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Abstract We present methods and tools for modelling autonomous controlled pro-
duction networks and investigation of their stability properties. Production networks
are described by dynamical systems of two types: systems of ordinary differential
equations and time-delay systems. In particular with the help of time-delays we in-
corporate transportation processes and implement an autonomous control method,
namely the queue length estimator (QLE). For the stability analysis we utilize Lya-
punov functions from mathematical systems theory, where by stability we mean,
roughly speaking, boundedness of the state of a system (e.g., the inventory level or
the work in progress) over the time under bounded external inputs.

1 Introduction

Production, supply networks and other logistic structures are typical examples of
complex systems with a nonlinear and sometimes chaotic behavior.

Their dynamics is subject to many different perturbations due to changes on mar-
ket, changes in customer behavior, information and transport congestions, unreliable
elements of the network etc. One of the approaches to handle such complex systems
is to shift from centralized to decentralized or autonomous control, i.e., to allow the
entities of a network to make their own decisions based on some given rules and
available local information. However a system emerging in this way may become
unstable and hence be not effective.

Typical examples of unstable behavior are unbounded growth of unsatisfied or-
ders or unbounded growth of the queue of the workload to be processed by a ma-
chine. This causes high inventory costs and loss of customers. To avoid instability of
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a network it is worth to investigate its behavior in advance. In particular mathemati-
cal modelling and analysis provide helpful tools for design, optimization and control
of such networks and for deeper understanding of their dynamical properties.

1.1 Production networks

The term production network is used to describe company or cross-company owned
networks with geographically dispersed plants. The primary objective of produc-
tion networks is to achieve economies of scale through joint planning of production
processes, a mutual use of common resources and integrated planning value added
processes [26]. These types of networks may react quickly on perturbations due to
redundancies of common resources. But high flexibility causes interdependencies
between production processes in different plants, e.g., allocation problems for prod-
ucts or planning of transports and transport capacity [17, 1]. Therefore production
planning and control (PPC) of production networks has to cover these tasks and
also has to provide methods for an integrated planning and synchronization within
the network, including planning of sales and inventory [26]. Under highly dynamic
and complex conditions current PPC methods cannot cope with disturbances or un-
foreseen events in an appropriate manner [14]. This may cause uncertainties of lead
times, inconstancy of schedules or may also lead to instability or even chaos.

1.2 Autonomous control

The main idea of autonomous cooperating logistic processes is to enable intelli-
gent logistic objects to route themselves through a logistic network according to
their own objectives and to make and execute decisions, based on local information
[27, 28]. In this context intelligent logistic objects may be physical or material ob-
jects, e.g., parts or machines, as well as immaterial objects (e.g., production orders,
information). It has been already shown that different autonomous control methods
can help to increase the logistics performance and robustness of single production
systems [18, 20]. Due to the high structural and dynamical complexity of produc-
tion networks one may expect that autonomous control has a positive effect on the
dynamical behavior of these networks. This was confirmed by investigations of the
performance of autonomously controlled production networks [19]. On the other
hand autonomously controlled production networks may show a sudden change of
the dynamical systems behavior in dependence of varying start parameters and the
logistic performance collapses in the sense of unpredictable and increasing through-
put times and growing inventory [21]. Thus investigations of autonomously con-
trolled production networks stability are essential to identify such turning points of
dynamical systems behavior.
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The autonomous control to be modeled and used in this contribution is based
on the queue length estimator (QLE), which was investigated in previous papers
besides other existing autonomous control methods [20, 2, 22]. The QLE enables
parts to choose the next transportation way to an entity of the network according to
the local information about their current amount of the queuing workload.

1.3 Mathematical modelling and stability analysis

Roughly speaking, for production networks stability means that the state of the net-
work remains bounded over time under bounded external inputs.

The state is the set of parameters, which we are interested in, for example the
queue length of the workload to be processed by a machine, the work in progress
(WIP) or the number of unsatisfied orders. In this contribution we identify the state
as the number of unprocessed parts, which is the sum of the queue length and the
WIP. Thus stable behavior of the network is decisive for the performance and vi-
tality of a network. To design stable logistic networks we are going to apply tools
from mathematical systems theory. In this context mathematical models describing
network’s behaviour are needed.

For manufacturing systems parameters assuring stable behavior can be found by
using fluid models [3], re-entrant lines [4] or manufacturing systems with different
job types [5]. An approach with flows of multiple fluids was used to analyse the
stability region of an autonomously controlled shop floor scenario [24]. Scholz-
Reiter et al. [23] presented a fluid model of a production network and obtained a
stability region for a scenario with two locations and three types of products. First
approaches have been already done to derive stability conditions of autonomously
controlled production networks [6].

In this contribution a production network is described as an interconnection of
many dynamical subsystems that are logistic locations. To cope with different dy-
namical characteristics of the network we develop two types of models: systems,
based on ordinary differential equations (ODEs) and time-delay systems. Time-
delay systems are described by functional differential equations and take transporta-
tion times into account in contrast to models, based on ODEs. Furthermore the QLE
is modeled for both types of models. All the models are a basis for a stability anal-
ysis provided in this contribution.

Our stability analysis is based on the Lyapunov function theory and small-gain
theorems. At the first step we describe the network’s behavior by a mathematical
model according to the type of its dynamics. Then we are looking for Lyapunov
functions and the corresponding Lyapunov gains to establish stability of each sub-
system. If all subsystems are stable we apply the so-called small-gain condition,
that takes into account the interconnection structure of the network. If this condi-
tion is satisfied the stability of the network is proved, otherwise we cannot con-
clude whether the network is stable or not. But we can repeat the stability analysis
choosing another Lyapunov function and/or gains. This framework is described in
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Figure 1. This procedure can be applied to general nonlinear large-scale systems to
perform a stability analysis and to derive bounds for parameters of a logistic system
for which its behavior is stable.

Fig. 1 Scheme of the stability analysis procedure

The structure of the contribution is as follows. In Section 2 we give the nec-
essary notions of the dynamical systems and review the stability results for them,
namely ODE systems are considered in Subsection 2.1 and time-delay systems in
Subsection 2.2. These results will be used in Section 3 for modelling and analysis
of the behavior of logistics networks with and without time-delays. The application
will be supplemented by numerical simulations in Matlab for a certain scenario of a
production network in Section 4. Section 5 concludes the contribution and outlines
some approaches for the future work.

2 Modelling methods and mathematical stability theory

In this section we introduce two different methods to model dynamical networks
such as production networks. Furthermore, the stability theory for these methods is
presented.
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2.1 Ordinary differential equations

One possibility to model production networks are ordinary differential equations
(ODEs), see for example [13]. An ODE is of the form

ẋ(t) = f (x(t),u(t)), t ∈ R+, (1)

where x ∈ RN denotes the state of the system, u ∈ RM is the essentially bounded
measurable external input and f : RN ×RM → RN describes the system dynamics.
ODEs describe the evolution of the state of the system with continuous time t ∈R+,
where R+ := [0,∞).

To have existence and uniqueness of a solution of a system of the form (1) the
function f is assumed to be a locally Lipschitz continuous function. The solution is
denoted by x(t;x0,u) or x(t) for short, where x0 := x(0) is the initial condition.

In general, production networks consist of n ∈ N interconnected systems of the
form

ẋi(t) = fi(x1(t), . . . ,xn(t),ui(t)), t ∈ R+, i = 1, . . . ,n, (2)

where xi ∈RNi , ui ∈RMi and fi : R∑
n
j=1 N j+Mi→RNi are locally Lipschitz continuous

functions. Here, x j, j 6= i can be interpreted as internal inputs of the i-th subsystem
and the solution is denoted by xi(t;x0

i ,x j, j 6= i,ui) or xi(t) for short, where x0
i :=

xi(0) is the initial condition.
If we define N := ∑

n
i=1 Ni, M := ∑

n
i=1 Mi, x := (xT

1 , . . . ,xT
n )T , u := (uT

1 , . . . ,uT
n )T

and f = ( f T
1 , . . . , f T

n )T , then the interconnected system of the form (2) can be written
as one single system of the form (1), which we call the whole system.

The purpose of this paper is to analyse production networks, which can be written
in the form (2), in view of stability. Therefore we introduce the following stability
notion:

Definition 1. 1. System (1) is locally input-to-state stable (LISS) if there exist con-
stants ρ, ρu > 0, γ ∈ K , where K is the set of continuous functions with
γ(0) = 0 and strictly increasing, and β ∈K L , where a function of class K L
has to arguments: in the first argument it is a K -function and in the second argu-
ment it is a continuous, strictly decreasing function with limt→∞ β (·, t) = 0, such
that for all initial values |x0| ≤ ρ and all inputs ‖u‖

∞
≤ ρu the inequality

|x(t)| ≤max{β (|x0| , t) ,γ (‖u‖
∞
)}

is satisfied ∀ t ∈ R+, where |·| denotes the Euclidean norm and
‖u‖

∞
:=ess sup

t∈[0,∞)
|u(t)| is the essential supremum norm. γ is called (nonlinear)

gain.
2. The i-th subsystem of (2) is called LISS if there exist constants ρi, ρi j, ρu

i >
0, γi j, γi ∈K and βi ∈K L such that for all initial values

∣∣x0
i

∣∣ ≤ ρi and all
inputs

∥∥x j
∥∥

∞
≤ ρi j, ‖ui‖∞

≤ ρu
i the inequality
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|xi(t)| ≤max
{

βi
(∣∣x0

i
∣∣ , t) ,max

j 6=i
γi j
(∥∥x j

∥∥
∞

)
,γi (‖ui‖∞

)
}

is satisfied ∀ t ∈ R+. γi j and γi are called (nonlinear) gains.

Note that, if ρ,ρu = ∞ then the system (1) is called (global) ISS and if ρi,ρi j,ρ
u
i = ∞

then the i-th subsystem of (2) is called (global) ISS. In particular LISS and ISS
guarantee that the norm of the trajectories of each subsystem is bounded.

An important tool to verify LISS and ISS, respectively, of a system of the form
(2) are Lyapunov functions.

Definition 2. We assume that for each subsystem of the interconnected system (1)
there exists a function Vi : RNi → R+, which is locally Lipschitz continuous, proper
and positive definite. Then, for i = 1, . . . ,n the function Vi is called a LISS Lyapunov
function of the i-th subsystem of (2) if Vi satisfies the following two conditions:
There exist functions ψ1i, ψ2i ∈K∞, where K∞ is the subset of K -functions that
are unbounded, such that

ψ1i (|xi|)≤Vi(xi)≤ ψ2i (|xi|) , ∀ xi ∈ RNi (3)

and there exist γi j, γi ∈ K , a positive definite function µi, which is continuous,
µi(0) = 0 and µi(r) > 0, ∀r ∈ R, and constants ρi, ρi j, ρu

i > 0 such that

Vi(xi)≥max
{

max
j 6=i

γi j (Vj(x j)) ,γi (|ui|)
}
⇒ ∇Vi(xi) · fi(x,u)≤−µi (Vi(xi)) (4)

for almost all xi ∈ RNi ,
∣∣x0

i

∣∣ ≤ ρi,
∣∣x j
∣∣ ≤ ρi j, ui ∈Mi , |ui| ≤ ρu

i , χii = 0, where
∇ denotes the gradient of the function Vi. Functions γi j are called LISS Lyapunov
gains.

Note that, if ρi,ρi j,ρ
u
i = ∞ then the LISS Lyapunov function of the i-th subsystem

becomes an ISS Lyapunov function of the i-th subsystem (see [11]). In general the
LISS Lyapunov gains are different from the gains in Definition 1.

Condition (3) implies that Vi is proper, positive definite and radially unbounded.
Vi can be interpreted as the energy of a system and the second condition (4) of a
Lyapunov function means that if Vi(xi) ≥ max

{
max j 6=i γi j (Vj(x j)) ,γi (|ui|)

}
holds,

then the energy decreases. If Vi(xi) < max
{

max j 6=i γi j (Vj(x j)) ,γi (|ui|)
}

then the
energy of the system is bounded by the expression on the left side of the previous
inequality. Overall, the trajectory of a system is bounded.

Furthermore we define the gain-matrix Γ := (γi j)n×n, i, j = 1, . . . ,n, γii = 0,
which defines a map Γ : Rn

+ → Rn
+ by

Γ (s) :=
(

max
j

γ1 j(s j), . . . ,max
j

γn j(s j)
)T

, s ∈ Rn
+. (5)

Note that the matrix Γ describes in particular the interconnection structure of the
network, moreover it contains the information about the mutual influence between
the subsystems, which can be used to verify the (L)ISS property of networks.
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Definition 3. Γ satisfies the local small gain condition (LSGC) on [0,w∗], provided
that

Γ (w∗) < w∗ and Γ (s) 6≥ s, ∀s ∈ [0,w∗] , s 6= 0. (6)

Notation 6≥ means that there is at least one component i ∈ {1, . . . ,n} such that
Γ (s)i < si.

To check whether the interconnected system of the form (1) has the LISS prop-
erty we use the scheme in Figure 1. To this end, one has to find a LISS Lyapunov
function for each subsystem. If there exists a LISS Lyapunov function for each
subsystem then it has the LISS property. Furthermore, if the LISS Lyapunov gains
satisfy the local small-gain condition, then the whole system of the form (1) is LISS,
which we recall in the following theorem (see [10]):

Theorem 1. Consider the interconnected system (2), where each subsystem has an
LISS Lyapunov function Vi. If the corresponding gain-matrix Γ satisfies the local
small-gain condition (6), then there exist constants ρ,ρu > 0, such that the whole
system of the form (1) is LISS.

In [9] a similar ISS small-gain theorem for general networks was proved, where the
small-gain condition is of the form

Γ (s) 6≥ s, ∀ s ∈ Rn
+\{0} .

2.2 Time-delay systems

In this section we introduce systems with time-delays that allow modelling of trans-
portations times in logistic networks: material leaves one production location at time
t and reaches the following location at time t +θ , where θ > 0 is the transportation
time between these two production locations. Time-delay systems are described by
continuous differential equations of the form

ẋ(t) = f (xt ,u), (7)

where t,x,u and f are as in the previous section. Here the term xt := x(t + τ), τ ∈
[−θ ,0], xt ∈ C([−θ ,0];RN) represents the state, where C([−θ ,0];RN) denotes
the space of continuous functions defined on [−θ ,0] equipped with the norm
‖xt‖[−θ ,0] := sup

t∈[−θ ,0]
|x(t)| and values in RN . θ can be interpreted as the maxi-

mal involved delay. We assume that the conditions for the existence and unique-
ness of a solution of (7) are satisfied. Let the initial state be given by the function
ξ ∈C([−θ ,0];RN).

The stability notions introduced in the previous section can be defined for time-
delay systems as well:
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Definition 4. System (7) is called LISS if there exist constants ρ,ρu and functions
β ∈ K L and γ ∈ K , such that for every initial condition ‖ξ‖[−θ ,0] ≤ ρ , every
external input ‖u‖

∞
≤ ρu and for all t ∈ R+ it holds

|x(t)| ≤max{β (‖ξ‖[−θ ,0] , t),γ(‖u‖
∞
)},

where ξ ∈C([−θ ,0] ,RN).

If we consider n interconnected systems, we write each subsystem as

ẋi(t) = fi(xt
1, . . . ,x

t
n,ui(t)), (8)

where xt
j := x j(t +τ), τ ∈ [−θ ,0] can be interpreted as internal input of the i-th sub-

system, i = 1, . . . ,n. The initial functions are given by ξi ∈C([−θ ,0];RNi). Again,
this network can be written in the form (7). The notion of LISS for interconnected
time-delay systems is as follows:

Definition 5. The i-th subsystem of (8) is called LISS if there exist constants
ρi, ρi j, ρu

i > 0 and functions βi ∈K L and γd
i j,γ

u
i ∈K , i, j = 1, . . . ,n, i 6= j, such

that for initial functions ‖ξi‖[−θ ,0] ≤ ρi, for inputs
∥∥x j
∥∥

[−θ ,∞) ≤ ρi j, ‖ui‖∞
≤ ρu

i and
for all t ∈ R+ it holds

|xi(t)| ≤max{βi(‖ξi‖[−θ ,0] , t),max
j 6=i

γ
d
i j(
∥∥x j
∥∥

[−θ ,∞)),γ
u
i (‖u‖

∞
)}, (9)

where
∥∥x j
∥∥

[−θ ,∞) := sup
t∈[−θ ,∞)

∣∣x j(t)
∣∣.

As in the delay-free case, Lyapunov functions are a useful tool to investigate sta-
bility of systems with time-delays, where one can use Lyapunov-Razumikhin func-
tions or Lyapunov-Krasovskii functionals (see [25], [16]). In this paper we only
use Lyapunov-Razumikhin functions for the stability analysis. The existence of an
ISS Lyapunov-Razumikhin function implies ISS for systems of the form (7). This
was shown in [25] and can be transferred to LISS in a similar way. For the defi-
nition of LISS Lyapunov-Razumikhin functions we introduce the upper right-hand
side derivative of a locally Lipschitz continuous function V : RN → R+ along the
solution x(t), which is defined by

D+V (x(t)) =lim sup
h→0+

V (x(t +h))−V (x(t))
h

.

For interconnected time-delay systems the LISS Lyapunov-Razumikhin func-
tions are defined in the following way:

Definition 6. We assume that for each subsystem of the interconnected system
(8) there exists a function Vi : RNi → R+, which is locally Lipschitz continuous,
proper and positive definite. Then, for i = 1, . . . ,n the function Vi is called an LISS
Lyapunov-Razumikhin function for the i-th subsystem of (8) if there exist constants
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ρi, ρi j, ρu
i > 0 and functions βi ∈K L , γd

i j,γ
u
i ∈K ∪{0}, µi ∈K , i, j = 1, . . . ,n,

such that

ψ1i(|xi|)≤Vi(xi)≤ ψ2i(|xi|), ∀xi ∈ RNi , (10)
Vi(xi)≥max{max j γd

i j(||V d
j (x j)||),γu

i (|u|)} ⇒ D+Vi(xi)≤−µi(Vi(xi)) (11)

for all initial functions ‖ξi‖[−θ ,0] ≤ ρi, for all inputs
∣∣x j
∣∣ ≤ ρi j, |ui| ≤ ρu

i and
for all t ∈ R+, where V d

j (x j(t)) := Vj(x j(t + τ)), τ ∈ [θ ,0] and ||V d
j (x j)|| :=

maxt−θ≤s≤t
∣∣Vj(x j(s))

∣∣.
Furthermore we define the gain-matrix for time-delay systems by Γ := (γd

i j)n×n

and the map Γ : Rn
+→ Rn

+ by

Γ (s) :=
(

max
j

γ
d
1 j(s j), . . . ,max

j
γ

d
n j(s j)

)T

, s ∈ Rn
+.

With help of the following theorem we can check, whether an interconnected
system with time-delays is LISS.

Theorem 2. Consider the interconnected system (8), where each subsystem has a
LISS Lyapunov-Razumikhin function Vi. If the corresponding gain-operator Γ sat-
isfies the local small-gain condition from Definition 3, then there exist constants
ρ,ρu > 0, such that the whole system of the form (7) is LISS.

This follows from Theorem 1 in [8] with the corresponding changes according
to the LISS property.

Remark 1. Another tool to check whether a system or a network has the ISS or
LISS property is a Lyapunov-Krasovskii functional. We do not discuss and use this
approach in this paper, but one can read the works [16] and [8] for further details.

Theorems 2 and 1 will be used in the following section for a stability analysis of
production networks.

3 Modelling and stability analysis of production networks

In this section we model general production networks and perform a stability analy-
sis, where the methods and tools presented in the previous section are used. We will
derive a condition, which guarantees stability of a general network.

3.1 Description and Modelling of a general production network

We consider a production network, consisting of n market entities, which may be
raw material suppliers (e.g., extracting or agricultural companies), producers, dis-
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tributors and consumers, for example. Each entity is understood as a subsystem of
the whole network. For simplicity we assume, that there is only one unified type of
material, i.e., all primary products, used in the production network, can be measured
as a number of units of this unified material.

The state of the i-th subsystem at time t ∈ R+ is the quantity of unprocessed
material within the i-th subsystem at time t. It will be denoted by xi(t). The state
of the whole network is denoted by x(t) = (x1(t), . . . ,xn(t))T . A subsystem can get
material from an external source, which is denoted by ui, and from subsystems of
the network (internal inputs).
Modelling without time-delays

At first we consider a production network without transportation times and use
ordinary differential equations to model it. Let the i-th subsystem processes the raw
material from its inventory with the rate f̃ii(t,x(t))≥ 0 and sends the produced goods
(measured in units of unified material) to the j-th subsystem with the rate f̃ ji(t,x(t)).
Thus, the total rate of the distribution from the i-th subsystem to other subsystems is
∑

n
j=1 f̃ ji(t,x(t)) and the rest is sent to some customers not considered in the network.
For general functions f̃ ji it is hard to derive stability conditions. Therefore we

will investigate the special case f̃ ji(t,x(t)) = c ji(t,x(t)) f̃i(xi(t)), c ji ∈ R+ and
f̃ii(t,x(t)) = c̃ii(t,x(t)) f̃i(xi(t)), c̃ii ∈ R+, where f̃i(xi(t)) ∈ K is proportional to
the processing rate of the system, c ji(t,x(t)), i 6= j are some positive distribution
coefficients and c̃ii(t,x(t)) ≥ 0. We will denote c ji(t) for the sake of brevity. We
interpret the constant distribution coefficients as central planning and on the other
hand variable distribution coefficients can be used for some autonomous control
method.

Under this assumptions the dynamics of the i-th subsystem is described by ordi-
nary differential equations as in (2):

ẋi(t) =
n

∑
j=1, j 6=i

ci j(t) f̃ j(x j(t))+ui(t)− c̃ii(t) f̃i(xi(t)), i = 1, . . . ,n. (12)

Denoting cii := −c̃ii we can rewrite the above equations as an interconnected
system of the form (1) in a vector form

ẋ(t) = C(t) f̃ (x(t))+u(t), (13)

where f̃ (x(t)) = ( f̃1(x1(t)), ..., f̃n(xn(t)))T , u(t) = (u1(t), . . . ,un(t))T and C(t) ∈
Rn×n.

The given model will be used in the next subsection for a stability analysis of
general production networks.
Modelling with time-delays

Now we model general production networks with transportation times using
time-delay systems. The time needed for the transportation of material from the j-th
to the i-th entity is denoted by τi j ∈ R+. Then the dynamics of the i-th subsystem
can be described by retarded differential equations similar to (12):
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ẋi(t) =
n

∑
j=1, j 6=i

ci j(t) f̃ j(x j(t− τi j))+ui(t)− c̃ii(t) f̃i(xi(t)), i = 1, . . . ,n. (14)

Here, the external input and the processing rate do not depend on any time-
delay, but the internal inputs from other subsystems do, represented by the terms
ci j(t) f̃ j(x j(t− τi j)). This means, that the input of subsystem i at time t from sub-
system j is the amount of material that was sent by the j-th subsystem at the time
t−τi j. The terms ci j(t) may also depend on x j(t−τi j), but we write ci j(t) for short.

In the next subsection we will perform a stability analysis for such systems,
where we use the Lyapunov-Razumikhin approach.

3.2 Stability analysis

For the stability analysis we apply the framework shown in Figure 1. At first, we use
the model based on ODEs. We choose an ISS Lyapunov function for each subsystem
described in (12) and the corresponding Lyapunov gains. Then the conditions of a
Lyapunov function and the small-gain condition are verified.
Stability analysis of production networks modeled without time-delays

At first, we consider the case f̃i ∈K∞, i = 1, . . . ,n, in particular f̃i are unbounded.
Later we will show how the same method can be applied with minimal modifications
for bounded f̃i ∈K \K∞. Note, that the conditions f̃i ∈K∞, cii(t) < 0 and ci j(t)≥
0, i 6= j imply, that if x(0)≥ 0 (that is xi(0)≥ 0 ∀i = 1, . . . ,n), then x(t)≥ 0 for all
t > 0.

Let us check whether the function Vi(xi) = |xi|= xi is an ISS-Lyapunov function
for the i-th entity. Obviously, Vi(xi) satisfies the condition (3). To prove, that the
condition (4) holds, we choose the functions γi j, γi, µi (see Definition 2) as

γi j(s) := f̃−1
i

(
ai
a j

1
1+δ j

f̃ j(s)
)

, γi(s) := f̃−1
i

(
1
ri

s
)

, (15)

where δ j, a j, j = 1, . . . ,n and ri are positive reals. It follows

xi ≥ γi j (x j) ⇒ f̃ j(x j)≤
a j
ai

(1+δ j) f̃i(xi), xi ≥ γi (|ui|) ⇒ |ui| ≤ ri f̃i(xi).

Using these inequalities and applying the following technical condition

n

∑
j=1, j 6=i

ci j(t)
a j
ai

(1+δ j)+ cii(t)+ ri ≤−hi, hi > 0, (16)

we obtain
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dVi

dt
=

n

∑
j=1

ci j(t) f̃ j(x j(t))+ui(t)

≤

(
n

∑
j=1, j 6=i

ci j(t)
a j
ai

(1+δ j)+ cii(t)+ ri

)
f̃i (xi(t))≤−µi(Vi(xi(t))),

where µi(r) := hi f̃i(r) and thereby condition (4) is satisfied. Thus, under condition
(16), Vi(xi) = |xi| is an ISS Lyapunov function for the i-th entity.

To check whether the interconnected system (13) is ISS we need to verify the
small-gain condition. It is known, that this condition is equivalent to the cycle con-
dition (see [9]): for all (k1, ...,kp) ∈ {1, ...,n}p, where k1 = kp, it holds

γk1k2 ◦ γk2k3 ◦ ...◦ γkp−1kp(s) < s. (17)

Consider a composition γk1k2 ◦ γk2k3 , then it holds

γk1k2 ◦ γk2k3 = f̃−1
k1

(
ak1
ak2

1
1+δk3

f̃k2

(
f̃−1
k2

(
ak2
ak3

1
1+δk3

f̃k3 (s)
)))

=

= f̃−1
k1

(
ak1
ak3

1
(1+δk3)(1+δk2)

f̃k3 (s)
)

.

In the same way we obtain the expression for the cycle condition in (17) (here
we use, that k1 = kp):

γk1k2 ◦ γk2k3 ◦ ...◦ γkp−1kp(s) = f̃−1
k1

(
1

∏
p
i=2 (1+δki )

f̃k1 (s)
)

< s.

Thus, the small gain condition (17) holds true for all δi > 0 and by Theorem 1
the whole system is ISS.

We assume that the ci j are bounded, i.e., ∃M > 0 : ci j(t) ≤ M for all i, j =
1, . . . ,n, i 6= j, and the inequality (16) can be simplified:

∀wi > 0 ∃δ j, j = 1, . . . ,n :
n

∑
j=1, j 6=i

ci j(t)
a j
ai

δ j ≤M

(
n

∑
j=1, j 6=i

a j
ai

δ j

)
< wi.

Using these estimates, we can rewrite (16) by

n

∑
j=1, j 6=i

ci j(t)a j ≤−cii(t)ai + εi,

where εi = −ai(ri + hi + wi). In matrix notation, with a = (a1, . . . ,an)T , ε =
(ε1, . . . ,εn)T , it takes the form

C(t)a < ε. (18)

We summarize our investigations in the following proposition.
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Proposition 1. Consider a network as in (12) and assume that the ci j are bounded
for all i, j = 1, . . . ,n, i 6= j. If ∃a ∈Rn, ε ∈Rn, ai > 0, εi < 0, i = 1, . . . ,n such that
the condition C(t)a < ε holds ∀t > 0, then the whole network (13) is ISS.

Remark 2. If the matrix C does not depend on t, then condition Ca < ε is equivalent
to Ca < 0 (with a, ε as in the proposition above). But if C = C(t), then the existence
of a positive vector a, Ca < 0 is not enough to guarantee ISS of the system (13).

Remark 3. If C is a constant matrix and recalling (see [12], p. 301) that a matrix C ∈
Rn×n is called diagonally dominant, if there are n numbers ai > 0, such that ciiai +
∑ j 6=i |ci j|a j < 0 for all i = 1, . . . ,n. Then, for ci j ≥ 0 this condition is equivalent to
the existence of a positive vector a, such that Ca < 0 holds. Consequently, for a case
of time-independent matrices C diagonal dominance of C is a sufficient condition
for ISS of a system of the form (13). Note, that every diagonally dominant matrix is
Hurwitz (see, e.g., [12]), i.e., the real parts of all the eigenvalues are negative.

Now we consider f̃i ∈K \K∞, i.e., function f̃i is monotonously increasing, but
only up to a certain limit αi := supxi

{ f̃i(xi)}. For such f̃i the global ISS property
cannot be achieved, but we can establish the LISS property. We choose again the
function Vi = |xi| = xi as LISS Lyapunov function candidate for the i-th subsystem
and the corresponding gains as follows

γi j(s) := f̃−1
i

(
αi
α j

1
1+δ

f̃ j(s)
)

, γi(s) := f̃−1
i

(
αi

‖ui‖∞ri
s
)

Note, that in contrast to the previous case, where the coefficients ai involved in
the gain functions were chosen arbitrarily, the α j are taken from the boundedness
assumptions on the functions f̃i. The reason is to obtain a range of a function αi

α j
f̃ j(s)

equal to the domain of definition of f̃−1
i .

Applying the same methods as for f̃i ∈K∞, we obtain the following proposition:

Proposition 2. Consider a network as in (12). Define ‖u‖∞ := (‖u1‖∞, . . . ,‖un‖∞)T .
Let f̃ j ∈K \K∞, and α j := supx j∈R{ f̃ j(x j)}, j = 1, . . .n, α := (α1, . . . ,αn)T . If
∃ε ∈ Rn, εi < 0, i = 1, . . . ,n such that

C(t)α +‖u‖∞ < ε, (19)

then the whole network (13) is LISS.

Remark 4. The stability analysis for functions f̃i ∈K is skipped here, because some
more technical details are necessary, that would increase the size of the paper dras-
tically. The result is similar to Proposition 2.

Stability analysis of production networks with time-delays
Now we perform a stability analysis for general production networks with trans-

portation times modeled by time-delay systems of the form (14), where we use the
tools presented in the Section 2.2.
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Consider the case f̃i ∈ K∞, i = 1, . . . ,n, in particular f̃i are unbounded. We
choose Vi(xi) = |xi|= xi as an ISS-Lyapunov-Razumikhin function candidate for the
i-th entity. Obviously, Vi(xi) satisfies the condition (10). To prove, that the condition
(11) holds true we choose the functions γd

i j and γu
i as γi j,γi in (15), where γd

ii ≡ 0
because there is no time-delay in the internal dynamic (see the term c̃ii(t) f̃i(xi(t)) in
the model). The difference to (15) is, that the time-delay is taken into account in the
gains. From the condition (11) we have

Vi(xi)≥max{max
j

γ
d
i j(||V d

j (x j)||),γu
i (|u|)},

where V d
j (x j(t)) = Vj(x j(t − τi j)) and ||V d

j (x j)|| = maxt−τi j≤s≤t
∣∣Vj(x j(s))

∣∣. This
means γd

i j(||V d
j (x j)||) ≥ γi j(Vj(x j)) and furthermore for τi j > τ̃i j ⇒ γd

i j(|Vj(x j(t−
τi j))|)≥ γi j(|Vj(x j(t− τ̃i j))|).

From the definition of the gains we get by application of the Theorem 2 the
following proposition by similar calculations as for the stability analysis based on
ODEs.

Proposition 3. Consider a network as in (14).

1. Assume that the ci j are bounded for all i, j = 1, . . . ,n, i 6= j. If ∃a ∈ Rn, ε ∈
Rn, ai > 0, εi < 0, i = 1, . . . ,n such that the condition C(t)a < ε holds ∀t > 0,
then the whole network is ISS.

2. Define ‖u‖∞ := (‖u1‖∞, . . . ,‖un‖∞)T . Let f̃ j ∈K \K∞, and α j := supx j{ f̃ j(x j)},
j = 1, . . .n, α := (α1, . . . ,αn)T . If ∃ε ∈ Rn, εi < 0, i = 1, . . . ,n such that

C(t)α +‖u‖∞ < ε, (20)

then the whole network is LISS.

This results are applied to a certain scenario of a production network in the following
section.

4 Example of a certain scenario of a production network

System without time-delays
We consider a certain scenario of a production network without transportation

times as in Figure 2. There, the numbers of the nodes are given in the centers of
the corresponding circles. The first entity gets some raw material from an external
supplier, denoted by u. At each entity the material will be processed with the rates
cii f̃i = ciiqi f̃ , qi ≥ 0 and immediately sent to the entities according to the network
topology in Figure 2 with certain distribution coefficients ci j. One half of the pro-
duction of entity four will be sent to customers, not considered in the network. The
distribution coefficients are given by
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Fig. 2 Example of a scenario of a production network

C(t) =


−2 0 0 0.5

c21(t) −1.5 0 0
c31(t) 0 −2 0

0 1 1 −2.5

 , (21)

where we implement the queue length method by choosing

c21(t) :=
c22q2

x2(t)+ε
c22q2

x2(t)+ε
+

c33q3
x3(t)+ε

, c31(t) :=
c33q3

x3(t)+ε
c22q2

x2(t)+ε
+

c33q3
x3(t)+ε

.

The term ε > 0 assures that the ci j(t) are well-defined and for simplicity one can
choose ε = 0. Note, that c21(t)+ c31(t) = 1.

To analyse whether the network has the ISS property we only have to check the
condition (18), which can be easily verified with ai = 1, i = 1, . . . ,4. By Proposi-
tion 1 the whole network is ISS.

The gains are of the form

γi j(s) := f̃−1
i

(
1

1+δ j
f̃ j(s)

)
= f̃−1

(
qi
q j

1
1+δ j

f̃ (s)
)

, s ∈ R+,

where δ j > 0. For example, if we choose f̃ (s) =
√

s and qi = 1, i = 1, . . . ,4, then
we have

γi j(s) = 1
(1+δ j)2 s, s ∈ R+.

The differential equations that describe the systems behavior are of the form

ẋ1(t) = u(t)+ 1
2

√
x4(t)−2

√
x1(t),

ẋ2(t) =
1.5

x2(t)
1.5

x2(t)+ 2
x3(t)

√
x1(t)−1.5

√
x2(t),

ẋ3(t) =
2

x3(t)
1.5

x2(t)+ 2
x3(t)

√
x1(t)−2

√
x3(t),

ẋ4(t) =
√

x2(t)+
√

x3(t)−2.5
√

x4(t).
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Let the initial state be given by x(0) = (2,5,4,3)T and the input function be u =
10 · (sin(t) + 1). Then we get the stable behavior, displayed in Figures 3 and 4,
where a simulation is performed with Matlab.

Fig. 3 Stable evolution of the amount of unprocessed parts within subsystems one and two

Fig. 4 Stable evolution of the amount of unprocessed parts within subsystems three and four

If the distribution coefficients are chosen as c11 =−1, c22 =−1, c33 =−1, c44 =
−1, i.e., the condition (18) is not satisfied, then we get the following unstable be-
havior displayed in Figures 4 and 4. It means that the number of unprocessed parts
within a subsystem increases up to infinity.

Fig. 5 Unstable evolution of the amount of unprocessed parts within subsystems one and two

System with time-delays
Now we consider the same scenario of a production network as in Figure 2, but

with transportation times. The distribution coefficients ci j for the stable situation are
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Fig. 6 Unstable evolution of the amount of unprocessed parts within subsystems three and four

given by (21) with c21 and c31 which represent the queue length method and take
into account time-delays:

c21(t) :=
c22q2

x2(t−τ21)+ε
c22q2

x2(t−τ21)+ε
+

c33q3
x3(t−τ21)+ε

, c31(t) :=
c33q3

x3(t−τ31)+ε
c22q2

x2(t−τ31)+ε
+

c33q3
x3(t−τ31)+ε

.

Now we choose f̃i(s) = qi
√

s with q1 = 3, q2 = 2, q3 = 1.5, q4 = 1.6. The condition
(18) is satisfied, which can be easily checked and therefore the network has the ISS
property. The retarded differential equations of the system are of the form

ẋ1(t) = u(t)+ 1.6
2

√
x4(t− τ14)−6

√
x1(t),

ẋ2(t) =
3

x2(t−τ21)
3

x2(t−τ21)+ 3
x3(t−τ21)

3
√

x1(t− τ21)−3
√

x2(t),

ẋ3(t) =
3

x3(t−τ31)
3

x2(t−τ31)+ 3
x3(t−τ31)

3
√

x1(t− τ31)−3
√

x3(t),

ẋ4(t) = 2
√

x2(t− τ42)+1.5
√

x3(t− τ43)−4
√

x4(t).

We choose τi j = 2 and the initial function x(s) ≡ (2,5,4,3)T , s ∈ [−2,0]. The in-
put function is given by the constant function u ≡ 20 in contrast to the oscillating
input used before. Then we get the stable behavior, displayed in Figure 7. Although
we choose a constant input we observe an oscillating behavior of the number of
unprocessed parts of the subsystems. The reason is the implemented queue length
method in the terms c21(t) and c31(t): Here only the number of unprocessed parts at
the time t− τ21 or t− τ31 is used for the calculation of the distribution coefficients
ci1(t), i = 2,3. The number of unprocessed parts, which has been sent during the
time (t− τi1,0] and has not yet been arrived at subsystem two or three, is not taken
into account. Then, it happens that more parts are sent to a subsystem with larger
queue than to the other subsystem until the distribution coefficients of both subsys-
tems, depending on the number of unprocessed parts at time t−τi1, are equal. After
this point the proportionally higher number of sent parts arrive at the subsystem,
which increases continuously the queue length and leads to a smaller distribution
coefficient ci1 in contrast to the distribution coefficient of the other subsystem. Now
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Fig. 7 Stable Evolution with the time-delays τi j = 2

the procedure goes on in the opposite direction until the distribution coefficients are
equal again. This cycle repeats and causes the observed oscillating behavior.

Now we increase the time-delays by choosing τi j = 4 and the initial function
x(s) ≡ (2,5,4,3)T , s ∈ [−4,0]. Furthermore, we choose ε = 0.001 to assure that
the distribution coefficients c1i are well-defined. All other parameters are the same.
Then we get the behavior of the number of unprocessed parts of the subsystems dis-
played in Figure 8. The increased time-delays τi j = 4 cause higher amplitudes, i.e.,
larger maximal values of the number of unprocessed parts of a subsystem in contrast
to the time-delays τi j = 2 used in Figure 7. Furthermore, we observe as a result of
this increased oscillations that for some time intervals the number of unprocessed
parts of subsystem two and three equals or is close to zero, which means that the
entities do not produce parts in these time intervals. In the conclusions we provide
some ideas to avoid such negative outcomes.

5 Summary

5.1 Conclusions

We have modeled and investigated general production network in view of stabil-
ity with and without transportation times. Two modelling methods were presented:
modelling by differential equations with and without time-delays. They were used
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Fig. 8 Stable Evolution with the time-delays τi j = 4

to model general production networks, where an autonomous control method, the
queue length method, was implemented. Based on these models we have presented
tools to perform a stability analysis using (L)ISS-Lyapunov or (L)ISS-Lyapunov-
Razumikhin functions. By the application to our models we have performed a sta-
bility analysis for both approaches, where we have derived a condition which guar-
antee that a network possesses the (L)ISS property. This result was applied to a
scenario of a production network with and without transportation times. Here we
have found out that the maximum number of unprocessed parts of a subsystem with
time-delays can be higher than of a subsystem without time-delays. Furthermore we
have observed an oscillating behavior of the number of unprocessed parts of a sub-
system with time-delays, which was caused by the modeled queue length method.
The larger the time-delay is the higher is this oscillating behavior and could cause
downtimes of the production.

5.2 Future work

The choices of the parameters ci j for the modelling of the queue length method can
be changed: the number of parts which are on the way to a subsystem, but not yet
arrive there, can be taken into account. This means that full information access of
the market entities of a network is necessary, which is not always available. This
problem should be analysed. Another way of modelling the queue length method
can be done by using switched systems [15]. For such modelling method the tools
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to perform a stability analysis for general networks have to be developed. One can
extend the modelling of production networks by taking into account state jumps,
e.g., loading and unloading processes, one can use hybrid or impulsive systems
with and without time-delays [7]. Then the developed dwell-time condition plays a
significant role and should be investigated in more detail.
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