTM_dec8f.exp and ξ = 10. We give the relative
error of the measured incident field ui|Γs as well as the
relative error of data taking into account the manually
corrected position of the target, see Section 6.2.

Solving for suitable coefficients Obviously, it
is very important to recover the coefficients c exactly.
Otherwise the forward operator is not generating the
measured data. Consequently, the reconstruction
algorithm will inevitably fail. Of course, the problem
can be underdetermined as well as overdetermined
depending on the size of ξ. In general, the problem
will be ill-conditioned. Therefore, to get suitable
coefficients c we tested three recovery/regularization
methods tackling the approximation problem (75).

The first one, denoted as (M1), computes the
best-approximation to (75) in case the system is
overdetermined, and the least-squares solution if
it is underdetermined. The second method (M2)
computes c = (γI + V∗V)−1(V∗ui|Γs) via linear
Tikhonov regularization with a small γ > 0. The
third method (M3) relies on the Landweber itera-
tion stopped after 105 respectively 108 iterations to
solve (75). See e. g. [MS12] for more background on
these regularization methods.

For the Fresnel data set (3GHz respectively 5GHz data) and ξ = 10 the relative errors of the matched
fields are listed in Table 1. Notice that also error of the measured data is provided. This is possible since the
corresponding “ground truth” about the scattering objects is known from [BS01]. Therefore, it is possible
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to simulate the related data matrix. However, it must be noted that we take into account the manually
corrected position of the target, see Section 6.2. We display only the mean relative error for all incident
fields because the minimal and maximal errors do not differ significantly. Obviously, the first method (M1)
outperforms the other two methods. As the indicated errors for (M1) do not decrease by further increasing
the value of ξ, we hence match all incident fields using (M1) with ξ = 10.

6.2 Reconstruction of the target using Fresnel data
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(a) One dielectric.
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(b) Two dielectrics.

Figure 13: The real part for the two “ground truth” contrast con-
sidered here as part of the Fresnel data set. The positions were
manually corrected.

We consider the cases of single dielectric
respectively two dielectrics as targets.
In experiment, the real part of the con-
trast of the target is q = 2± 0.3. Since
the targets are dielectric the imaginary
part vanishes, see [BS01, Ch. 4.2]. Fur-
ther, according to [BS01, Ch. 4.2] the
radius of the filled dielectric cylinders
is 15mm, the position of the centre of
the single dielectric is left to the origin
with a distance of 30mm from the ori-
gin, and the two dielectrics sit left and
right to the origin (on the x1-axis) with
a distance of 45mm from the origin.

Rel. err. of
Vc = ui|Γs in %

Rel. err. of
data y in %

Frequency mean real part imag. part
single dielectric (dielTM_dec8f.exp)

1GHz 0.9 29.8 39.7
2GHz 0.6 18.0 14.9
3GHz 1.3 14.9 15.3
4GHz 0.8 25.2 19.7
5GHz 3.4 20.1 22.4
6GHz 4.2 39.7 32.7
7GHz 16.4 22.2 28.1
8GHz 18.1 44.3 39.1

two dielectrics (twodielTM_8f.exp)
1GHz 1.0 11.5 64.5
2GHz 0.6 46.7 8.1
3GHz 1.3 13.4 21.6
4GHz 0.8 47.9 15.6
5GHz 3.3 20.3 27.4
6GHz 4.0 59.5 36.8
7GHz 16.1 25.2 42.9
8GHz 17.8 72.2 41.1

Table 2: Relative error of the measured incident field ui|Γs and the
relative error of data for the manually corrected positions of the
targets, see Section 6.2 for different frequencies. In every case, the
related c for the matched incident field were computed by best-
approximation method (M1) and ξ = 10.

However, even rough reconstruc-
tions show that the above mentioned
positions have to be slightly changed
to describe the recorded data. First, it
is observed that the targets have to be
rotated 270◦ in mathematical positive
direction. Further, the single dielectric
is shifted by 1 mm to the right and by
3 mm downwards, see Fig. 13(a). Also,
for the two dielectrics case a shift by
8 mm to the left and 1 mm upwards as
well as a rotation of 8◦ in mathemat-
ical positive direction is necessary to
get a suitable position, see Fig. 13(b).
In what follows, that the manually cor-
rected positions are employed for the
computation of the relative data errors
in Tab. 2.

For the reconstruction, the grid size
is N = 256 in every dimension. The reg-
ularization parameters are empirically
derived to be α = 500 and β = 10−5

and the physical bounds are −1 ≤
Re(q) ≤ 3 and 0 ≤ Im(q) ≤ 1. Notice
that to stop the outer iteration by Mo-
rozov’s discrepancy principle, see (72),
one needs to know an estimate of the
noise level δ. We estimate the noise
level by comparing the measured data
to the data produced by manually cor-
rected positions (see last paragraph).
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Figure 14: Reconstructions of the experimentally measured data set of Institute Fresnel for the one dielectric
case (top row) and two dielectric case (bottom row) for two frequencies. In both cases the parameters
described in the text were employed. The related “ground truth” are given in Fig. 13.

Target Freq. Noise
level δ

Inner
stop. crit.

Nout Run-time Rel.
dis.

Rel.
err.

single dielectric 3GHz 15% 1 7 1.3min 0.239 0.547
single dielectric 5GHz 20% 1 7 1.4min 0.267 0.564
two dielectrics 3GHz 15% 1 7 1.4min 0.234 0.541
two dielectrics 5GHz 25% 1 7 1.6min 0.245 0.513

Table 3: Quantitative performance of the reconstruction scheme for the Fresnel data set in two dimensions
published by the Institute Fresnel with our choice of noise levels. The noise level was estimated by the
method described in text.

Approximation of the relative data error with single and two dielectrics As can be seen in Table 2
and as expected the incident field matching is especially successful in the low frequency range. In particular,
for frequencies 1–4GHz the relative error is maximally 1.3%, for 5 and 6GHz under 5%, while at the higher
frequencies 7 and 8GHz it exceeds 15%. In contrast, no clear trend is present in the relative data error.
In this light, we have selected in both single and two dielectrics cases 3 and 5GHz as the most promising
cases for the test of our reconstruction scheme. Based on the relative data error the values in Table 3 are
chosen as noise levels to stop the outer iteration by the discrepancy principle with τdis = 1.6, see (72). In
Figure 14 the reconstructions for the above mentioned targets and frequencies are presented for the case
of stopping the inner iteration by stopping criterion 1. The related quantitative evaluation can be found
in Table 3. The reconstructions for the constant stopping criterion with Nin = 10 and stopping criterion 2
were very similar, qualitatively (visually) as well as quantitatively (run-times, relative discrepancies, relative
errors). We therefore omit them here.

Measured data in three dimensions The Institute Fresnel published electromagnetic scattering data of
three-dimensional targets for transverse magnetic (TM) and transverse electric (TE) polarization. Actually,



7 SUMMARY 33

our model can only deal with TM polarized data in the two-dimensional case, see Sec. 2 (p. 3). In three
dimensions we would have to take into account TM and TE polarized data, see [LAv09]. This would in any
case require a numerical solver for the three-dimensional Maxwell’s equations.

7 Summary
We derived an minimization-based iterative inversion algorithm for inverse medium scattering problems.
The direct scattering problem is treated by volume integral equations that allow to rapidly set up Fréchet
derivatives. To stop the outer and inner iteration of the scheme we rely on the discrepancy principle and
adapted tolerance principles. Numerical experiments for scattering in two and three dimensions showing the
quality of reconstruction were provided for synthetic data. Furthermore, the performance of the reconstruction
method was tested for experimentally measured data from Institute Fresnel.
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