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Abstract. We characterize interior transmission eigenvalues of penetrable anisotropic acoustic
scattering objects by a technique known as inside-outside duality. This method has recently been
identified to be able to link interior eigenvalues of the penetrable scatterer with the behavior of
the eigenvalues of the far field operator for the corresponding exterior time-harmonic scattering
problem. A basic ingredient for the resulting connection is a suitable self-adjoint factorization of the
far field operator based on wave number-dependent function spaces. Under certain conditions on
the anisotropic material coefficients of the scatterer, the inside-outside duality allows to rigorously
characterize interior transmission eigenvalues from multi-frequency far field data. This theoretical
characterization moreover allows to derive a simple numerical algorithm for the approximation of
interior transmission eigenvalues. Since it is merely based on far field data, the resulting eigenvalue
solver does not require knowledge on the scatterer or its material coefficient; several numerical
examples show its feasibility and accuracy for noisy data.
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1. Introduction Interior transmission eigenvalues provide information about
material properties of penetrable scattering objects that is particularly useful for the
characterization of such objects from time-harmonic wave measurements. It is for
example known that unique determination of anisotropic inhomogeneous media from
far field data fails for multi-static and multi-frequency far field measurements, see,
e.g., [12, 1]. However, as shown in [3, 7], interior transmission eigenvalues provide
upper and lower bounds on the norm of the matrix-valued material parameter, thus
yielding helpful structural side constraints for methods in non-destructive testing.

Establishing bounds on the material parameters of isotropic or anisotropic inho-
mogeneous media recently motivated the development of numerical algorithms for the
computation of transmission eigenvalues from far field data, compare [3, 7, 4]. All
these analytic bounds and numerical techniques were inspired by ideas from [5] where
the first (lower) bounds on the index of refraction were obtained from the knowledge
of the first transmission eigenvalue and the failure of the linear sampling method [2, 6]
at transmission eigenvalues was used to detect these interior eigenvalues. Taking a
more general viewpoint, the above-mentioned papers show the currently rising inter-
est in the application of interior transmission eigenvalues for non-destructive testing
and, more generally, in inverse scattering theory.

A technique able to compute interior transmission eigenvalues for isotropic acous-
tic scatterers but completely different from the one mentioned above was introduced
in [15]. The latter reference relies on ideas from the work [10] on the so-called inside-
outside duality between the Dirichlet eigenvalue problem inside a bounded domain
and the exterior scattering problem in the outside of this domain. To indicate the
statement of this duality, recall first that for fixed wave number k>0 the eigenvalues
of the far field operator F =Fk lie on a circle in the complex plane and accumulate at
zero from the left, that is, only a finite number of eigenvalues of Fk has positive real
part. Now, the inside-outside duality between the interior and the exterior problem
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can roughly be stated as follows: The number k20 is an interior Dirichlet eigenvalue
of −∆ if and only if one of the eigenvalues of Fk tends to zero from the right as
the wave number k>0 tends to k0. As is shown in [10, 19], this duality provides a
full characterization of interior Dirichlet, Neumann and Robin eigenvalues by far-field
data from the eigenvalues of the corresponding far field operators for a continuum
of wave numbers. It moreover allows to design a numerical algorithm with provable
convergence, see [13].

In this paper, we establish a corresponding connection for the case of a penetrable
anisotropic acoustic scattering object D⊂R3 that is described by the following time-
harmonic wave equation at wave number k>0,

div(A∇u)+k2u= 0 in R3, (1.1)

where the material parameter A= Id+Q is assumed to be real-valued, symmetric and
positive definite in R3 and the matrix-valued contrast Q : R3→R3×3 is supported and
sign-definite in the closure of the scatterer D. On the boundary ∂D, u and its co-
normal derivative are continuous: If ν and [·]∂D denote the exterior unit normal to D
and the jump of a function across ∂D, respectively,

[u]∂D = 0 and
[
ν>A∇u

]
∂D

= 0.

For the scattering model (1.1) the squared wave number k2>0 is called a trans-
mission eigenvalue if there exists a non-trivial pair (u,w) of functions defined in D
such that

div(A∇u)+k2u= 0 in D, ∆w+k2w= 0 in D, (1.2)

u=w on ∂D, ν>A∇u=
∂w

∂ν
on ∂D. (1.3)

Links between this quadratic, non-selfadjoint eigenvalue problem to scattering theory
are well-described (see for instance [8]). If, e.g., w is an incident field wave such that
the resulting scattered wave vanishes outside D, then restricting both the correspond-
ing total field u and the incident field w to D yields a transmission eigenpair for the
eigenvalue k2.

Connecting the interior transmission eigenvalue problem (1.2) with the far field
operators corresponding to (1.1) for varying k>0 heavily relies on a suitable factor-
ization F =H∗TH of the far field operator F . Note that the same factorization also
forms the basis of the so-called factorization method, see [14]. A crucial requirement
for the proof of the inside-outside duality is the density of the image space of H in
the pre-image space of T . For impenetrable scatterers this condition is naturally sat-
isfied and the corresponding trace spaces H±1/2 are independent of the wave number.
For scattering from a penetrable anisotropic object D⊂R3 the “simplest” image- and
pre-image space of H and T is L2(D,C3) and this middle space of the factorization
can indeed be used, e.g., for the analysis of the factorization method. However, in
our context the range of H is not dense in L2(D,C3) and has to be replaced by the
closure of this range in L2(D,C3), a k-dependent vector-valued space of gradient fields
solving the Helmholtz equation.

The k-dependent middle space complicates the analysis of the inside-outside du-
ality for interior transmission eigenvalues compared to eigenvalues of impenetrable
obstacles. Under the general assumption that the contrast Q is sign-definite it is nev-
ertheless still possible to show that whenever an eigenvalue of the far field operator
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tends to zero from the “wrong” side as k tends to k0, then k20 must be an interior
transmission eigenvalue. The price to pay for the (currently necessary) k-dependent
middle spaces is that the converse direction (and hence the characterization) can only
be shown under assumptions on the contrast. We prove the complete characterization
of the first few interior transmission eigenvalues by the behavior of the eigenvalues
of the far field operator for contrasts Q that are perturbations of a sufficiently large
scalar constant times the identity matrix. Note that the corresponding conditions for
the scalar, isotropic Helmholtz equation ∆u+k2n2u= 0 considered in [15] required
the contrast to be constant and either small or large enough.

Let us now briefly indicate the precise statement of the inside-outside duality
for transmission eigenvalues. To this end, consider incident plane waves ui(x,θ) =
exp(ikθ ·x) with direction θ∈S2 ={x∈R3, |x|= 1} and a solution u(·,θ) to the
anisotropic Helmholtz equation (1.1) subject to Sommerfeld’s radiation condition for
the scattered field us(·,θ) =u(·,θ)−ui(·,θ),

∂us

∂r
(rx̂,θ)− ikus(rx̂,θ) =O(r−2) as r→∞, uniformly in x̂∈S2. (1.4)

Solutions to the Helmholtz equation outside D that satisfy (1.4) are called radiating
and possess a first-order expansion in terms of radiating spherical waves,

us(rx̂,θ) =
eikr

4πr
u∞(x̂,θ)+O(r−2), r→∞.

The function u∞ : S2×S2→C in the latter asymptotic expansion is called the far field
pattern of the scattered fields. It give rise to the far field operator F : L2(S2)→L2(S2),

(Fg)(x̂) :=

∫
S2
u∞(x̂,θ)g(θ)dS(θ), x̂∈S2,

which is compact and normal according to [16]. Furthermore, the eigenvalues λj of F
lie on the circle of radius 8π2/k with center 8π2i/k in the complex plane. Depending
on the sign of the contrast function Q=A− Id, the eigenvalues λj =λj(k) converge
to zero either from the left or from the right as j→∞ such that Reλj≷0 for j large
enough. This allows to order the phases of the λj and to define a smallest or a largest
phase: If, for instance, Reλj<0 for large j∈N, then the smallest phase ϑ∗= minj∈Nϑj
of the eigenvalues λj = rj exp(iϑj), ϑj ∈ [0,π), is well-defined. The aim of this paper
is to characterize transmission eigenvalues by the behavior of the smallest, or largest
phase respectively. Under conditions to be stated below, we will e.g. show that certain
transmission eigenvalues k20>0 are characterized by the fact that the smallest phase
ϑ∗=ϑ∗(k) of F =Fk tends to 0 as k tends to k0 in case that Q is positive definite.
Additionally, if ϑ∗(k) tends to zero as k tends to k0, then k20>0 is a transmission
eigenvalue.

We finally note that the transmission eigenvalue problem (1.2) has to be under-
stood in a weak sense: k2>0 is an interior transmission eigenvalue if there exists a
non-trivial eigenpair (u,w)∈H1(D)×H1(D) such that u−w∈H1

0 (D) and∫
D

(
A∇u ·∇ψ−k2uψ

)
dx= 0,

∫
D

(
∇w ·∇ψ−k2wψ

)
dx= 0 ∀ψ∈H1

0 (D),∫
D

(
A∇u ·∇ψ−k2uψ

)
dx=

∫
D

(
∇w ·∇ψ−k2wψ

)
dx ∀ψ∈H1(D). (1.5)
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This remainder of the paper is organized as follows: In Section 2 we introduce
a factorization of the far field operator and provide several crucial properties of the
operators arising in this factorization. In Section 3 we show important properties
of the eigenvalues of the far field operator and their phases. These properties will
be exploited in Section 4 when considering the behaviour of the smallest or largest
phase when the square of the corresponding wave number is close to a transmission
eigenvalue. In Sections 5 and 6 we finally prove a characterization of transmission
eigenvalues under the condition that a certain derivative is non-zero. This implicit
condition is then transformed into an explicit condition on the contrast and the trans-
mission eigenvalue. Relying on three computational examples we finally show in Sec-
tion 7 that the inside-outside duality can be exploited for the numerical computation
of interior eigenvalues.

2. A Particular Factorization of the Far Field Operator In this section
we prove a factorization for the far field operator F and examine the properties of the
arising operators. The factorization will be similar to the one derived in [16]. However,
we need to slightly adapt the factorization to suit the particular requirements of our
later theory.

We assume throughout the paper that D⊂R3 is a bounded Lipschitz domain and
that Q∈L∞(D,R3×3) takes (almost everywhere) values in the space of symmetric
3×3 matrices. Moreover, denoting z∗=z>, we assume for all z∈C3 and almost all
x∈D that either z∗Q(x)z≥ q0|z|2 for some q0>0, or that z∗Q(x)z≤ q0|z|2 for −1<
q0<0. In the first and second case Q is positive and negative definite, respectively,
and extending Q by zero to all of R3, the material parameter A= Id+Q is always
positive definite.

Defining a source term f =Q∇ui∈L2(D,C3) allows to write the weak formulation
of the differential equation (1.1) for the radiating scattered field us∈H1

loc(R3) as∫
R3

(
A∇us ·∇ψ−k2usψ

)
dx=−

∫
D

f ·∇ψdx ∀ψ∈C∞0 (R3). (2.1)

Using either an volume integral equation approach or a variational formulation on
a bounded domain involving an exterior Dirichlet-to-Neumann operator [16, 22] one
shows that the latter problem is of Fredholm type, more precisely, that uniqueness of
solution implies existence of solution for all source terms f ∈L2(D,C3). We assume in
the following that uniqueness of solution to (2.1) holds. This assumption is satisfied
if, e.g., A is a sufficiently smooth function on R3, or if A is piecewise smooth with
sufficiently regular jump discontinuities such that a unique continuation principle
holds (for details see, e.g., [23]).

To factorize F we define the injective Herglotz operator H=Hk : L2(S2)→
L2(D,C3),

Hg=∇vg, vg(x) =

∫
S2
g(θ)eikθ·xdS(θ), x∈D. (2.2)

The function vg (extended using its defining integral to all of R3) is called a Herglotz
wave function. The adjoint H∗ : L2(D,C3)→L2(S2) of the Herglotz operator is

(H∗h)(x̂) =−ikx̂ ·
∫
D

h(y)e−ikx̂·ydy=

∫
D

(∇ye−ikx̂·y) ·h(y)dy, x̂∈S2.

The latter function H∗h is the far field of the divergence of a volume poten-
tial for the Helmholtz equation with source term h∈L2(D,C3): If we denote by
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Φ(x,y) = exp(ik|x−y|)/(4π|x−y|), x 6=y∈R3, the radiating fundamental solution
to the Helmholtz equation,

H∗h=

∫
D

(∇yΦ(·,y))
∞ ·h(y)dy=−

(
div

∫
D

Φ(·,y)h(y)dy

)∞
=−(divw)∞=−w∞,

where w=
∫
D

Φ(·,y)h(y)dy∈H2
loc(R3,C3) and

w= divw=

∫
D

∇yΦ(·,y) ·h(y)dy∈H1
loc(R3) (2.3)

Interchanging the divergence with the integral in the last equation can be validated,
e.g. since all kernels are weakly singular. We finally define the operator T =Tk :
L2(D,C3)→L2(D,C3) by

Tf =Q(f−∇v), (2.4)

where v∈H1
loc(R3) is the weak, radiating solution to (2.1) with f replaced by Qf ,

div(A∇v)+k2v= div(Qf) in R3, (2.5)

that is,
∫
R3(A∇v ·∇ψ−k2vψ)dx=

∫
D
Qf ·∇ψdx holds for all ψ∈H1(R3) with com-

pact support.
Lemma 2.1. The far field operator F can be factorized as F =−H∗TH.

Proof. First we define an auxiliary operator G=Gk : L2(D,C3)→L2(S2) by Gf =
v∞, where v∈H1

loc(R3) is the weak, radiating solution to (2.5). For g∈L2(S2) it
follows that G(Hg) =v∞, where v solves

div(A∇v)+k2v= div(Qf) with f(x) :=∇x
∫
S2
g(θ)eikx·θdS(θ), x∈R3.

By the superposition principle and the definition of F we deduce that F =−GH.
Next, consider for some h∈L2(D,C3) the functions w and w from (2.3). Since

w∞=−H∗h and since w= divw for w∈H2
loc(R3) that is the radiating solution to

∆w+k2w=h in R3 it follows that w∈H1
loc(R3) is the weak readiating solution to

∆w+k2w= divh in R3. (2.6)

Since A=Q+Id, (2.5) can equivalently be written as

∆v+k2v= div[Q(f−∇v)]
(2.4)
= divTf in R3.

Since we defined the operator G via (2.5), setting h=Tf in (2.6) shows first that
G=H∗T and second that F =−H∗TH.

The following lemma lists important properties of the operator Tk for k>0 or
k= i. To this end, we denote by R(H) be the closure of the range of H in L2(D,C3).
Lemma 2.2. (a) For all f ∈L2(D,C3) and k>0 it holds that Im(Tkf ,f)L2(D,C3)≤0.

(b) If Im(Tkf ,f) = 0 for a non-trivial f ∈R(H) and k>0, then there is a function
w∈H1(D) with ∇w=f such that k2 is a transmission eigenvalue with corresponding
transmission eigenpair (w−v,w), where v∈H1

loc(R3) is the weak solution to (2.5).
(c) If k2>0 is a transmission eigenvalue with corresponding transmission eigen-

pair (u,w), then (Tkf ,f)L2(D,C) = 0 for f :=∇w∈R(H).
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(d) If Q is positive definite and k= i, then Ti is coercive: There exists c>0 such
that

(Tif ,f)L2(D,C3)≥ c‖f‖2L2(D,C3) ∀f ∈L2(D,C3).

If Q is negative definite, then the operator −Ti is coercive: There exists c>0 such
that

−(Tif ,f)L2(D,C3)≥ c‖f‖2L2(D,C3) ∀f ∈L2(D,C3).

(e) For k>0 the difference Tk−Ti is a compact operator from L2(D,C3) into
L2(D,C3).

Proof. (a) We write Tkf =Qg, where g=f−∇v and v∈H1
loc(R3) solves (2.5),

i.e.,∫
R3

[∇v ·∇ψ−k2vψ]dx=

∫
D

∇ψ ·Q(f−∇v)dx=

∫
D

∇ψ ·Qgdx ∀ψ∈C∞0 (R3).

(2.7)
By density of C∞0 (R3) in H1(R3) the latter equation holds also for all ψ∈H1(D) with
compact support. Using standard arguments (compare, e.g. [16, Lemma 3.2(a)]) we
compute that

(Tkf ,f)L2(D,C3) = (Qg,g+∇v)L2(D,C3) = (Qg,g)L2(D,C3) +

∫
D

Qg ·∇vdx

= (Qg,g)L2(D,C3) +

∫
|x|<R

[|∇v|2−k2|v|2]dx−
∫
|x|=R

v
∂v

∂ν
dS.

(2.8)

Since (Qg,g)L2(D,C3) is real valued, taking the the imaginary part of the last equation
and letting R→∞ implies, due to the radiation condition, that

Im(Tkf ,f)L2(D,C3) =− ik

4π2

∫
S2
|v∞|2dS≤0. (2.9)

(b) Let Im(Tkf ,f)L2(D,C3) = 0 for f ∈R(H) and define v as in the proof (a).
Equation (2.9) implies that v∞= 0. Due to Rellich’s lemma, this implies that v
vanishes in R3 \D. Thus, the variational formulation (2.7) for v reduces to∫

D

[∇ψ ·A∇v−k2ψv]dx=

∫
D

∇ψ ·Qf dx ∀ψ∈H1(D). (2.10)

Since f ∈R(H), there is a sequence of Herglotz wave functions

wj(x) =

∫
S2
gj(θ)eikx·θdS(θ), x∈R3, j∈N,

such that fj =∇wj converges to f ∈L2(D,C3) as j→∞. Define vj as the solution
to (2.7) with f replaced by fj . The continuity of the corresponding solution operator
implies that ‖vj−v‖H1(D)≤C‖fj−f‖L2(D,C3)→0 as j→∞. Convergence of the fj =
∇wj in L2(D,C3) moreover implies that the restrictions of wj ∈C∞(R3) to D converge
in the quotient space H1(D)/C to some function w∈H1(D). (The L2-norm of the
gradient is a norm inH1(D)/C by a well-known Poincaré inequality.) Since wj satisfies
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the homogeneous Helmholtz equation ∆wj+k2wj = 0 in D, this property carries over
to w. In particular, ∇w=f and Qf =Q∇w. We rewrite (2.10) as∫

D

[
∇ψ ·A∇v−k2ψv

]
dx=

∫
D

∇ψ ·Q∇wdx ∀ψ∈H1(D).

Using Q=A− Id, the latter variational equation is equivalent to∫
D

[
∇ψ ·A∇(w−v)−k2ψ(w−v)

]
dx=

∫
D

[
∇ψ ·∇w−k2ψw

]
dx= 0 ∀ψ∈H1(D).

(2.11)
Choosing the testfunction ψ in H1

0 (D) the last term on the right vanishes since w∈
H1(D) is a weak solution to the Helmholtz equation inD,

∫
D
∇w ·∇ψdx=

∫
D
k2wψdx

for all ψ∈H1
0 (D). In consequence, (2.11) shows that w−v is a weak solution to

div(A∇(w−v))+k2(w−v) = 0 in D. If w vanishes then f =∇w vanishes, which is
excluded by assumption. Thus, the above equations show that (w−v,w) is a trans-
mission eigenpair to the eigenvalue k2, compare (1.5).

(c) Let k2>0 be a transmission eigenvalue with eigenpair (u,w)∈H1(D)×H1(D).
Setting f =∇w we will show that (Tkf ,f) = 0. To this end, recall that the set of
Herglotz wave functions of the form (2.2) for densities g∈L2(S2) is dense in the
set of H1-solutions to the Helmholtz equation in D. Thus, there exists a sequence
gj ∈L2(S2) such that the corresponding Herglotz wave functions wj converge to w in

H1(D). In consequence, f =∇w∈R(H).
Since k2 is a transmission eigenvalue, (1.5) implies that v=u−w∈H1

0 (D) satisfies∫
D

[
∇v ·∇ψ−k2vψ

]
dx=

∫
D

∇ψ ·Q(∇w−∇v)dx ∀ψ∈H1(D).

Setting ψ=w yields∫
D

[
∇v ·f−k2vw

]
dx=

∫
D

Q(f−∇v) ·f dx= (Tkf ,f)L2(D,C3).

As f ∈R(H) there is a sequence (wj)j∈N of Herglotz wave functions such that ∇wj→
f as j→∞. By definition, f =∇w, which implies that ‖∇(w−wj)‖L2(D,C3)→0 as
j→∞. Using Poinaré’s inequality as in part (b), we deduce that by adding suitable
constants cj ∈C to wj , the sequence wj+cj converges to w in H1(D). Exploiting
that v=u−w has mean value zero due to the third equation in (1.5) with constant
ψ yields ∫

D

[
∇v ·f−k2vw

]
dx= lim

j→∞

∫
D

[
∇v ·∇wj−k2v(wj+cj)

]
dx

= lim
j→∞

∫
D

[
∇v ·∇wj−k2vwj

]
dx

= lim
j→∞

∫
D

[∇v ·∇wj+vdiv∇wj ] dx= 0

by Green’s first identity. In consequence, (Tkf ,f)L2(D,C3) = 0.
(d) We first consider the case of positive definite Q. Relying on (2.8) for k= i and

f ∈L2(D,C3), we exploit the ellipticity of the sesquilinear form in (2.7) for k= i to
conclude that (Tif ,f)L2(D,C3)≥‖v‖2H1(R3)≥‖v‖

2
H1(D), with v solving (2.7) for k= i.

According to Lemma A.1, the solution operator to (2.7) is closed from L2(D,C3) into
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H1(D), which implies that ‖v‖H1(D)≥C‖f‖L2(D,C3). If Q is negative definite, the
same arguments allow to estimate that

(Tif ,f)L2(D,C3) = (Qf ,f)−
∫
D

Qf ·∇vdx= (Qf ,f)−
∫
D

∇v ·A∇vdx−‖v‖L2(D,C3)

≤−min{c0,1}‖v‖2H1(R3)≤−C‖f‖
2
L2(D,C3).

(e) This assertion follows from standard embedding arguments (e.g. [16, Lemma
3.2(d)]).

The eigenvalues λj of the far field operator F lie on a circle with radius 8π2/k
and center at 8π2i/k in the complex plane. Since F is compact, these eigenvalues
converge to zero as j→∞. If the contrast Q is sign-definite, they either approach the
origin from the left or from the right. Using the results from Lemma 2.2, this can be
shown as in [15, Lemma 4.1].
Lemma 2.3. Assume that k2>0 is no transmission eigenvalue. If Q is positive defi-
nite or negative definite, then Reλj<0 or Reλj>0 for j large enough, respectively.

3. Spectrum of the Far Field Operator at Transmission Eigenvalues
Next we take a closer look at the behavior of the eigenvalues of F . As already

mentioned above the eigenvalues λj of F lie on a circle in the complex plane with
center 8π2i/k and radius 8π2/k and tend to zero from the left or right, depending
on the sign of Q. Let us assume for a moment that k2>0 is not a transmissions
eigenvalue such that none of the eigenvalues λj of F can vanish. This allows to write
the eigenvalues λj in polar coordinates,

λj = rje
iϑj rj>0, ϑj ∈ (0,π),

If Q is positive definite, Lemma 2.3 states that there is N =N(k)∈N such that
Re(λj)<0 for j≥N . In particular there is a well-defined and unique smallest phase
among all phases ϑj of eigenvalues of F ,

ϑ∗= min
j∈N

ϑj .

We denote the corresponding eigenvalue as λ∗. If Q is negative definite, there is
N =N(k)∈N such that Re(λj)>0 for j≥N . In this case the unique largest phase

ϑ∗= max
j∈N

ϑj

is well-defined and we denote the corresponding eigenvalue is as λ∗. The next lemma
characterizes these maximal phases (see [19, Theorem 3] for a proof).
Theorem 3.1. Assume that k2>0 is no transmission eigenvalue. If Q is positive or
negative definite, then

cotϑ∗= max
g∈L2(S2)

Re(Fg,g)L2(D,C3)

Im(Fg,g)L2(S2)
or cotϑ∗= min

g∈L2(S2)

Re(Fg,g)L2(S2)

Im(Fg,g)L2(S2)
, (3.1)

respectively. The maximum or minimum is attained at any eigenvalue to λ∗ or λ∗,
respectively.

Since F =−H∗TH, we note that

(Fg, g)L2(S2) =−(TkHg,Hg)L2(S2) =−(Tkw,w)L2(D,C3)
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with w :=Hg∈L2(D,C3). Let us define

X=Xk :=R(H)⊂L2(D)

such that (3.1) can equivalently be written as

cotϑ∗= max
w∈X

Re(Tkw,w)L2(D,C3)

Im(Tkw,w)L2(D,C3)
and cotϑ∗= min

w∈X

Re(Tkw,w)L2(D,C3)

Im(Tkw,w)L2(D,C3)
.

(3.2)
Remark 3.2. We know from Lemma 2.2 that the denominator Im(Tkw,w) can only
vanish if k2 is a transmission eigenvalue. Thus, (3.2) indicates the particular behavior
of the phases ϑ∗ and ϑ∗ close to transmission eigenvalues.
Assumption 3.3. From now on we assume that the Lipschitz domain D=∪Ii=1Di

can be decomposed into I ∈N connected components Di such that each Di is a simply
connected Lipschitz subdomain with connected boundary and Di∩Dj =∅ if 1≤ i 6= j≤
I.

To further characterize X we recall Theorem 3.37 from [21].
Theorem 3.4 ([21, Theorem 3.37]). If w∈L2(D,C3) satisfies curl(u) = 0 in

the distributional sense, i.e.∫
D

w ·∇×ψdx= 0 ∀ψ∈C∞0 (D,C3),

then there is a scalar potential φw ∈H1(D) such that w=∇φw. The potential φw
is unique up to adding functions that are constant on each connected component Di,
i= 1,. ..,I, of D.

To exclude additive constants, we use the space

H1
� (D) :=

w∈H1(D),

∫
Di

wdx= 0 for all connected components Di⊂D, i= 1,. ..I

.
This space is a Hilbert space for the inner product (φ,ψ) 7→

∫
D
∇φ ·∇ψdx, again due

to a Poincaré inequality. Defining L2(D,C3,curl0) :={u∈L2(D,C3), curl(u) = 0} as
the space of curl-free functions in L2(D,C3), we can thus define an operator

E : L2(D,C3,curl0)→H1
� (D), w 7→E(w) =φw,

mapping an curl-free vector field w to its unique scalar potential φw in H1
� (D), such

that ∇E(w) =w in L2(D,C3). Obviously, E is continuous,

C‖φw‖H1(D)≤‖φw‖H1
�(D) =‖∇φw‖L2(D,C3) =‖w‖L2(D,C3) ∀w∈L2(D,C3,curl0).

Lemma 3.5. It holds that

X=R(H) =
{
w∈L2(D,C3),

∫
D

w ·∇×φdx= 0 ∀φ∈C∞0 (D,C3), (3.3)

∃d∈CI :

I∑
i=1

∫
Di

[
∇E(w) ·∇ψ−k2(E(w)+di)ψ

]
dx= 0 ∀ψ∈C∞0 (D)

}
.

(3.4)
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Proof. Recall from the definition of the Herglotz wave function vg in (2.2) that

Hg=∇vg. First we show that R(H)⊂X. Let w∈R(H) be such that w=∇vg for a
function g∈L2(S2). Since w is a gradient field it follows immediately that w is curl-
free, i.e.,

∫
D
w ·∇×φdx= 0 for all φ∈C∞0 (D,C3). Moreover, ∇vg =∇E(w) =w,

which implies that for each connected component Di, i= 1,. ..,I, of D there exists
di∈C such that vg =E(w)+di on Di. Since vg solves the Helmholtz equation,

0 =

I∑
i=1

∫
Di

[
∇(E(w)+di) ·∇ψ−k2(E(w)+di)ψ

]
dx ∀ψ∈C∞0 (D).

Thus, w∈X. If we additionally show that X is closed in the topology of L2(D,C3) it
follows that R(H)⊂X. To this end, assume that X 3wj→w in L2(D,C3) as j→∞
and that E(wj)+

∑I
i=1d

(j)
i 1Di

solves the Helmholtz equation. It is clear that the
first condition in (3.3) for wj implies, that

∫
D
w ·∇×φdx= 0 for all φ∈C∞0 (D,C3).

Rewriting (3.4) as

I∑
i=1

∫
Di

[
wj ·∇ψ−k2

(
E(wj)+d

(j)
i

)
ψ
]

dx= 0 ∀ψ∈C∞0 (D),

the continuity of E from L2(D,C3) into H1
� (D) shows that merely the convergence of

the vectors d(j)∈CI needs to be shown. This follows from the observation that, for
arbitrary ψ∈C∞0 (D),

I∑
i=1

(d
(j)
i −d

(`)
i )

∫
Di

ψdx=

∫
D

[
(wj−w`) ·∇ψ−k2E(wj−w`)ψ

]
dx→0 (j,`→∞).

Now we consider the orthogonal decomposition X=R(H)⊕R(H)
⊥

and show

that the orthogonal complement of R(H) is trivial. Assume that w0∈R(H)
⊥
⊂X.

Since w0∈X, condition (3.4) shows that there is d∈CI such that E(w0)+
∑I
i=1di1Di

solves

I∑
i=1

∫
Di

[
∇E(w) ·∇ψ−k2(E(w)+di)ψ

]
dx= 0 ∀ψ∈C∞0 (D).

According to [15, Theorem 7.3] the space of Herglotz wave functions vg is dense in
the H1-solutions of the Helmholtz equation. Therefore there is a sequence (gj)j∈N⊂
L2(S2) such that vgj→E(w0)+

∑I
i=1di1Di

in H1(D) as j→∞. In particular,∣∣∣∣∫
D

(∇E(w0)−∇vgj ) ·∇vgj dx

∣∣∣∣≤‖∇E(w0)−∇vgj‖L2(D,C3)‖∇vgj‖L2(D,C3)→0,

since ‖∇vgj‖L2(D,C3) is bounded. In consequence,∫
D

|∇vgj |2dx−
∫
D

∇E(w0) ·∇vgj dx→0 (j→∞).

Since w0 =∇E(w0)∈R(H)
⊥

, the second term on the left vanishes for all j∈N. It
follows that w0 = limj→∞∇vgj = 0, which concludes the proof.
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Note that we needed to include constants d∈CI in the definition of the space
X, since the operator E merely extracts the potential φw of a function w∈Xk that
has vanishing means but does not take the Helmholtz equation into consideration.
To avoid the need to deal with these constants we next define Ek : L2(D,C3,curl0)→
H1(D) that again maps w to a scalar potential φw ∈H1(D). Moreover, if w∈Xk,
then the potential φw solves the Helmholtz equation. To this end we define functions
χi∈C∞0 (D), i= 1,. ..,I, such that χi has support in Di and

∫
Di
χidx= 1. Plugging in

χi into (3.4) and solving for di shows that di=−
∫
Di

(k−2∇E(w) ·∇χi−E(w)χi)dx.

Lemma 3.6. Define Ek : L2(D,C3,curl0)→H1(D) for k>0 by

Ek :w→φw=E(w)+

I∑
j=1

1Dj

∫
D

[
E(w)χj−

1

k2
∇E(w) ·∇χj

]
dx. (3.5)

Then Ek is well-defined and bounded and for fixed w the function k 7→Ek(w) is con-
tinuously differentiable taking values in H1(D). The derivative k 7→dEk(w)/dk is
constant on each connected component of D. If w∈Xk, then φw=Ek(w) solves the
Helmholtz equation,∫

D

[∇φw ·∇ψ−k2φwψ] dx= 0 ∀ψ∈C∞0 (D).

Proof. It remains to compute the derivative of k 7→Ek(w). Considering (3.5), Ek
is clearly differentiable and the derivative equals dEk(w)/dk= 2k−3

∑I
j=11Dj

∫
D
w ·

∇χj dx.

4. Phase Behavior at Transmission Eigenvalues
Since we will now investigate the behavior of the largest or the smallest phase on

the wave number k>0, the dependency of all introduced quantities on k becomes rel-
evant. Therefore we denote this dependence whenever necessary, e.g., as Xk,Tk,ϑ∗(k)
and ϑ∗(k). Tackling the dependency of Xk on k requires to introduce a projection
operator Pk from L2(D,C3) onto Xk. This is, roughly speaking, due to (3.2) which
plays a crucial role for the inside-outside duality. Indeed, using such a projection, one
can rewrite (3.2) using the k-independent space L2(D,C3) instead of Xk,

cotϑ∗(k) = max
w∈L2(D,C3)

Re(TkPkw,Pkw)

Im(TkPkw,Pkw)

and

cotϑ∗(k) = min
w∈L2(D,C3)

Re(TkPkw,Pkw)

Im(TkPkw,Pkw)
.

Theorem 4.1. Let k0>0 and w0∈Xk0 such that (Tk0w0,w0)L2(D,C3) = 0. If Pk :
L2(D,C3)→Xk is a projection onto Xk that is continuously differentiable with respect
to k>0 and if

α(k0) :=

[
d

dk
(TkPkw0,Pkw0)L2(D,C3)

]∣∣∣
k=k0

∈R\{0},

then the following statement holds: If Q is positive definite, then

lim
k↗k0

ϑ∗= 0 if α(k0)>0 and lim
k↘k0

ϑ∗= 0 if α(k0)<0.
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If Q is negative definite, then

lim
k↘k0

ϑ∗=π if α(k0)>0 and lim
k↗k0

ϑ∗=π if α(k0)<0.

Proof. The proof exploits the differentiability of Pk with respect to k to set up
a Taylor expansion of order one of k 7→ (TkPkw0,Pkw0), together with the fact that
k20 is a transmission eigenvalue to deduce the stated result. We refer to [15, Lemma
5.1] for a full proof; the latter proof is indeed valid for general projections, despite
the claim merely considers the orthogonal projection onto Xk.

We will in a first step compute the derivative of k 7→ (Tkw0,w0).
Lemma 4.2. Let 0 6=w0∈L2(D,C3), so that (Tk0w0,w0)L2(D,C3) = 0. Then the weak
radiating solution vk0 to div(A∇vk0)+k20vk0 = div(Qw0) in R3 (compare (2.5) for a
weak formulation) belongs to H1

0 (D) and

d

dk
(Tkw0,w0)

∣∣∣∣
k=k0

=−2k0

∫
D

|vk0 |2dx.

Proof. Due to (Tk0w0,w0) = 0 it follows that the far field v∞k0 = 0 and vk0 vanishes
in R3 \D (compare the proof of Theorem 2.2(a) and (b)). Thus, vk0 ∈H1

0 (D). By
definition we have Tk0w0 =Q(w0−∇vk0). For arbitrary k>0 we define vk ∈H1

loc(R3)
as the radiating solution to∫

R3

(A∇vk ·∇ψ−k20vkψ)dx=

∫
D

(Qw0) ·∇ψdx ∀ψ∈C∞0 (R3). (4.1)

The mapping k 7→vk is Fréchet-differentiable and v′k0 := [dv/dk]|k=k0 ∈H
1
loc(R3) solves∫

R3

(A∇v′k0 ·∇ψ−2k0vk0ψ−k2v′k0ψ)dx= 0 ∀ψ∈C∞0 (R3). (4.2)

By a density argument, both (4.1) and (4.2) also holds for all ψ∈H1(R3) with compact
support. Moreover, for k=k0 the solution vk0 ∈H1

0 (D) has compact support and
hence (4.1) holds in this case even for all ψ∈H1

loc(R3) . Thus,

d

dk
(Tkw0,w0)

∣∣∣∣
k=k0

=−
∫
D

Q∇v′k0 ·w0dx=−
∫
D

(Qw0) ·∇v′k0 dx

(4.1)
= −

∫
D

(A∇vk0 ·∇v′k0−k
2
0vk0v

′
k0)dx.

Exploiting Green’s identity, (4.2), and the symmetry of A yields∫
D

A∇vk0 ·∇v′k0 dx=

∫
D

∇vk0 ·A∇v′k0 dx=

∫
D

(
2k0vk0vk0 +k2v′k0vk0

)
dx,

that is, (d/dk)(Tkw0,w0) =−2k0
∫
D
|vk0 |2dx.

Recall now the operator Ek from (3.5) mapping curl-free vector fields to a scalar
potential.
Theorem 4.3. If k0>0 and 0 6=w0∈Xk0 satisfy (Tk0w0,w0)L2(D,C3) = 0 we set
φw0

=Ek0w0∈H1(D). Assume that Pk : L2(D,C3)→Xk is a projection that is con-
tinuously differentiable in k>0. Then

d

dk
(TkPkw0,Pkw0)L2(D,C3)

∣∣∣∣
k=k0

=−
∫
D

2k0|vk0 |2dx+4kRe

∫
D

vk0φw0 dx.
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Proof. By definition of Pk it holds that Pkw0∈Xk, that is, up to addi-
tive constants Pkw0 is a gradient field of a scalar potential solving the Helmholtz
equation. More precisely, Lemmas 3.5 and 3.6 state that Pkw0 =∇φw0(k) where
φw0

(k) =Ek(Pkw0)∈H1(D) is the unique scalar potential to Pkw0 solving ∆φw0
(k)+

k2φw0
(k) = 0 weakly in D, that is,∫

D

(
∇φw0(k) ·∇ψ−k2φw0

(k)ψ
)

dx= 0 ∀ψ∈C∞0 (D). (4.3)

In particular, the operator mapping w0 to φw0
(k) =Ek(Pkw0) is well-defined, con-

tinuous from L2(D,C3) into H1(D). By our assumption of the differentiability of
Pk and Lemma 3.6 the function k 7→φw0

(k) =Ek(Pkw0) is also differentiable as a
mapping from L2(D,C3) into H1(D). Thus, differentiating (4.3) with respect to k
shows that φ′w0

(k) = dφw0(k)/dk∈H1(D) is a weak solution to ∆φ′w0
(k)+k2φ′w0

(k) =
−2kφw0(k). In particular,∫

D

(
∇φ′w0

(k) ·∇ψ−k2φ′w0
(k)ψ

)
dx= 2k

∫
D

ψφw0
(k)dx ∀ψ∈H1

0 (D). (4.4)

Applying the chain rule to k 7→ (TkPkw0,Pkw0) one obtains

d

dk
(TkPkw0,Pkw0)L2(D,C3) = (T ′kPkw0,Pkw0)+(TkP

′
kw0,Pkw0)+(TkPkw0,P

′
kw0)

= (T ′kPkw0,Pkw0)+(T ∗(k)Pkw0,P ′kw0)+(TkPkw0,P
′
kw0).

Next we show that Tk0w0 =T ∗(k0)w0. Recall from the proof of Lemma 4.2 that
Tk0w0 =Q(w0−∇vk0) where vk0 ∈H1

loc(R3)∩H2
0 (D) solves div(A∇vk0)+k20vk0 =

div(Qw0) in R3, i.e.,∫
D

(
∇vk0 ·∇ψ−k2vk0ψ

)
dx=

∫
D

Q(w0−∇vk0) ·∇ψdx ∀ψ∈H1(D). (4.5)

The symmetry of Q together with (4.5) implies that

(Tk0w0,w0)L2(D,C3) = (Qw0,w0)L2(D,C3)−
∫
D

∇vk0 ·(Qw0)dx

= (w0,Qw0)L2(D,C3)−
∫
D

(
A∇vk0 ·∇vk0−k20vk0vk0

)
dx

= (w0,Qw0)L2(D,C3)−
∫
D

Q∇vk0 ·w0dx

= (w0,Q[w0−∇vk0 ])L2(D,C3) = (w0, Tk0w0)L2(D,C3).

In particular, T ∗(k0)w0 =Tk0w0 and Lemma 4.2 shows that

d

dk
(TkPkw0,Pkw0)L2(D,C3)

∣∣
k=k0

=−2k0

∫
D

|vk0 |2dx+2Re(Tk0w0,P
′
k0w0)L2(D,C3).
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As Q=A− Id, we exploit (4.5) to finally obtain

2Re(Tk0w0,P
′
k0w0)L2(D,C3) = 2Re

∫
D

(Qw0−Q∇vk0) ·P ′k0w0dx

= 2Re

∫
D

(Qw0−Q∇vk0) ·∇φ′w0
(k)dx

(4.5)
= 2Re

∫
D

(
∇vk0 ·∇φ′w0

(k)−k2vk0φ′w0
(k)
)
dx

(4.4)
= 4kRe

∫
D

vk0 φw0 dx.

Since Theorem 4.3 computes the derivative of k 7→ (TkPkw0,Pkw0) for arbitrary
differentiable projections Pk it remains to show existence of such projections. The
following lemma will be helpful.
Lemma 4.4. For w∈L2(D,C3) and k>0 there exists a unique vector potential A=
Aw ∈H0(curl,D)∩H(div0,D) such that

w=∇φw+∇×Aw where φw :=Ek(w−∇×Aw)∈H1(D).

If w∈Xk then Aw= 0 and φw is a weak solution to the Helmholtz equation,∫
D

(∇φw ·∇ψ−k2φwψ)dx= 0 ∀φ∈C∞0 (D).

Proof. Due to [21, Theorem 3.45, Remark 3.46] a function w in L2(D,C3) can be
decomposed as

w=∇φw+∇×Aw

with a scalar potential φw ∈H1(D) and a vector potential Aw ∈H0(curl,D)∩
H(div0,D), i.e., divAw= 0 in D. The potential Aw is unique since the differ-
ence A=A1

w−A2
w ∈H0(curl,D) of two vector potentials A1,2

w solves ∇×∇×Aw= 0.
Thus, ‖∇×Aw‖L2(D,C3) = 0 and Friedrich’s inequality (see, e.g., [21, Corollary 3.51])
implies that Aw vanishes. Moreover, w−∇×Aw ∈L2(D,C3,curl0) is curl-free, so
that φw :=Ek(w−∇Aw)∈H1(D) is well-defined. If w∈Xk, then w is a gradient
field and ∇×w=∇×∇×Aw= 0 in D. Thus, Aw vanishes due to the same argu-
ments as above and φw=Ek(w) solves the Helmholtz equation due to Theorem 3.6.

To define a first projection operator Pk we exploit, as in the last lemma, the
relation φw=Ek(w−∇×Aw) for arbitrary w∈L2(D,C3). Assuming that k2>0 is
not a Dirichlet eigenvalue of −∆ in D, we additionally define ŵ= ŵw,k ∈H1

0 (D) to be
the unique weak solution to the boundary value problem ∆ŵ+k2ŵ= ∆φw+k2φw in
D and ŵ= 0 on ∂D. More precisely,∫

D

[
∇ŵ ·∇ψ−k2ŵψ

]
dx=

∫
D

[
∇φw ·∇ψ−k2φwψ

]
dx ∀ψ∈H1

0 (D). (4.6)

The latter problem is of Fredholm type. By the assumption that k2 is not a Dirichlet
eigenvalue of −∆ in D a unique solution ŵ∈H1

0 (D) exists and depends continuously
on φw.
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Lemma 4.5. If k20>0 is not a Dirichlet eigenvalue of −∆ in D, then Pk0 : L2(D,C3)→
Xk0 ,

Pk0w=∇φw−∇ŵ for w∈L2(D,C3),

where φw=Ek0(w−∇×Aw) and ŵ= ŵw,k0 ∈H1
0 (D) solves (4.6), is a continuous

projection onto Xk0 . There exists ε=ε(k0)>0 such that for each w∈L2(D,C3) the
function (k0−ε,k0 +ε)3k 7→Pkw is continuously differentiable in k with values in
L2(D,C3).

Proof. To check that Pk0 maps into Xk0 we note that ∇(φw− ŵ) is a vector
field that possesses a scalar potential solving the Helmholtz equation weakly in D.
Thus, (3.3) and (3.4) imply that Pk0w∈Xk0 . Continuity of Pk0 from L2(D,C3)
into Xk0 ⊂L2(D,C3) with respect to the norm in L2(D,C3) is clear. To check that
Pk0 is indeed a projection onto Xk0 , choose w∈Xk0 and consider φw=Ek0(w−∇×
Aw). Lemma 4.4 states that Aw= 0, i.e., φw=Ek0(w)∈H1(D) and φw solves the
Helmholtz equation, that is, the right-hand side in (4.6) vanishes. The latter is by
assumption uniquely solvable, which shows that ŵ= 0 and Pk0w=∇φw=w.

Concerning differentiability, recall from Lemma 3.6 that k 7→φw=Ek(w−∇×
Aw) is differentiable with values in L2(D,C3) and, moreover, that the derivative
k 7→φ′w is constant on each connected component of D. Thus, k 7→∇φ′w= 0, that is,
k 7→∇φw is constant. Differentiability of k 7→∇ŵ follows from differentiating (4.6)
with respect to k as in the proof of Theorem 4.3.

If the boundary ∂D is sufficiently regular, i.e., ∂D∈C4, then we can avoid exclud-
ing Dirichlet eigenvalues using a different projection, again based on the decomposition
φw=Ek(w−∇×Aw) for w∈L2(D,C3). Define ŵ= ŵw,k ∈H2

0 (D) as weak solution
to [∆+k2]2ŵ=−[∆+k2]φw, i.e.,∫

D

[∆+k2]ŵ[∆+k2]ψdx=

∫
D

φw[∆+k2]ψdx ∀ψ∈H2
0 (D). (4.7)

Relying on Holmgren’s theorem it is not difficult to show that the sesquilinear form
in the latter formulation is elliptic on H2

0 (D), that is, ŵ∈H2
0 (D) is well-defined for

k>0 and w∈L2(D,C3).
Lemma 4.6. Assume that ∂D∈C4. Then the mapping Rk : L2(D,C3)→Xk,

Rkw=∇φw−∇[∆+k2]ŵw, w∈L2(D,C3),

where φw=Ek(w−∇×Aw)∈H1(D) and ŵw ∈H2
0 (D)∩H3(D) has been defined

in (4.7), defines a projection onto Xk. For w∈L2(D,C3) the function k 7→Rkw
is continuously differentiable in k with values in L2(D,C3).

Proof. It is clear that the solution ŵ to (4.7) belongs to H2
0 (D) by elliptic-

ity and ‖ŵ‖H2(D)≤C‖φw‖. Due to the regularity assumptions for ∂D, [11, The-
orem 2.20] states that ŵ∈H4(D) if φw ∈H2(D), such that [∆+k2]φw ∈L2(D).
Moreover, ‖ŵ‖H4(D)≤C‖φw‖H2(D). Interpolation estimates for Sobolev spaces
(see, e.g., Appendix B of [20]) then imply that ŵ∈H3(D) if φw ∈H1(D) and
‖ŵ‖H3(D)≤C‖φw‖H1(D). The latter bound applies in our setting and shows first
that ∇[∆+k2]ŵ∈L2(D) and second that Rk is well-defined and bounded.

The variational formulation (4.7) is tailored such that φw− [(∆+k2)ŵ]∈H1(D)
is a weak solution to the Helmholtz equation. Thus, ∇φw−∇[(∆+k2)ŵ] satisfies
both (3.3) and (3.4) and we conclude that Rkw∈Xk. Moreover, if w∈Xk, then φw
satisfies the Helmholtz equation, the right-hand side in (4.7) vanishes and thus ŵ= 0.
This shows that Rkw=w if w∈Xk. Continuous differentiability of k 7→∇ŵ for k>0
follows from differentiating (4.7) with respect to k as in the proof of Theorem 4.3.
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5. Conditional Characterization of Transmission Eigenvalues In the
next theorem we complete the inside-outside duality under the condition that the
derivative

α(k0) :=
d

dk
(TkPkw0,Pkw0)L2(D,C3)

∣∣∣∣
k=k0

that we computed in Theorem 4.3, does not vanish for a transmision eigenvalue k20>
0. One direction of this (conditional) characterization has already been shown in
Theorem 4.1.

Theorem 5.1 (Inside-outside duality). Assume that k0>0 and that (k0−ε,k0 +
ε)\{k0} does not contain interior transmission eigenvalues.

(a) If Q is positive definite and limk0−ε<k↗k0 ϑ∗(k) = 0 or limk0+ε>k↘k0 ϑ∗(k) =
0, then k20 is a transmission eigenvalue. Further, if Q is negative definite and
limk0+ε>k↘k0 ϑ

∗(k) =π or limk0−ε<k↗k0 ϑ
∗(k) =π, then k20 is a transmission eigen-

value, too.
(b) If k20 is either no Dirichlet eigenvalue of −∆ in D or if ∂D∈C4 the following

holds: If k20 is a transmission eigenvalue and if Q is positive definite, then limk↗k0 ϑ∗=
0 or limk↘k0 ϑ∗= 0 if α(k0)>0 or α(k0)<0, respectively. If Q is negative definite and
if k20 is a transmission eigenvalue, then limk↘k0 ϑ

∗=π or limk↗k0 ϑ
∗=π if α(k0)>0

or α(k0)<0, respectively.
Proof. (a) Assume that Q is positive definite and that limk0−ε<k↗k0 ϑ∗(k) = 0.

Due to Theorem 3.1,

max
w∈Xk

Re(Tkw,w)L2(D,C3)

Im(Tkw,w)L2(D,C3)
→∞ for k↗k0.

Thus, there is a sequence {kj}j∈N⊂ (k0−ε,k0) such that kj↗k0 and wj ∈
Xkj with ‖wj‖L2(D,C3) = 1 such that 0> Im(Tkjwj ,wj)L2(D,C3)→0 as j→∞ and
Re(Tkjwj ,wj)L2(D,C3)≤0 for j large enough. Let vj ∈H1

loc(R3) be the corresponding
weak radiating solution to

div(A∇vj)+k2vj = div(Qwj) in R3. (5.1)

Since the sequence wj is bounded in L2(D,C3) there exits a weakly convergent subse-
quence wj⇀w0 in L2(D,C3) as j→∞. In particular w0∈Xk0 and vj⇀vk0 weakly
in H1(B(0,R)) for all radii R>0, where vk0 ∈H1

loc(R3) is the corresponding weak
radiating solution to (5.1) with right-hand side div(Qw0). In the proof of Lemma 2.2
we have already shown that

Im(Tkjwj ,wj)L2(D,C3) =
k

4π2
‖v∞j ‖2L2(S2).

The left hand side converges to zero and the right hand side to k0/(4π
2)‖vk0‖∞L2(S2).

We conclude that v∞k0 = 0 and vk0 vanish in the exterior of D by Rellich’s Lemma.
Assume now that k20>0 is no transmission eigenvalue. Then it follows that w0

and vk0 vanish everywhere, such that wj and vj converge weakly to zero as j→∞.
As in the proof of Lemma 2.2 we define gj = (wj−∇vj) and find

(Tkjwj ,wj)L2(D,C3) = (Qgj ,gj)L2(D,C3) +

∫
D

[|∇vj |2−k2j |vj |2]dx−
∫
|x|=R

∂vj
∂ν

vj dS.
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Considering the real part of this equation shows that∫
D

|∇vj |2dx≤
∫
D

k2j |vj |2dx+

∫
|x|=R

∂vj
∂ν

vj dS.

Since vj converges weakly to zero in H1(B(0,R)) for arbitrary large R>0, the vj
converge strongly in L2(D) to zero. The integrals

∫
|x|=R(∂vj/∂ν)vj dS also tend

to zero as j→∞ since the far field v∞ of vk0 vanishes. Thus, the right hand side
tends to zero, that is,

∫
D
|∇vj |2dx→0 as j→∞. In consequence, vj→0 strongly in

H1(D). The closedness of the solution operator to (5.1) (see Lemma A.1) implies that
wj→0 in L2(D,C3) as j→∞, which contradicts the assumption ‖wj‖L2(D,C3) = 1.
This proves the assertion for positive definite Q. The cases limk0+ε>k↘k0 ϑ∗(k) = 0
or Q≤0 can be treated using analogous arguments. Part (b) directly follows from
Lemma 4.1.

6. Explicit Conditions for the Contrast In this section we show that if
Q is positive definite there exist transmission eigenvalues k20 with positive derivative
α(k0)>0 under certain assumptions on the contrast Q stated below. To outline
the subsequent estimates, we will first set up conditions for constant and isotropic
contrast Q= q Id and in a second step derive conditions for perturbations of such
contrasts. To simplify notation we abbreviate the L2-norm by ‖u‖ :=‖u‖L2(D) or
‖u‖ :=‖u‖L2(D,C3).

Assume for a moment that k20 is a interior transmission eigenvalue with eigenpair
(u0,w0)∈L2(D)×L2(D) for contrast Q and recall that vk0 =v0 :=u0−w0∈H1

0 solves∫
D

(A∇vk0 ·∇ψ−k20vk0ψ)dx=

∫
D

(Q∇w0 ·∇ψdx ∀ψ∈H1(D). (6.1)

The choice ψ= 1 shows that vk0 ∈ H̃1
0 (D), where

H̃1
0 (D) :=

{
ϕ∈H1

0 (D),

∫
D

ϕdx= 0

}
.

Before setting up conditions for Q we further note by the min-max principle that the
smallest eigenvalue ρ0 of the eigenvalue problem to find (ρ,ϕ)∈R×H̃1

0 (D) such that∫
D

∇ϕ ·∇ψdx=ρ

∫
D

ϕψdx ∀ψ∈ H̃1
0 (D) (6.2)

is larger than the first Dirichlet eigenvalue of −∆ in D and given by ρ0 =
infϕ∈H̃1

0 (D)‖∇ϕ‖2/‖ϕ‖2. Moreover, we denote by 1/µ0 the smallest non-trivial Neu-

mann eigenvalue of −∆ in D.
Theorem 6.1. Choose 0<k2<2ρ0 and q0>0 such that

q0>max

{
k2−ρ0
ρ0−k2/2

, 0

}
and

(q0 +2)
(
(q0−1)2−5

)
(q0 +1)2

>8ρ0µ0. (6.3)

Setting Q= q0 Id then guarantees the existence of at least one transmission eigenvalue
k20<k

2 and for all transmission eigenvalues k20<k
2 the derivative α(k20)>0 is posi-

tive.
Proof. If we assume that (u0,w0)∈L2(D)×L2(D) is a transmission eigenpair for

the eigenvalue k20>0 and contrast Q= q0 Id, Theorem 2.2 implies that ∇w0 =:w0∈
Xk0 . Thus, φw0 =Ek0(w0)∈H1(D) solves the Helmholtz equation and

4k0Re

∫
D

φw0
vk0 dx= 4k0Re

∫
D

1

k20
∇φw0

·∇vk0 dx=
4

k0
Re

∫
D

w0 ·∇vk0 dx.
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k2

Fig. 6.1. If k20 is a transmission eigenvalue for contrast Q= q0 Id and if (k0,q0) inside the
dashed area in the (k2,q0)-plane then α(k0)>0. Moreover, for each q0>γ−1(8ρ0µ0) there exists a
transmission eigenvalue k20 such that (k0,q0) lies inside the dashed area.

Assume that Q can be written as Q= q0 Id for a constant q0>0. Then A= (1+q0) · Id
and by substituting ψ=vk0 in the variational formulation (6.1) we obtain

4

k0

∫
D

w0 ·∇vk0 dx=
4(q0 +1)

q0k0
‖∇vk0‖2−

4k0
q0
‖vk0‖2.

Thus, α(k0) is given by

α(k0) =−2k0‖vk0‖2 +
4

k
Re

∫
D

w0 ·∇vk0 dx=
4(q0 +1)

q0k0
‖∇vk0‖2−2k0

(
2

q0
+1

)
‖vk0‖2.

(6.4)
Furthermore, the definition of ρ0 from (6.2) implies that ρ0‖v‖2≤‖∇v‖2 for all v∈
H̃1

0 (D), i.e.,

α(k0)≥
(

4(q0 +1)

q0k0
ρ0−2k0

(
2

q0
+1

))
‖vk0‖2>0 if 4(q0 +1)ρ0−2(q0 +2)k20>0.

The derivative α(k0) is hence positive whenever

k20<
2(q0 +1)ρ0
q0 +2

=:C(q0) or, equivalently, q0>max

{
k20−ρ0
ρ0−k20/2

, 0

}
. (6.5)

The left inequality in particular implies that for transmission eigenvalues k20<C(q0)<
2ρ0 the derivative α(k0) is positive. To show existence of transmission eigenvalues k20
satisfying the latter bound we use a result from [17]: There exists at least one trans-
mission eigenvalue less than C(q0) if (q0 +2)ρ0 +2C(q0)2µ0<C(q0)q0. (We exploited
the equation before (3.23) in [17]; note that the definitions of ρ0 and µ=µ0 are ex-
changed.) Since C(q0)>ρ0 we write this condition equivalently as

q0>
2ρ0 +2C(q0)2µ0

C(q0)−ρ0
, i.e., 8ρ0µ0<

(q0 +2)
(
(q0−1)2−5

)
(q0 +1)2

=:γ(q0). (6.6)

Remark 6.2. When the function γ from (6.6) is restricted to (1+
√

5,∞), then it is
monotonously increasing and thus invertible. The area in the (k0,q0)-plane where we
showed that α(k0) is positive is sketched in Figure 6.1.

Finally, we derive conditions for non-constant contrast by a perturbation ar-
gument. We assume Q= q0 Id+Q′, or equivalently A= (1+q0)Id+Q′, where Q′∈

18



L∞(D,R3×3) is a function taking values in the symmetric matrices such that for
c0>0 constant

z∗Q(x)z=z∗[q0 Id+Q′(x)]z≥ c0|z|2 for almost all x∈D and z∈C3. (6.7)

Theorem 6.3. Let Q= q0 Id+Q′ for a q0>0 and Q′∈L∞(D,R3×3) be symmetric
such that (6.7) holds and, additionally, ‖Q′‖[q0 +‖Q′‖]<c0(1+c0). Choose 0<k<
2ρ0 such that

k2<
2ρ0
q0 +2

[
1+c0−

‖Q′‖∞
c0

[
1+‖Q′‖∞

]]
.

If ‖Q′‖∞ is small enough (see the explicit k-independent bound (6.8)) Then there
exists at least one transmission eigenvalue less than k2 and for all such transmission
eigenvalues it holds that α(k0)>0.

Proof. Assume that (u0,w0)∈L2(D)×L2(D) is a transmission eigenpair for the
eigenvalue k20>0 and contrast Q. Choosing ψ=vk0 =u0−w0 in (4.1) and substituting
the representations for Q and A we obtain that

(1+q0)‖∇vk0‖2 +

∫
D

Q′∇vk0 ·∇vk0 dx−k20‖vk0‖2 =

∫
D

(q0w0 ·∇vk0 +Q′w0 ·∇vk0) dx.

Starting again as in (6.4), the derivative α(k0) can hence be estimated by

α(k0) =−2k0‖vk0‖2 +
4

k0
Re

∫
D

w0 ·∇vk0 dx

=−2k0‖vk0‖2 +
4

k0

[
1+q0
q0
‖∇vk0‖2−

k20
q0
‖vk0‖2 +

1

q0

∫
D

Q′(∇vk0−w0) ·∇vk0 dx

]
≥ 4

k0q0
(1+c0)‖∇vk0‖2−2k0

(
1+

2

q0

)
‖vk0‖2−

4

k0q0
‖Q′‖∞‖w0‖‖∇vk0‖.

To substitute w0 in the last expression, we exploit that (Tk0w0,w0)L2(D,C3) = 0 due
to Theorem 2.2 and estimate

c0‖w0‖2≤
∫
D

Qw0 ·w0dx= (Tk0w0,w0)−
∫
D

Q∇vk0 ·w0dx≤‖Q‖∞‖∇vk0‖‖w0‖.

Thus, ‖w0‖≤ (q0 +‖Q′‖∞)/c0‖∇vk0‖ and

α(k0)≥ 4

k0q0
[1+c0−‖Q′‖∞(q0 +‖Q′‖∞)/c0]‖∇vk0‖2−2k0

(
1+

2

q0

)
‖vk0‖2.

Recall from the last proof that ρ0‖v‖2≤‖∇v‖2 for all v∈ H̃1
0 (D), to estimate

α(k0)≥ 4

k0q0

[
1+c0−

‖Q′‖∞
c0

[
q0 +‖Q′‖∞

]
− k

2
0q0

2ρ0

(
1+

2

q0

)]
‖∇vk0‖2.

Since vk0 ∈H1
0 (D) cannot be constant, multiplication with 2ρ0/(q0 +2) yields the two

conditions

k20<
2ρ0
q0 +2

[
1+c0−

‖Q′‖∞
c0

[
q0 +‖Q′‖∞

]]
:=C(q0,Q

′)
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and

‖Q′‖∞
[
q0 +‖Q′‖∞

]
<c0(1+c0).

We proceed as in the case of constant contrast. (Recall that 1/µ2
0 is the smallest non-

trivial Neumann eigenvalues of −∆ in D.) Exploiting the bound from [17] for the exis-
tence of transmission eigenvalues as in the proof of Theorem 6.1 shows that there exists
at least one transmission eigenvalue less than C(q0,Q

′) if (c0 +2)ρ0 +2C(q0,Q
′)2µ0<

C(q0,Q
′)c0. Plugging in C(q0,Q

′) explicitly shows that the last inequality can be
rewritten as

(c0 +2)(q0 +2)

2c0
<

[
1+c0−

‖Q′‖∞
c0

[q0 +‖Q′‖∞]

]
×
[
1− 4ρ0µ0

(q0 +2)c0

[
1+c0−

‖Q′‖∞
c0

[q0 +‖Q′‖∞]

]]
.

(6.8)

For a given q0>0 this inequality holds true if the perturbation ‖Q′‖∞ is small enough.

7. On the Numerical Detection of Transmission Eigenvalues In this
section we present a method to numerically computing transmission eigenvalues from
far field data using the theoretical results from the previous sections. The setting we
choose involves a contrast function of the form Q= q0 Id for a constant q0>0. We
furthermore present numerical results both for positive and negative definite contrast
and also for three different scatterers: the unit ball, the unit cube and a non-convex
object consisting of a cylinder attached to a cube.

To numerically solve the corresponding scattering problems we rewrite the
Helmholtz equation (1.1) for the total field as

∆u+k2intu= 0 in D, ∆u+k2extu= 0 in R3 \D,

where k2ext =k2 and k2int = 1/(q0 +1)k2. Writing [·]|+ and [·]|− for the exterior and
interior trace operators, respectively, the jump conditions for u on ∂D are

u|+ =u|− and (q0 +1)
∂u

∂ν

∣∣∣−=
∂u

∂ν

∣∣∣+ on ∂D.

Recall that the total field u=ui+us decomposes into an incident plane wave ui and
the corresponding radiating scattered field us. To compute numerical approximations
of the scattered and far field we use a boundary integral equation equation due to
Kleinman and Martin, see [18, 24],[

Nkext +(1+q)Nkint K ′kext +K ′kint
Kkext +Kkint −Skext−1/(q+1)Skint

][ u|+
∂u
∂ν

∣∣∣+
]

=

[
∂ui

∂ν

∣∣∣+
−ui|+

]
(7.1)

where Sk,Kk,K
′
k and Nk are the single-layer potential, double-layer potential, ad-

joint double-layer potential and hypersingular boundary operators for wave number
k. Using the software package BEM++ (see [24]), we approximate the solution to this
system of boundary integral equations using a Galerkin method. For a fixed set of
120 uniformly distributed directions {θj}120j=1⊂S2 on the sphere we approximate the
far field u∞(θj ,θ`), 1≤ j,`≤120, to the scattered field for an incident plane wave with
direction θ` using well-known integral representation formulas for u∞. This yields
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approximate scattering data (u∞appr(θj ,θ`))
120
j,`=1 that can be interpreted as an inter-

polation discretization Fappr of the far field operator, compare [13]. Without going
into details, such interpolation discretizations converge to F if, roughly speaking, the
number of directions θj tends to infinity and the computed far fields u∞appr converge
to the exact values.

To verify that our numerical approximation of F =Fk is sufficiently accurate we
exploit that if the scatterer D is the unit ball with positive contrast q0 = 10 one can
compute the eigenvalues of the far field operator F analytically in terms of Bessel
functions, relying on a series representation of the scattered field, compare [9]. In
Figure 7.1(a) we plot the eigenvalues λj and λj,appr of the far field operator F and its
approximation Fappr for a single wave number k= 5. Since analytic expressions for
cubic scatterers are not available we plot in Figure 7.1(b) the corresponding computed
eigenvalues λj,appr for the unit cube with contrast q0 =−0.9 and wave number k= 2.0
together with the circle on which the exact eigenvalues lie.
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Fig. 7.1. (a) D=B(0,1), q0 = 10, k= 5. Red circles mark analytical eigenvalues of F and blue
crosses mark numerically computed eigenvalues of Fappr. (b) D= [−1,1]3, q0 =−0.9, k= 2.0. Red
crosses mark numerically computed eigenvalues of Fappr; the exact eigenvalues of D lie on the blue
circle.

Next we compute the eigenvalues λj,appr, j= 1,. ..,120 of Fappr(k) for a grid of wave
numbers and examine how their phases behave close to of transmission eigenvalues
k20. Due to Theorem (5.1) we expect the eigenvalue λ∗ with the largest phase ϑ∗

or the eigenvalue λ∗ with the smallest phase ϑ∗ to converge to zero from either the
left or the right side, implying that either the largest phase ϑ∗ converges to π or the
smallest phase ϑ∗ converges to zero. Due to the polar coordinate representation of the
eigenvalues small errors in the approximated eigenvalues close to zero lead to large
errors in the corresponding phases. Thus, we need to stabilize the computation of
the phases of the approximate eigenvalues λj,appr and proceed as in [19]. Assuming
that the noise level of Fappr(k) is ε(k) =‖Fappr(k)−F (k)‖ we omit all eigenvalues in
the circle {|z|≤ε(k)} around zero. To further stabilize the phase computations, we
afterwards exploit the a-priori knowledge that the exact eigenvalues λj(k) lie on the
circle {z∈C, |z−8π2i/k|= 8π2/k} in the complex plane and project the eigenvalues
λj,appr(k) orthogonally onto this circle, using the mapping

Q : λ 7→ 8π2i

k
+

8π2

k

λ−8π2i/k

|λ−8π2i/k|
. (7.2)
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Then we finally compute the phases of the projected eigenvalues Q[λj,appr(k)]. Figure
7.2 shows the dependence of these numerically computed phases on the wave number
k, both for a the unit ball with positive contrast and the unit cube with negative
contrast as scattering objects. To indicate the stability of these phase curves under
random noise we have perturbed the numerically computed data (u∞appr(θj ,θ`))

120
j,`=1 by

adding a random matrix of size 120×120 containing normally distributed entries with
mean zero such that the relative noise level in the spectral matrix norm equals 5%
before computing Q[λj,appr(k)]. Due to this artificial noise and unavoidable numerical
inaccuracies, the phase of eigenvalues with a multiplicity m>1 appears as a vertical
cluster of m dots above the corresponding wave number k in Figure 7.2(a) and (b).
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Fig. 7.2. Dots mark the phases of the projected numerical eigenvalues Q[λj,appr] of Fappr(k).
(a) D=B(0,1), q0 = 10. (b) D= [−1,1]3, q0 =−0.9.

Finally, to obtain numerical approximations to interior transmission eigenval-
ues we suggest the following method: In a first step we neglect all those phases
steeming from far field operator approximations Fappr(k) with normality error
‖Fappr(k)F ∗appr(k)−F ∗appr(k)Fappr(k)‖/‖Fappr(k)F ∗appr(k)‖ above a threshold that we
consider as too high to provide accurate phase information errors. From the remaining
phases we compute those wave numbers where the discrete derivative of the smallest
or largest phase changes sign, i.e., wave numbers where the extremal phase jumps.
Depending on whether the extremal phase approaches the eigenvalues from the left
or the right we use the last two smallest or largest phases before the jump to lin-
early extrapolate the wave numbers where the phase curve intersects the lines {ϑ= 0}
or {ϑ=π}. The squares of these wave numbers are approximations of transmission
eigenvalues. Table 7.1 indicates the round-about two-digit accuracy of these eigen-
value approximation scheme when the scatterer is a ball; the computed eigenvalues
are marked in Figure 7.2 as red dots on {ϑ= 0} in (a) and {ϑ=π} in (b).

k0,1 k0,2 k0,3 k0,4
D=B(0,1), q0 = 10 computed ITE 5.199 5.888 6.106 7.245

exact ITE 5.204 5.886 6.104 7.244
D= [−1,1]3, q0 =−0.9 computed ITE 2.863 3.029 3.164 3.397

Table 7.1. Numerical approximations to the square roots k0,j , j= 1, .. .,4, of four interior
transmission eigenvalues k20,j for the two settings introduced above.
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To show that the numerical scheme also works for non-convex scattering objects,
we repeat this procedure for a scatterer consisting of a cylinder placed on a cube with
contrast q0 = 10. Figure 7.3(a) shows the geometry of this object, called boxnose in
the sequel. Precisely the same computational technique as indicated above yield the
phase curves shown in Figure 7.3(b). Finally, the above extrapolation algorithm leads
to the approximations k0,1 = 8.54, k0,2 = 8.823, and k0,3 = 9.259 for three transmission
eigenvalues k20,j , j= 1,2,3.
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Fig. 7.3. (a) The boxnose. (b) Dots mark the phases of the projected numerical eigenvalues
Q[λj,appr(k)] of Fappr(k). Red crosses on the k-axis mark the positions of the estimated square roots
of three interior transmission eigenvalues.

Appendix A. A Technical Lemma.
Lemma A.1. For k>0 or k= i the composition of the solution operator L :
L2(D,C3)→H1

loc(R3) to the variational problem (2.7) with the restriction operator
from R3 to D is closed from L2(D,C3) into H1(D).

Proof. We will merely provide the proof for k= i and leave it to the reader to adapt
the proof to positive wave numbers. Choose a sequence vj :=Lfj in the range of L with
limj→∞vj =v in H1(D). We have to show that there exists a function f ∈L2(D,C3)
such that Lf =v and abbreviate the variational problem (2.7) as a(vj ,ψ) =Fj(ψ) for
all ψ∈H1(R3) with the continuous linear functional

Fj(ψ) :=

∫
D

∇ψ ·Qfj dx, ψ∈H1(R3),

as right-hand side. The sequence vj converges in H1(R3) and defines F ∈H1(R3)∗

by F (ψ) :=a(v,ψ) for ψ∈H1(R3). Continuity of a implies that ‖Fj−F‖H1(R3)∗→0
as j→∞. Thus, it suffices to show that there is f ∈L2(D,C3) such that F (ψ) =∫
D
∇ψ ·Qf dx. To this end, we consider the Hilbert space

H1
• (D) =

{
u∈H1(D),

∫
D

udx= 0

}
with inner product (φ, ψ) 7→

∫
D

φψdx.

Due to Poincaré’s inequality, the resulting norm is equivalent to the standard norm in
H1(D). Next, we set ψ•=ψ−

∫
D
ψdx∈H1

• (D) for any ψ∈H1(R3). Defining another
functional F•,j ∈H1

• (D)∗,

F•,j(ψ•) =

∫
D

∇ψ• ·Qfj dx ∀ψ•∈H1
• (D),
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it follows that Fj(ψ) =Fj,•(ψ•) for all ψ∈H1(R3). Convergence of {Fj}j∈N implies
the existence of F•∈H1

• (D)∗ such that F•(ψ•) =F (ψ) for all ψ∈H1(R3). Recall
that (ψ•, φ•)H1

•(D) =
∫
D
∇ψ• ·∇φ•dx, is an inner product in H1

• (D) and use Riesz’s
representation theorem to obtain the existence of v•∈H1

• (D) such that

F•(ψ•) =

∫
D

∇v• ·∇ψdx ∀ψ•∈H1
• (D).

Setting f :=Q−1∇v•∈L2(D,C3) finally yields

F (ψ) =F•(ψ•) =

∫
D

∇v• ·∇ψ•dx=

∫
D

∇ψ• ·Qf dx=

∫
D

∇ψ ·Qf dx ∀ψ∈H1(R3).
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[22] J.-C. Nédélec. Acoustic and Electromagnetic Equations. Springer, New York, 2001.
[23] M. Piana. On the uniqueness for anisotropic inhomogeneous inverse scattering problems. In-

verse Problems, 14:1565–1579, 1998.
[24] W. Smigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. Solving boundary integral

problems with BEM++. Submitted to ACM Trans. Math. Softw, 2013.

25


