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In this paper we consider the stability of networks consist-
ing of nonlinear ISS systems supplied with ISS Lyapunov
functions defined in dissipative form. The problem of con-
structing an ISS Lyapunov function for the network is
addressed. Our aim is to provide a geometrical condition
of a small gain type under which this construction is possi-
ble and to describe a method of an explicit construction of
such an ISS Lyapunov function. In the dissipative form, the
geometrical approach allows us to discuss both Lipschitz
continuous construction and continuously differentiable
construction of ISS Lyapunov functions.
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1. Introduction

Interconnections of nonlinear systems appear in many
applications such as logistic problems, biologic systems,
power networks and others. Stability analysis of these
systems is an important issue for their performance and
control. Such interconnections can be studied in different
frameworks such as passivity, dissipativity [24, 8, 17, 20],
input-to-state stability (ISS) [21] and others. Since we
consider systems with inputs we will use the notion of
ISS for our purposes. There are several equivalent ways
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to define this property. Originally in [21] it was defined in
terms of a bound for the trajectories of a system, where
the bound depends on the initial condition and the input
function. This property can be equivalently stated in terms
of an ISS-Lyapunov function. The latter formulation can
again be defined in two essentially equivalent ways: in
the so-called implication form and with the help of a dis-
sipation inequality and a supply rate, see [22] for details
and discussions of the different ISS formulations. In this
paper we concentrate on the dissipative ISS formulation.
Our aim is to derive a small gain result for general inter-
connected systems in this framework. This complements
recent results in [5, 7], where small gain results have been
achieved in the trajectory formulation as well as for the
implication form of the ISS Lyapunov formulation.

The ISS property of the interconnections of two ISS
systems was considered in the pioneering papers [14]
and [13]. In [14] the ISS estimates for the trajectories
of subsystems were used to prove the ISS property for the
interconnection provided a small gain condition is sat-
isfied. A Lyapunov version of this result was given in
[13] where the Lyapunov functions were defined in the
so called implication form. These results were recently
extended to the case of interconnections of n systems,
see [5, 7, 15, 6, 16]. A small gain theorem for two systems
with ISS-Lyapunov functions satisfying the dissipation
inequality was obtained in [9]. It is worth noting that this
definition has the advantage that it unifies the definition
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of ISS and integral ISS (iISS) systems. The latter set of
systems is larger and contains the ISS systems as a subset.
The small gain theorem for two iISS systems was proved
in [10, 12]. Moreover the construction of the correspond-
ing Lyapunov function is given in a smooth way in contrast
to the constructions given in [13] and [7, 6]. An alterna-
tive way to treat iISS systems using cooperative monotone
systems is pursued in [19].

In this paper, we consider a network consisting of n ISS
systems with given ISS-Lyapunov functions defined by
dissipation inequalities. It is of interest

A. to obtain a small gain theorem and construct an ISS-
Lyapunov function satisfying a dissipation inequality
of the interconnected system.

It is practically appealing if the ISS-Lyapunov function is
smooth, i.e., continuously differentiable. This paper will
make an essential step in this direction. Namely,

1. for general ISS systems, we derive a small gain
condition and construct a Lipschitz continuous ISS-
Lyapunov function;

2. for a special class of dissipation inequalities, we
derive a small gain condition and construct a smooth
ISS-Lyapunov function;

3. for general ISS systems, we derive a geometrical condi-
tion under which a smooth ISS-Lyapunov function can
be constructed.

The paper is organized as follows. The ensuing section
introduces necessary notations and gives a statement of the
problem. Section 3 explains the main idea of our approach
by using the simpler case of linear supply rate functions.
In this linear case, the result follows from an application
of the Perron-Frobenius theorem. The main results are
presented in Section 4 for the nonlinear case. Two types of
geometrical conditions are proposed to construct smooth
ISS-Lyapunov functions as well as non-smooth ones. They
are related to small gain conditions and previous results
developed for the implication form. We draw conclusions
and outline directions of future work in Section 5.

2. Interconnection in Dissipative Form

We use the following notation. (· )T denotes the transpo-
sition of a vector. For any vectors a, b ∈ R

n the relation
a ≥ b is defined by ai ≥ bi for all i = 1, . . . , n. The
relations >, ≤, < for vectors are defined in the same man-
ner. That is, we are using the partial order on R

n induced
by the positive orthant R

n+. The negation of a ≥ b is
denoted by a �≥ b and this means that there exists an
i ∈ {1, . . . , n} such that ai < bi. By a · b we denote the
scalar product of two vectors and by A ◦ B we denote
the composition of operators A and B. To use standard

formulations of input-to-state stability, we recall, that a
function α: [0, ∞) → [0, ∞) is said to be of class K, if α

is continuous, α(0) = 0 and α is strictly increasing, if in
addition it is unbounded, we say it is of class K∞. A con-
tinuous function α : [0, ∞) → [0, ∞) is called positive
definite if α(x) = 0 if and only if x = 0.

Consider a finite set of interconnected systems with state
x = (

xT
1 , . . . , xT

n

)T
, where xi ∈ R

Ni , i = 1, . . . , n and
N := ∑

Ni. For i = 1, . . . , n the dynamics of the i-th
subsystem is given by

�i : ẋi = fi(x1, . . . , xn, u), (1)

where x ∈ R
N , u ∈ R

M , fi : R
N+M → R

Ni . For each
i we assume unique existence of solutions and forward
completeness of �i in the following sense. If we interpret
the variables xj, j �= i, and u as unrestricted inputs, then
system (1) is assumed to have a unique solution defined
on [0, ∞) for any given initial condition xi(0) ∈ R

Ni

and any L∞-inputs xj : [0, ∞) → R
Nj , j �= i, and

u : [0, ∞) → R
M . This can be guaranteed for instance by

suitable Lipschitz conditions on the fi. It will be no restric-
tion to assume that all systems have the same (augmented)
external input u. This interconnection can be depicted as a
network or a graph, see fig. 1. We write the interconnection
of the subsystems (1) as

� : ẋ = f (x, u), (2)

where f = (f T
1 , . . . , f T

n )T : R
N+M → R

N . We assume
that each of the subsystems in (1) satisfies an ISS condition
in the dissipative formulation, i.e., there are Lyapunov
functions Vi : R

Ni → R+ and functions αi, γiu ∈ K∞ and
γij ∈ K∞ ∪ {0}, i, j = 1, . . . , n such that

V̇i(xi) ≤ −αi(Vi(xi)) +
∑
i �=j

γij(V (xj)) + γiu(‖u‖) (3)

for all xi ∈ R
Ni , i = 1, . . . , n and all u ∈ R

M . The right
hand side in (3) consisting of the functions αi, γiu and γij

is called the supply rate of the dissipation inequality. In
the sequel we will always assume that γii ≡ 0. We will
also assume that the Lyapunov functions Vi as well as the
functions αi are continuously differentiable, which poses
no real restriction.

As in one of our constructions we end up with a locally
Lipschitz continuous Lyapunov function for the whole
system (2), we note that in case that the Vi are only locally
Lipschitz continuous, then it is sufficient to let (3) hold
almost everywhere to characterize input-to-state stability.

Note that if in (3) we only require that αi is an ele-
ment of the larger set of positive definite functions, then
the i-th system is integral input-to-state stable (iISS) [23].
The set of iISS systems is essentially larger than the set
of ISS systems. In particular, in the iISS framework,
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results of a small gain type and a corresponding Lyapunov
construction were developed for n = 2 in [10, 12].

The aim of this paper is to find conditions on the data
of the dissipation inequalities (3) that guarantee ISS of the
interconnected system (2) and to provide a construction of
an ISS-Lyapunov function for the interconnection under
these conditions. We will also discuss how an iISS result
can be obtained in this way for a special class of systems.

3. The Linear Case

We begin by studying the linear case, because here the con-
ditions are much easier to analyze and it gives an idea how
the general procedure should work, even though for prac-
tical applications the linearity assumption is very often
much too restrictive.

We assume that the ISS-Lyapunov formulation is given
in a linear form. Here linear means, that the functions
αi, γiu ∈ K∞ and γij ∈ K∞ ∪ {0} i, j = 1, . . . , n are
linear. Thus let ai > 0, cij ∈ [0, ∞) be positive resp.
nonnegative numbers which represent the corresponding
linear functions. Define the matrices

A := diag (a1, . . . , an) , 	 := (
cij

)
i,j=1,...,n (4)

and the vectors

V̇vec(x) := (
V̇1(x1) . . . V̇n(xn)

)T
, (5)

Vvec(x) := (
V1(x1) . . . Vn(xn)

)T .

Then the inequalities (3) can be compactly written as

V̇vec(x) ≤ (−A + 	)Vvec(x) + γu(‖u‖)
with the obvious definition of γu. In the previous equation
≤ is to be interpreted componentwise as defined in the

preliminaries. We note that (−A + 	) is a Metzler matrix,
thus a matrix for which Perron-Frobenius type results are
available. An overall Lyapunov function can be defined
using the following lemma.

Lemma 3.1: Consider the matrices A and 	 defined in
(4). There exists a vector µ ∈ R

n+, µ > 0 such that

µT (−A + 	) < 0 (6)

if and only if the following spectral radius condition holds

r(A−1	) < 1. (7)

Proof 3.2: Note that A = AT as it is of diagonal form
and A is invertible, because in (3) the functions αi ∈ K∞,
i = 1, . . . , n. Define η := Aµ, so that µT = ηT A−1. Then
µT (−A + 	) < 0 is equivalent to

0 > ηT A−1(−A + 	) = ηT (−I + A−1	) .

If r(A−1	) < 1, then by the Perron-Frobenius theorem
there exists a vector η > 0 such that

ηT (A−1	) < ηT

or equivalently ηT (−I + A−1	) < 0, as desired. Con-
versely, if r(A−1	) ≥ 1 then there exists a vector z ≥ 0,
z �= 0 such that

(A−1	 − I)z ≥ 0 .

We now fix such a vector z. So for any η > 0 we have

ηT (A−1	 − I)z ≥ 0

so that it cannot hold that ηT (−I + A−1	) < 0.

Fig. 1. An interconnection �.
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We now assume that r(A−1	) < 1 and choose a vec-
tor µ ∈ R

n+, µ > 0 such that (6) holds. Consider the
following candidate for an ISS-Lyapunov function

V (x) := µT Vvec(x) =
n∑

i=1

µiVi(xi). (8)

Then we have

V̇ (x) = µT V̇vec(x) ≤ µT (−A + 	)Vvec(x) + µT γu(‖u‖)
and defining 0 > L := µT (−A + 	) we obtain

V̇ (x) ≤ LVvec(x)+µT γu(‖u‖) ≤ −lV (x)+µT γu(‖u‖)
(9)

for a positive number defined by l := − max
i

Li
µi

. Note

that if 	 is irreducible, then µ > 0 may be chosen as a
left eigenvector of (−A + 	) corresponding to the largest
eigenvalue, which is real and negative by the Perron
Frobenius theorem. In this case l is this largest eigen-
value. The last equation (9) is a dissipation inequality
for the whole interconnection (2), and in (8) we have
obtained a smooth ISS-Lyapunov function V (x). We have
thus proved the following.

Proposition 3.3: Consider the interconnected system (1),
where each of the subsystems satisfies an ISS condition of
the form (3) with linear αi, γij . If for the matrices A, 	
defined in (4) we have (7), then the interconnected system
(2) is ISS with a ISS Lyapunov function given by (8).

Since A−1	 is the gain matrix of the n ISS systems, the
spectral radius condition (7) agrees with the linear case
of the small gain condition developed in [5, 4, 7]. In the
next section we will see how this idea can be used in the
general nonlinear case.

The development in this section conforms to the clas-
sical result [1] for a special case concerned with global
asymptotic stability.

4. Main Results

Unfortunately, there is no immediate extension of the con-
struction in the previous section to the general nonlinear
case. For example the matrices A and 	 contain nonlinear
functions instead of numbers and the notions of eigenvalue
and spectral radius are no longer available. The construc-
tion problem of an ISS-Lyapunov function becomes more
difficult. This section first shows a sufficient condition
under which the extension to the general nonlinear case is
possible. The resulting ISS-Lyapunov function is, thereby,

smooth. Next, since the computation of the sufficient con-
dition is generally hard, we show an explicit construction
for an ISS-Lyapunov function in a special case. For the
general nonlinear case, we will provide a non-smooth
construction.

4.1. Smooth Construction

The aim of this subsection is to construct smooth Lyapunov
functions, which can be important in implementation. We
consider the interconnected system (2) and assume that the
subsystems (1) are ISS with the ISS-Lyapunov functions
Vi satisfying (3) where the supply rate functions can be
nonlinear.

First let us note that the condition (7) can be equivalently
formulated as r(	A−1) < 1 or written as

	A−1s �≥ s, ∀s ∈ R
n+ \ {0}. (10)

The last condition makes sense also for nonlinear operators
defined below. The data we are working with is defined in
(3). We assume from now on that the matrix

	 := (
γij

)
i,j=1,..,n ∈ (K∞ ∪ {0})n×n

is irreducible and similarly to the linear case we define the
following map 	 : R

n+ → R
n+ by

	(s) =
( n∑

j=1

γ1j(sj), . . . ,
n∑

j=1

γnj(sj)
)T

, s ∈ R
n+

(11)

and a diagonal operator A : R
n+ → R

n+ by

A(s) := (
α1(s1) . . . αn(sn)

)T ∈ R
n+ . (12)

With this notation, the inequalities (3) can be written in a
vector form

V̇vec ≤ (−A + 	)(Vvec(x)) + γu(||u||) (13)

with γu defined in the obvious way.
We now reformulate the small gain conditions that were

introduced in [5, 7, 18] to make them suitable for the dis-
sipative formulation. The nonrobust version of the small
gain condition is given by

	 ◦ A−1(s) �≥ s , ∀s ∈ R
n+ \ {0} . (14)

which is seemingly a nonlinear generalization of (10).
However, it has been shown in [5, 12] that this condition
is not quite sufficient to obtain desired robustness with
respect to the external input. Thus, the condition we now
want to impose is the robust small gain condition which
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requires that for some D = diag (id + β1, . . . , id + βn),
βi ∈ K∞ we have

D ◦ 	 ◦ A−1(s) �≥ s , ∀s ∈ R
n+ \ {0} . (15)

To compare this with the linear case, note that in the linear
case both (14) and (15) are equivalent to r(	A−1) < 1
which is in turn equivalent to the condition r(A−1	) < 1.
In this sense, the property (15) is a natural generalization
of the linear small gain condition (10).

One of the central results of [7, 18], [6] for the impli-
cation form of ISS systems is that, in the case that 	 is
irreducible and (15) holds, there exists a continuously dif-
ferentiable path σ : R+ → R

n+ such that σ(0) = 0, σ

is strictly increasing and unbounded in every component
and so that

D ◦ 	 ◦ A−1(σ (τ )) < σ(τ) , ∀ τ > 0. (16)

The next subsection will show that the existence of such
a path can also play a central role in the construction
for a non-smooth ISS-Lyapunov function even in the
dissipative formulation.

Since this subsection pursues a smooth ISS-Lyapunov
function by extending the idea presented in the previous
section, we consider the assumption that there are bounded
positive definite functions ηi, i = 1, . . . , n, such that∫ ∞

0 ηi(αi(τ ))dτ = ∞ and so that for η = (η1, . . . , ηn)
T

we have

η(s)T 	 ◦ A−1(s) < η(s)T s, ∀s ∈ R
n+ \ {0}. (17)

Again a robust version of this condition is that there exists
a diagonal D as before such that

η(s)T D ◦ 	 ◦ A−1(s) < η(s)T s, ∀s ∈ R
n+ \ {0} .

(18)

The following result shows that both these geometrical
conditions lead to the construction of interesting smooth
Lyapunov functions.

Theorem 4.1: Consider the interconnected systems (1)
and assume that each subsystem has a dissipative ISS-
Lyapunov function as in (3). Then

(i) If the weak small gain condition (17) is satisfied and
if for each i ∈ {1, . . . , n} and λi(τ ) := ηi(αi(τ )), τ ∈
R+ we have∫ ∞

0
λi(τ ) dτ = ∞ , (19)

then the interconnection (2) is iISS with an iISS-
Lyapunov function defined by

V (x) :=
n∑

i=1

∫ Vi(xi)

0
λi(τ )dτ . (20)

(ii) If the robust small gain condition (18) is satisfied and

lim inf
τ→∞ λi(τ ) > 0 (21)

holds, then the interconnection (2) is ISS with a
Lyapunov function V (x) again defined by (20).

Proof 4.2: First note that (19) guarantees that the function
V defined in (20) is a proper function.

(i) Consider the derivative of V along the trajec-
tories of the system (2). Defining λ(Vvec) :=
(λ1(V1), . . . , λn(Vn))

T and using (13) we obtain

dV

dt
= λ(Vvec)

T V̇vec

< λ(Vvec)
T (−A(Vvec) + 	(Vvec) + γu(||u||))

(22)

From assumption (17) we have for all x �= 0

η(A(Vvec))
T 	◦ A−1◦ A(Vvec) < η(A(Vvec))

T A(Vvec)

and thus

−λ(Vvec)
T A(Vvec) + λ(Vvec)

T 	(Vvec) < 0. (23)

Using the properness of V defined in (20), this term
can be bounded from above by −α(V ) for some positive
definite function α. Further recall that the functions ηi are
assumed to be bounded. Hence λi, i = 1, . . . , n is also
bounded and there exists some function γ ∈ K∞ such
that λT (Vvec) · γu(||u||) ≤ γ (||u||) . From (22) it follows
that

dV (x)

dt
≤ −α(V (x)) + γ (||u||) (24)

and the iISS property of the interconnection follows.

(ii) Note that (21) implies (19). In case the stronger
assumption (18) holds, instead of (23) we obtain

−λ(Vvec)
T A(Vvec) + λ(Vvec)

T 	(Vvec)

< −λ(Vvec)
T (D − id ) ◦ 	(Vvec)

for all x �= 0. Let 	∗k �= 0 denote the k-th column of
	. When 	∗k �= 0 holds for all k = 1, 2, ..., n, using
the definition of D in the above inequality verifies that
an upper bound of the form −α(V ) can be obtained for
some α ∈ K∞ to be used in (24). To address the case
where 	∗k = 0 holds for an integer k ∈ {1, 2, ..., n},
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define sk̄ : R
n−1+ and ηk̄ : R

n−1+ → R
n−1+ by removing

the k-th components from s andη, respectively. Define
Vvec,k̄ and λk̄ in the same manner. The operators which
remove the k-th columns and the k-th rows from D, 	
and A are denoted by Dk̄k̄ , 	k̄ k̄ and Ak̄k̄ , respectively.
Evaluating both sides of (18) for sk = 0 carefully, we
can verify that, if 	∗k = 0 holds, the assumption (18)
implies

η(s)T D ◦ 	 ◦ A−1(s)

= ηk̄(sk̄)
T Dk̄k̄ ◦ 	k̄ k̄ ◦ A−1

k̄ k̄
(sk̄) < ηk̄(sk̄)

T sk̄ ,

∀s ∈ R
n+ \ {s : sk̄ �= 0} .

Hence, we obtain

− λ(Vvec)
T A(Vvec) + λ(Vvec)

T 	(Vvec)

< −λk(Vk)αk(Vk) − λk̄(Vvec,k̄)
T (Dk̄ − id )

◦ 	k̄ k̄(Vvec,k̄)

in the case of 	∗k = 0. Thus, when 	∗j �= 0 holds
for all j �= k, the inequality (24) with some α ∈ K∞
follows from (22), (21) and the boundedness of ηi.
The above technique also applies to the cases where
	∗k = 0 holds for multiple k’s. Therefore in case
of (18) and (21) the overall system is ISS. (If one
wants to try a simpler argument, it would be worth
replacing 	∗k = 0 by sufficiently small 	∗k �= 0
maintaining (18).)

The function V in (20) is smooth, i.e., continuously dif-
ferentiable, which is a desirable property, in general. Note
that the irreducibility of 	 was not used in the proof, i.e.,
Theorem 4.1 holds for arbitrary type of interconnection.

Remark 4.3: Theorem 4.1 reduces the problem of a con-
struction of a Lyapunov function to a geometrical problem
of the construction of a continuous curve in R

n+ param-
eterized by ηi and satisfying (17) or respectively (18).
However, the existence and construction of such auxiliary
functions ηi may be a nontrivial problem. We hope that the
small gain condition (15) implies the existence. An explicit
construction of η is a matter of our future research. For
ISS systems supplied with the implication type character-
ization, the results in [4] and [7] show that the small gain
condition (15) implies the existence of the pathσ described
in (16) by using the Knaster-Kuratowski-Mazurkiewicz
theorem. We suspect that using complementary arguments
(18) can be shown. It is worth noting that, in the linear
case, r(A−1	) < 1 is equivalent to (16) as well as to (18).
The latter equivalence has been shown in Lemma 3.1. The
former equivalence is obtained by studying right eigenvec-
tors, while the latter uses left eigenvectors. Although the
generalization of those eigenvectors is nontrivial, it may

be natural to conjecture that (15) does not only imply (16)
but also (18) even for the nonlinear case. Subsection 4.3
will show that this conjecture holds true in a special case.

Remark 4.4: In the case of n = 2, the problems (17) and
(18) are solved and the construction of the auxiliary func-
tions ηi(s) = λi(α

−1
i (s)) is shown explicitly in [12, 10],

where the small gain condition (15) implies the existence
when n = 2.

4.2. Non-smooth Construction

In the following, we provide a non-smooth construc-
tion of an ISS-Lyapunov function for the interconnection
(2) where a corresponding auxiliary function σ can be
explicitly constructed.

Theorem 4.5: Let the systems given in (1) be ISS in the
sense of (3) and assume that their supply rate functions
are such that the operators A and 	 defined above satisfy
the robust small gain condition (15). Assume further that
for σ1, . . . , σn given in (16) there are constants 0 < c < C
such that

0 < c <
d

dτ
σ−1

i ◦ αi(τ ) < C , for all τ > 0 .

Then the interconnection (2) is ISS. An ISS-Lyapunov
function is given by

V (x) := max
i=1,...,n

σ−1
i ◦ αi(Vi(xi)) . (25)

Proof 4.6: Let us assume for the moment that for a given
x �= 0 we have that the maximum in (25) is uniquely
attained in the first component i = 1, i.e., V (x) = σ−1

1 ◦
α1(V1(x1)). Denote by 	1 the first row of 	. We obtain

V̇ (x) = d

dt
σ−1

1 ◦ α1(V1(x1))

=
(
σ−1

1 ◦ α1

)′
(V1(x1))V̇1(x1)

and

V̇1(x1) ≤ [−α1(V1(x1)) +	1(Vvec(x)) + γ1u(‖u‖)]

We now denote zi = αi(Vi(xi)), z := (z1, . . . , zn)
T and

obtain the following representation

− α1(V1(x1)) + 	1(Vvec(x)) = −z1 + 	1 ◦ A−1(z)

= −σ1 ◦ σ−1
1 (z1) + 	1 ◦ A−1(σ1 ◦ σ−1

1 (z1), . . . ,

σn ◦ σ−1
n (zn)) .
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By the assumption of this first part of the proof we have
σ−1

1 (z1) > σ−1
j (zj) for j = 2, . . . , n, and so we obtain

−z1+	1◦ A−1(z) ≤ −σ1◦ σ−1
1 (z1)+	1◦ A−1◦ σ(σ−1

1 (z1))

(26)

Now for τ := σ−1
1 (z1) we have by (16)

D ◦ 	 ◦ A−1 ◦ σ(τ) ≤ σ(τ)

hence

	 ◦ A−1 ◦ σ(τ) ≤ D−1 ◦ σ(τ)

and so (recall that βi is defined before (15)) we have from
(26) for the first component that

− σ1(τ ) + 	1 ◦ A−1 ◦ σ(τ)

< ((id + β1)
−1 − id ) ◦ σ1(τ )

= −β1 ◦ (id + β1)
−1 ◦ α1(V1(x1)) < 0 .

(27)

Hence under the assumption that V (x) = σ−1
1 ◦ α1(V1(x1))

is uniquely given we obtain

V̇ (x) ≤ −cβ1◦(id +β1)
−1◦ σ1(V (x))+Cγ1u(‖u‖) .

The argument can be repeated for the indices i = 2, . . . , n
in the same manner and so setting

α̃(s) := min
i=1,...,n

cβi ◦ (id + βi)
−1 ◦ σi(s)

and

γ (s) := max
i=1,...,n

Cγiu(s)

we obtain that

V̇ (x) ≤ −α̃(V (x)) + γ (‖u‖)
for all points x ∈ R

N where the maximizing argument in
(25) is uniquely defined. As the set of such points is an open
and dense subset of R

N and as the function V is locally
Lipschitz continuous, we can prove that V is a Lipschitz
ISS Lyapunov function for the interconnection [3],[2], [7].
This assertion can be confirmed easily as follows: Since
V is obtained by the maximization of C1 functions Vi,
i = 1, 2, ..., n, the Clarke subgradient of V in x ∈ R

n can
be computed by the set

∂ClV (x) = conv { �
(
σ−1

i ◦ αi ◦ Vi

)
(xi) |

σ−1
i ◦ αi(Vi(xi)) = V (x)

}
,

where conv M denotes the convex hull of the set M . As
we have the dissipation inequality presented above as
V̇ ≤ −α̃(V (x)) + γ (‖u‖) for each of the extremal points
of ∂ClV (x), the dissipation inequality holds in terms of
the Clarke generalized derivative for each ζ in the Clarke
subgradient.

Interestingly, Theorem 4.5 demonstrates that the dis-
sipative formulation results in the same small gain con-
dition (15) as the implication formulation if we use the
non-smooth Lyapunov function of the form (25).

For ISS systems given in terms of dissipation inequali-
ties, we have obtained two different ways of constructing
ISS Lyapunov functions in this paper. One is smooth,
while the other is non-smooth. To compare the two con-
structions, we briefly return to the linear case as detailed
in Section 3. Recall that for the matrices in (4), the
required condition is r(A−1	) < 1. The construction
explained in Section 3 uses a left vector µ ∈ R

n+ such
that µT (−A + 	) < 0 and sets V (x) := µT Vvec(x). In
the construction of Theorem 4.5 we choose a right vec-
tor s ∈ R

n+ such that 	A−1s < s. For µ := A−1s this
is equivalent to (−A + 	)µ < 0. We then let V (x) :=
maxi=1,...,n µ−1

i Vi(xi) and by Theorem 4.5 this is an ISS
Lyapunov function. In the context of convex analysis max-
imization and summation are dual operations. In this sense
the two constructions are dual to one another.

4.3. Linearly Scaled Gains

In this subsection we specialize the smooth result obtained
in Subsection 4.1 to the case where the supply rates are
given by linearly scaling gain functions associated with
each of the subsystems.

To be precise, we assume that there exist positive def-
inite functions gi and constants ai, cij ∈ R+, ai > 0,
i, j = 1, . . . , n such that the gain functions in (3) are given
by

γij(s) = cijgj(s), ∀j, αi(s) = aigi(s), ∀i . (28)

We now let Ã = diag (a1, . . . , an) and C̃ = (
cij

)
i,j=1,...,n

and we denote for s ∈ R
n+

g(s) := (
g1(s1), . . . , gn(sn)

)T .

Note that with respect to our previous notation we have

A(s) = Ãg(s) , 	(s) = C̃g(s) . (29)

Note also that from (3) we obtain ISS of the subsystems if
we have gi ∈ K∞, i = 1, . . . , n. On the other hand if the
gi’s are only positive definite, then we merely have iISS
for the subsystems
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Theorem 4.7: Consider the interconnected systems (1)
and assume that each subsystem has a function Vi(xi)

as in (3) where the gain functions satisfy (28). Assume
r(Ã−1C̃) < 1 and let µ > 0 be a vector such that
µT (−Ã + C̃) < 0.

(i) If the functions gi, i = 1, . . . , n are positive definite,
then the interconnected system is iISS with an iISS
Lyapunov function given by

V (x) := µT Vvec(x) . (30)

(ii) If the functions gi ∈ K∞, i = 1, . . . , n, then the inter-
connected system is ISS with an ISS Lyapunov function
given by (30).

Proof 4.8: First note, that the choice of µ in the formu-
lation of the theorem is possible by Lemma 3.1. We have
for V (x) := µT Vvec(x) that

V̇ (x) = µT V̇vec(x) ≤ µT (−Ã+C̃)g(Vvec(x))+µT γu(‖u‖)
and defining 0 > L := µT (−Ã + C̃) we obtain

V̇ (x) ≤ Lg(Vvec(x)) + µT γu(‖u‖)
≤ −l(V (x)) + µT γu(‖u‖) ,

where we define

l(s) := min{−Lg(Vvec(x)) | µT Vvec(x) = s} .

It is clear that l is positive definite if the gi’s are and that
l ∈ K∞ if the gi are. This proves the assertion.

From (29), we can verify that r(Ã−1C̃) < 1 is equiva-
lent to (15) when gi ∈ K∞, i.e., all subsystems are ISS.
Therefore, the conjecture stated in Remark 4.3 is verified
in this special class of nonlinear interconnected systems.

It is worth mentioning that the spectral radius condition
r(Ã−1C̃) < 1 implicitly requires some subsystems in the
overall system to be ISS in the case (i) of the above the-
orem. For instance, in the two subsystems case, a1 < c12
implies a2 > c21 which indicates that at least one subsys-
tem needs to be ISS although the subsystem is defined by
a dissipation inequality only with positive definite func-
tions of the iISS type. This fact is consistent with the
result in [11].

5. Concluding Remarks

In this paper we have pursued the construction of Lya-
punov functions for nonlinear ISS systems interconnected
in a general way, and introduced a geometrical approach
based on the existence of some auxiliary functions. We

assume that each system is given by a dissipation inequal-
ity of the ISS type, which contrasts with previous results
on general interconnected systems supplied with the
implication-type ISS characterization. With the help of
the dissipative characterization, this paper has proposed
two formulations whose solutions, i.e., auxiliary func-
tions, explicitly provide us with smooth and non-smooth
Lyapunov functions, respectively, of the interconnected
system. For the non-smooth construction, the auxiliary
function can be found explicitly. The existence condition
has been related to a generalized small gain condition. For
the smooth construction, we have shown how the auxiliary
function can be found explicitly in a special case of supply
rate functions. Although computing the auxiliary function
for general supply rates is a matter of future investigations,
the special case indicates that the smooth formulation has
potential for dealing with iISS systems. We have also dis-
cussed an existence condition for the auxiliary function in
the smooth construction. As in Remark 4.3, its small gain
type interpretation is only a conjecture which needs to be
investigated further although the conjecture holds true in
a special case of supply rates. We also hope to relax the
technical assumption 0 < c < (σi ◦ αi)

′(τ ) < C in The-
orem 4.5 for the non-smooth construction. Dealing with
general networks of iISS systems along the lines of this
paper is also an interesting topic of further study.
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