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IPscatt is a free, open-source MATLAB toolbox facilitating the solution for time-independent scattering (also

known as time-harmonic scattering) in two- and three-dimensional setting. The toolbox has three main

application cases: simulation of the scattered field for a given transmitter-receiver geometry; the generation

of simulated data as well as the handling of the real-world data from Institute Fresnel; the reconstruction of

the contrast from several measured, scattered fields. In each case a variety of options tailored to the needs of

practitioners is provided. For example, the toolbox allows the simulation of the scattered near field as well

as of the far field. Also, it provides methods for the modeling of the incident field as point sources as well

as plane waves. Finally, many common geometries of transmitters and receivers are included out of the box.

Regarding the reconstruction, the provided functions implement the regularization scheme that relies on a

primal-dual algorithm and was introduced in [F. Bürgel, K. S. Kazimierski, and A. Lechleiter 2017 Journal of
Computational Physics, 339:1–30]. This paper provides a survey of the mathematical concepts in scattering,

connects them with the provided implementation, gives an overview of the software framework as well as its

application areas and compares it with existing software packages solving the same problem.
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1 INTRODUCTION
The mathematical model of time-independent scattering (also known as time-harmonic scattering),

i.e. the electromagnetic and acoustic scattering based on the Helmholtz equation, is known in

literature as the direct scattering problem. Fast numerical solvers for that problem are described

for example in [Vainikko 2000]. The task of identifying the contrast, defined in (1), of a penetrable

medium from the measurements of the waves scattered from that medium is commonly referred

to as the inverse medium problem. In particular, this task is encountered in remote-sensing and

non-destructive testing applications.

Authors’ addresses: Florian Bürgel, fbuergel@uni-bremen.de, University of Bremen, Center for Industrial Mathematics,

Germany. Kamil S. Kazimierski, kazimier@uni-graz.at, University of Graz, Institute of Mathematics and Scientific Computing,

Austria. The Institute of Mathematics and Scientific Computing is a member of NAWI Graz (www.nawigraz.at) and

BioTechMed Graz (www.biotechmed.at). Armin Lechleiter, University of Bremen, Center for Industrial Mathematics,

Germany.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in ACM Transactions on Mathematical Software, https://doi.org/10.1145/3328525.

ACM Trans. Math. Softw., Vol. 45, No. 4, Article 45. Publication date: December 2019.

https://doi.org/10.1145/3328525
www.nawigraz.at
www.biotechmed.at
https://doi.org/10.1145/3328525


45:2 Florian Bürgel, Kamil S. Kazimierski, and Armin Lechleiter

As a special case of a nonlinear, ill-posed parameter identification problem it is notoriously

difficult to solve. Furthermore, the discretization of the problem leads to a large system of equations,

which makes the problem even more challenging to treat computationally.

Despite the various, aforementioned applications, there are—to the authors’ best knowledge—

only two software packages dealing with the inverse medium problem: GLIDE, see [Strehlow 2014],

and sparseScatt (a predecessor of IPscatt), see [Lechleiter et al. 2013]. The main reconstruction

algorithm of GLIDE is based on a linearization of the underlying problem, which leads to suboptimal

reconstructions, e.g. for relatively high wave numbers. The sparseScatt package on the other

hand is based on a very time-consuming algorithm. Further, both packages have no implementation

available to the general research community.

The main motivation behind IPscatt was to close this gap and to provide a free, open-source

implementation of a reconstruction scheme for the nonlinear inverse medium problem in time-

independent scattering in two and three dimensions.

The variational regularization scheme, on which the reconstruction part of IPscatt is based,
was introduced in [Bürgel et al. 2017, Sec. 4] and relies on the so-called primal-dual algorithm due

to Pock, Bischof, Cremers and Chambolle, see [Chambolle and Pock 2011; Pock et al. 2009]. In this

algorithm paper we will show that the implementation of that scheme provided by IPscatt solves

the underlying inverse medium problem efficiently and effectively.

To cope with the ill-posedness of the inverse problem we must add penalty terms, that are suited

to a priori information about the contrast, see [Engl et al. 1996]. IPscatt achieves this by employing

terms in the underlying regularization scheme that enforce sparsity in the pixel basis and are based

on total variation as well as physical bounds. These terms were selected among other alternatives

based on their combined effectiveness. However, if needed, all the necessary tools are provided

within IPscatt to the user, who is interested in extending or altering the proposed reconstruction

scheme. To the authors’ best knowledge, IPscatt is the first toolbox which provides such features

and combines sparsity promoting and total variation-based regularization to jointly improve the

reconstruction quality for the inverse medium problem.

This algorithm paper has three main aims: First, it gives an overview of the algorithms used in

IPscatt. Second, it connects these algorithms with the implementation provided in the toolbox.

Finally, by means of several, representative examples, it helps the interested reader to assess the

efficiency and effectiveness of the software framework.

For further information on the details of IPscatt the reader may refer to the supplementary

material
1
. It consists of the source code, the source code documentation for advanced usage and an

user guide for IPscatt. The latter contains an installation guide, a technical description and a set

of hands-on best practice recommendations and guides, e.g. how to simulate data avoiding the

“inverse crime”.

The remainder of the paper is organized as follows: In Sec. 2 we give an overview of the software

framework IPscatt and present its key features. In Sec. 3 we describe the direct scattering problem

as well as the implemented variational reconstruction scheme and point out the main optimization

features of IPscatt. Finally, in Sec. 4 we demonstrate the efficiency and effectiveness of IPscatt on
several, representative examples. In particular, we compare IPscatt with other software packages.

Note as a preliminary remark that it does not matter, if simulated data, real-world data from

Institute Fresnel or another real-world data set is used for the reconstruction of the contrast. Further-

more, IPscatt was not specifically designed to replace the used numerical solver from [Vainikko

2000] for the direct scattering problem. However, the modular and flexible design of IPscatt
facilitates it. This requires two changes: the replacement of the forward operator and the forward

1
Supplementary material is provided on https://calgo.acm.org/ and on http://www.fbuergel.de/ipscatt/ in the latest version.
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operator’s linearization (with the Fréchet derivative).
2
Indeed, a draft version of IPscatt was

already modified by Lechleiter and Rennoch to tackle inverse scattering from so-called anisotropic
penetrable media instead of isotropic penetrable media, see [Lechleiter and Rennoch 2017] or [Ren-

noch 2017, Ch. 3]. This opens up the opportunity to replace the used numerical solver by more

sophisticated algorithms, see e.g. [Borges et al. 2017; Ying 2015]. In particular, this is interesting in

the case of relatively high wave numbers. Note that IPscatt tackles the single-frequency inverse

scattering problem in contrast to [Borges et al. 2017], that considers the multi-frequency case.

2 ARCHITECTURE AND KEY FEATURES OF IPSCATT

A typical MATLAB toolbox is a collection of functions/routines. If possible, object-oriented paradigms

are not used or even avoided. In the design of IPscatt the authors have followed this common

convention. Consequently, IPscatt is a collection of functions dealing with aspects of time-

independent scattering.

Groups of IPscatt. Each of the functions provided by IPscatt can be put into one of the

following five groups: Initialization, Experimental Set-Up, Data Readers, Scattering Simulation and

Contrast Reconstruction. Each of these groups can be considered a module of the IPscatt toolbox.

The connections between these groups can be found in Fig. 1. In the following paragraphs we

discuss the tasks of each group.

The state of the algorithms employed in IPscatt is stored in a “master” data structure. The

construction and initialization of that structure is carried out by the functions of the Initialization
group. Several convenience functions, e.g. for loading of presets are included.

The Experimental Set-Up group is responsible for setting up the simulation grid and the position-

ing of the transmitters and receivers. Of course, many common transmitter-receiver geometries,

like rectangle geometry, are provided by IPscatt, see Fig. 2(a). However, custom, user-defined

geometries are supported too, see Fig. 2(b).

Further, the Experimental Set-Up group provides routines for the generation of predefined

contrasts. In two dimensions these are e.g. a corner, a cross, a ball and a combination of two

corners and one ball. IPscatt also provides routines for the generation of rotated variants of

these contrasts. In three dimensions a tripod, a cross, a ball and the edges of a cube are available,

see Fig. 2(c). Further, contrasts fitting to real-world data from Institute Fresnel, see [Belkebir and

Saillard 2001], are contained: a contrast with one dielectric cylinder and another contrast with two

dielectric cylinders.

The routines of the Data Readers read the real-world data from Institute Fresnel. Further, these

routines are able to match the incident field for that data.

While the previous three groups are dealing with the preparation of the data structures necessary

for the simulation and reconstruction, the fourth and fifth group, i.e. Scattering Simulation and

Contrast Reconstruction, are the main power-horses of the toolbox.

Scattering Simulation provides the routines necessary for the simulation of the scattered fields at

the receivers for a given contrast and a given transmitter-receiver geometry. This setting implicitly

defines a nonlinear mapping of the contrast to the resulting fields. In what follows this mapping will

also be called the forward mapping of the scattering. The details of this operator will be discussed

in Sec. 3.

Further, the Scattering Simulation provides routines for the evaluation of the (Fréchet) derivative

of that mapping as well as the derivative of the least-squares error of the forwardmapping. The latter

is provided since it is an important ingredient of many reconstruction and optimization schemes,

2
The existing parameter seti.model, that is used to distinguish between theHelmholtz equation in two and three dimensions

(via helmholtz2D and helmholtz3D), helps with this task.
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e.g. it is used in the thresholded, nonlinear Landweber, that bases on the so-called soft-shrinkage

operator, see e.g. [Chan and Shen 2005].

We think that one of the many applications of IPscatt is to be a building block for simulation

and reconstruction schemes for time-independent scattering. However, we are aware of the fact that

some users may prefer to have a pre-packaged reconstruction scheme available. Therefore Contrast
Reconstruction routines implement a variational reconstruction scheme. In it physically sensible

contrasts are reconstructed from measured fields at the receivers. The underlying reconstruction

scheme is based on the assumption that such contrasts admit sparsity, total variation and physical

bounds properties. It works in two- as well as three-dimensional setting, see Fig. 2(d). We have

carried out extensive numerical experiments to tune the parameters of that scheme ensuring its

effectiveness and efficiency.

Supplementary Material. The interested user will find a detailed description of the provided

routines in the source code documentation of IPscatt. The main cornerstones of the discretization

approach and the variational reconstruction provided by IPscatt are presented and discussed in a

more condensed form in Sec. 3. Here, we would also like to mention the user guide of IPscatt,
where many typical use cases, like the loading of and the working with real-world data from

Institute Fresnel or the matching of the incident fields from receivers’ measurements are described.

Key Features. Altogether, the key features of IPscatt can be summarized as follows:

• simulation of the time-independent scattering/the forward mapping of scattering,

• (Fréchet) derivative of the forward mapping,

• derivative of the least-squares error of the forward mapping,

• a reconstruction scheme of the contrast from measured fields,

• predefined and user-defined transmitter-receiver geometries,

• predefined and user-defined contrasts in 2D and 3D,

• detailed user guide and source code documentation.

3 SIMULATION AND RECONSTRUCTION
In this section we take a closer look at the already-mentioned main power-horses of IPscatt: the
function groups Scattering Simulation and Contrast Reconstruction.

In the first and second part of this sectionwe describe themathematicalmodel of time-independent

scattering employed by IPscatt, i.e. the direct scattering problem. It consists of three steps: initially,

a transmitter propagates a field into a region containing the obstacle. Then that obstacle, which is

expressed by the contrast

q := n2 − 1 with n as refractive index, (1)

scatters that field in that region. Finally, the scattered field is propagated towards receivers, which

measure it. In mono-static setting the related operator maps a contrast to the resulting near or far

field operator. In the multi-static case the analogue is considered, i.e. the mapping of the contrast

to the field operators for all transmitters, cf. Fig. 3(a). We denote in both cases the involved forward
operator by F and concentrate on the multi-static case in our formulations. We will also discuss

the Fréchet derivative of the forward operator and its adjoint. We are relatively brief regarding

theoretical properties of any introduced quantity and refer to [Bürgel et al. 2017, Secs. 2 and 3] as

well as [Colton and Kress 2013] for details. However, we offer the essential formulas of the direct

scattering problem in the continuous and discretized form to get an overview and get familiar with

the used notation.

The first part of this section contains the continuous formulation of the direct scattering problem

and the second part its discretization. A tabular of all involved formulas can also be found in the

ACM Trans. Math. Softw., Vol. 45, No. 4, Article 45. Publication date: December 2019.
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user guide, where also a connection between mathematical formulas and their implementation

is built. In the third part of this section we consider the variational reconstruction scheme used

in IPscatt to solve the inverse problem. Finally, the last part discusses the complexity issues of

IPscatt.

Simulation and genera-

tion of synthetic data

Initialization

Set grid

Set transmitters

and receivers

Set contrast

Scattering simulation

Reconstruction

of synthetic data

Initialization

Set grid

Set transmitters

and receivers

Set reconstruction

parameters

Variational reconstruction

Reconstruction of

real-world data

Initialization

Set grid

Set transmitters

and receivers

Read Fresnel data

Set reconstruction

parameters

Variational reconstruction

USE CASES

Initialization

Experimental Set-Up

Data Readers

Scattering Simulation Contrast Reconstruction

Fig. 1. Typical use cases of IPscatt and their connection to the modules/function groups Initialization,
Experimental Set-Up, Data Readers, Scattering Simulation and Contrast Reconstruction. Arrows indicate a typical
data flow.
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(a) Predefined transmitter-
receiver geometry.

(b) User-defined transmitter-
receiver geometry.

(c) Predefined contrast (ball). (d) Contrast reconstruction.

Fig. 2. Some key features of IPscatt. (a) Standard geometries for transmitters/receivers, available out of the
box. (b) User-defined positions for transmitters/receivers. (c) Predefined contrasts in 2D and 3D. (Not shown
are user-defined contrasts, which can also be used in IPscatt.) (d) Contrast reconstructions in 2D and 3D.

x1

x2

(a) Experimental set-up.

x1

x2

(b) Areas.

Fig. 3. (a) Experimental set-up for multi-static measurements: Transmitters (blue filled circles) propagate
incident fields one after the other while the receivers (red filled squares) measure the generated fields
scattered by an obstacle. (b) Areas: The square around the big circle with radius 2R is the computational
domain (CD), D2R = [−2R, 2R)2. The square inside the small circle with radius R is the region of interest (ROI),
D = (−R/

√
2,R/

√
2)2. The corner inside the region of interest represents an obstacle G.
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3.1 Direct Scattering Problem
In IPscatt we consider time-independent inverse scattering of incident waves u i from an inho-

mogeneous medium in d = 2 or d = 3 dimensions. Omitting time-dependence exp(−iωt), where ω
is the angular frequency, the incident field u i admits the Helmholtz equation ∆u i + k2u i = 0 for a

wave number k > 0, which is the angular frequency divided by the speed of propagation. Typical

choices of u i include point sources and plane waves, defined after (4).

Direct Scattering Problem. If we denote by q : Rd → C the compactly supported contrast and by

supp(q) = G its support, then the total field ut solves

∆ut + k2(1 + q)ut = 0 in Rd . (2)

Further, the scattered wave us = ut − u i radiates away from the inhomogeneous medium, i.e. us

satisfies Sommerfeld’s radiation condition

lim

|x |→∞
|x |(d−1)/2

(
∂

∂ |x |
− ik

)
us(x) = 0, uniformly in all directions x̂ = x/|x |. (3)

The direct scattering problem is to find a us solving (2) and (3), or, equivalently, to find a radiating

solution to the equation ∆us + k2(1 + q)us = −k2 qu i. Note that the support of the right-hand side

equals G (unless the incident field vanishes). Unique solvability of the scattering problem holds

whenever the contrast q is smooth enough such that a unique continuation principle holds, and in

particular if q is bounded, see [Colton and Kress 2013].

The direct scattering problem describes waves with fixed frequency that are interacting with

a penetrable inhomogeneous medium, both in two and three dimensions. It models two physical

settings: first, the scattering of acoustic waves and second, the scattering of electromagnetic waves

in transverse magnetic (TM) polarization from some non-magnetic material, see e.g. [Colton and

Kress 2013].

Reformulation of the Direct Scattering Problem. We denote byΦ the radiating fundamental solution

of the Helmholtz equation,

Φ(x) =
i

4

H (1)

0
(k |x |) if x ∈ R2 \ {0}, Φ(x) =

1

4π

e
ik |x |

|x |
if x ∈ R3 \ {0}, (4)

whereH (1)

0
is the Hankel function of the first kind and order zero, see [Abramowitz and Stegun 1965,

Ch. 9]. Typical models of the incident wavesu i are the real part of a point source, i.e.u i(x) = Φ(x−p)
with origin in p ∈ Rd , and the real part of a plane wave, i.e. u i(x) = e

ikx ·θ
with θ as the direction of

propagation.

Further, we define for the domain D ⊃ G the radiating volume potential

v(x) := (V f )(x) := k2
∫
D
Φ(x − y)f (y) dy, x ∈ Rd . (5)

The volume potential operator V defines the radiating solution v = V f of the Helmholtz equation

∆v + k2v = −k2 f in Rd , such that the direct scattering problem can be equivalently reformulated

as follows: Find a scattered field us solving the so-called Lippmann-Schwinger integral equation

us −V (q · us) = V (q · u i) for x ∈ D. (6)

Note that we use the notation f · д if we want to stress the pointwise multiplication. In general the

set D is assumed to be only slightly larger than the support of the contrast, G, and is called the

region of interest because we know that the scattering takes place inside.

ACM Trans. Math. Softw., Vol. 45, No. 4, Article 45. Publication date: December 2019.
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Further, the Lippmann-Schwinger equation implicitly defines the Lippmann-Schwinger solution

operator Tq mapping u i to ut on D via

Tq : L
2(D) → L2(D), Tq := (I −V (q ·))−1, (7)

where the notation (q·) is used to denote the operator of pointwise multiplication (with a function q).

Incident Field and Scattered Field. Next, we need to clarify the model for the generation of the

incident field and the measurement of the scattered field. For the first part, we will present only the

case of point sources. However, we remark that IPscatt can also handle the case of sources being

plane waves. For point sources one assumes that the transmitters generating the field are located

on some surface Γi in R
d \G . Then, the so-called single-layer potential, see [Colton and Kress 2013,

Sec. 3.1],

SLΓi→D : L2(Γi) → L2(D), (SLΓi→D д)(x) :=

∫
Γi

Φ(x − y)д(y) ds(y), x ∈ D \ Γi (8)

models the incident field via u i = SLΓi→D д with density д.

Scattering Process. As mentioned above, this field generated on Γi propagates into the region of

interest D and interacts there with the contrast q via the Lippmann-Schwinger solution operatorTq .
Next, the resulting fields ut respectively us propagate out of D and can be measured. It is known

that the scattered field us has the asymptotic behavior

us(x) =
exp(ik |x |)

|x |(d−1)/2

(
u∞(x̂) + O

(
1

|x |

))
as |x | → ∞, uniformly in all directions x̂ = x/|x | ∈ Sd−1.

Therefore only the so-called far field u∞ : Sd−1 → C is measured in direction x̂ if the receivers

are located far away from G. In contrast, if the receivers are near G, it is advantageous to model

the receivers as measuring the near field us(x). We remark that IPscatt can handle both cases,

however, in what follows we only discuss the near field case for the sake of brevity. Let Γs in R
d \G

be a surface on which the receivers are located. Then a field f given on D can be propagated onto

Γs via the solution-to-data operator

VD→Γs : L
2(D) → L2(Γs), (VD→Γs f )(x) := k

2

∫
D
Φ(x − y)f (y) dy, x ∈ Γs. (9)

The data at a particular receiver on Γs of the resulting field is modeled as pointwise evaluation

at the related position x . Altogether, the introduced operators can be used to model the whole

scattering process via the forward operator

F (q) := VD→Γs (q·)Tq SLΓi→D . (10)

A sensible domain and range of the operator are given via F : L
p
Im≥0

(D) → HS, where HS is the

space of all Hilbert-Schmidt operators HS(L2(Γi), L
2(Γs)). This operator is nonlinear in q since the

Lippmann-Schwinger solution operator Tq is so. However, the evaluation of F at q is a linear

operator mapping a transmitter density д on Γi to the resulting field on Γs. Further, it is clear from
the above considerations that the forward operator depends on the incident field type, the positions

of the transmitters respectively the outgoing directions, the measurement model (near field or far

field data) and the positions respectively directions of the receivers.

For the sake of completeness, we give the Fréchet derivative of the forward operator F because

it is an important ingredient of many reconstruction and optimization schemes (if it is applied to

the defect),

F ′(q) : L2(D) → HS, F ′(q)[h]д = VD→Γs (I + (q·)TqV )(h·)Tq SLΓi→D д, д ∈ L2(Γi). (11)

ACM Trans. Math. Softw., Vol. 45, No. 4, Article 45. Publication date: December 2019.
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Numerical Solution. For a numerical solution of the forward operator we essentially follow

[Vainikko 2000]. The basic idea is to exploit the convolution structure of the volume potential

operatorV , see (5), consisting of the radiating fundamental solution Φ, see (4), and a function f , say,
on BR (ball with radius R) for some fixed radius R > 0. Therefore this operator can in Fourier space

be represented as the element-wise product of the Fourier coefficients of both functions. This is the

key for an efficient solution of the Lippmann-Schwinger equation (6) on an equidistant grid via the

fast Fourier transform (FFT). This equidistant grid of the computational domain D2R , defined in (12),

is denoted by CD = CdN . More precisely, the periodized volume potential operator V2R , defined
in (13), allows to consider in the computational domain D2R the periodized Lippmann-Schwinger

equation corresponding to (6),

v −V2R (q · v) = V2R (q · u i) in L2(D2R ).

Fourier coefficients of the convolution kernel can be explicitly computed, see [Vainikko 2000].

Finally, we use GMRES algorithm to solve the arising discrete linear system efficiently.

Starting from radius R the computational domain (CD) is the smallest square/cube around the

circle/ball with radius 2R, i.e.

D2R = [−2R, 2R)d ⊂ Rd , (12)

see Fig. 3(b). The corresponding equidistant grid of D2R is CD = CdN with mesh size hN = 4R/N .

Following [Vainikko 2000] it is sufficient to evaluate the volume potential (5) on this computational

domain D2R instead of Rd . Therefore in the following we consider the periodized volume potential

operator

V2R : L
2(D2R ) → L2(D2R ), (V2R f )(x) :=

∫
D2R

Φ2R (x − y)f (y) dy, x ∈ D2R, (13)

where the modified kernel Φ2R (x) in the computational domain is k2Φ(x) if x ∈ B2R and 0 if

x ∈ D2R\B2R . IPscatt uses further improvements to evaluate the Lippmann-Schwinger equation (6)

efficiently. One of these is the restriction of all unknowns and all data to the already-mentioned

region of interest (ROI), that is the biggest square/cube inside the circle/ball with radius R, i.e.

D = (−R/
√
2,R/

√
2)d (the definition in [Bürgel et al. 2017] was corrected), see Fig. 3(b); the

corresponding equidistant grid of D is ROI = CND
with ND := ⌊N /(2

√
2)⌋d ; again, see [Bürgel et al.

2017] for details.

Actually, the region of interest should be the mathematical sensible region, i.e. BR , however, the
chosen square/cube D ⊂ BR as region of interest is easier to implement than a circle/ball and can

be used as long as it is ensured that G, i.e. the support of the contrast q, is inside D.

3.2 Discretization
Next, we discuss the discretization of the scattering problem. That concerns the discretization of the

single-layer potential SLΓi→D , the volume potential operatorV , the solution-to-data operatorVD→Γs ,

the Lippmann-Schwinger solution operator Tq and finally the forward operator F . In addition, for

practical usage we give the Fréchet derivative of the forward operator and its adjoint.

As we have used the notation f · д to stress the pointwise multiplication in the continuous case

we use f ⊙д in the discretized one. Where sensible we use underline to denote a discretized version

of a continuous quantity.

Single-Layer Potential. The single-layer potential (8) for Ni source points at pj is discretized via

SLNi,ND
: CNi → CND, SLNi,ND

:= ΦSL (ω
i ⊙ ),

ACM Trans. Math. Softw., Vol. 45, No. 4, Article 45. Publication date: December 2019.
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where (ΦSL)ℓ, j := Φ(xℓ−pj )with ℓ = 1, . . . ,ND and j = 1, . . . ,Ni is the collocation of the transmitted

field and ω i

j ≈ ds(pj ) are the approximations of the infinitesimal element on Γi.

One notices in the continuous formulation of the single-layer potential (8) the required absence

of point sources inside the region of interest D because the singularity of the radiating fundamental

solution (4) at the origin. This restriction is irrelevant in the discretized version as long as the

transmitter is not near a grid point.

Volume Potential Operator. The periodized volume potential operator V2R , see (13), is discretized
via

VND
: CND → CND, VND

:= RN FFT
−1
N (Φ̂N ⊙ ) FFTN EN ,

where EN : CND → CdN and RN : CdN → CND
are the discretizations of the extension and restriction

operators from the region of interest to the computational domain. Further, FFTN = fft2 and

FFT
−1
N = ifft2 are the forward and inverse fast Fourier transforms with the common normalization

constants as used in MATLAB. Finally, Φ̂N denotes the Fourier coefficients of the fundamental solution

stored in FFT convention, i.e. the constant term being at matrix position (1, 1).

Solution-to-Data Operator. The solution-to-data operator (9) is discretized via

VND,Ns
: CND → CNs, VND,Ns

:= hdN k2 ΦV ,

where the exact form of the kernel ΦV depends on whether near or far field data is being measured

and on the positions of the receivers xℓ with ℓ = 1, . . . ,Ns respectively their directions. Further,

hdN is the approximation of the ROI’s infinitesimal element. One notices that there is no restriction

for receivers’ positions as long as they are not in G.

Forward Operator. Finally, the Lippmann-Schwinger solution operator (7) is discretized via

Tq : C
ND → CND, Tq := (I −VND

(q ⊙ ))−1 (14)

with q ∈ CND
. Altogether, the discretized forward operator (10) is given via

F : CND → CNs×Ni, F (q) := VND,Ns
(q ⊙ )Tq SLNi,ND

. (15)

The resulting Fréchet derivative of the forward operator, (11), is given via, see [Bürgel et al. 2017,

Sec. 3.6],

F ′(q) : CND → CNs×Ni, F ′(q)[h] = AND,Ns
(h ⊙ )BND,Ni

, h ∈ CND
(16)

with auxiliary matrices

AND,Ns
= VND,Ns

(
I + (q ⊙ )TqVND

)
∈ CNs×ND,

BND,Ni
= Tq SLNi,ND

∈ CND×Ni .

Its adjoint is then given via

[F ′(q)]∗ : CNs×Ni → CND, [F ′(q)]∗H =
Ns∑
j=1

Ni∑
ℓ=1

H j ,ℓ AND,Ns
(j, ·)BND,Ni

(·, ℓ), H ∈ CNs×Ni .

The adjoint applied to the defect F (q) − F δ
meas

is the derivative of the least-squares error of the

forward operator and as already mentioned is an important ingredient of many reconstruction

and optimization schemes. Note that all spaces for the discretized operators are equipped with the

usual non-weighted ℓ2 norms.
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3.3 Variational Reconstruction
As mentioned previously Contrast Reconstruction is one of the main five components of IPscatt.
In this section we present a brief introduction to the mathematical formulation of the inverse

scattering problem and the implemented variational reconstruction scheme, cf. [Bürgel et al. 2017,

Sec. 4] for more details. We would like to remind that the variational approach uses sparsity, total

variation and physical bounds as penalty terms. We start by introducing the typical terminology

used in the context of parameter identification respectively inverse scattering problems.

Data. To that end, the scattered field at the receivers’ positions is called data. Further, simu-

lated data with noise (or real-world data) is denoted by F δ
meas

, where δ is the relative noise level.

Consequently, simulated data without noise is denoted by Fmeas. For the sake of completeness, we

mention that the synonym exact data for Fmeas is used in the user guide and in the source code.

The Inverse Scattering Problem. For a description of the inverse scattering problem we recall

the nonlinear forward operator F , see (10) respectively (15), and consider the discretized version:

The operator F maps the contrast q ∈ CND
onto perturbed near or far field data F δ

meas
∈ CNs×Ni

,

where Ns is the number of receivers and Ni the number of transmitters. In the context of contrast

reconstruction the task is to find a contrast q such that F (q) matches the data F δ
meas

as good as

possible. Since the underlying problem is ill-posed, a sensible reconstruction can be computed by

minimizing the following Tikhonov functional with a Frobenius norm ∥ · ∥F and penalty terms in

the convex functional P,

q 7→
1

2

∥F (q) − F δ
meas

∥2
F
+ P(q). (17)

Penalty Terms. To take into account three kinds of a priori information about the contrast, the

ansatz for P(q) is the sum of the following three penalty terms: First, the contrast is assumed to

be sparse, i.e. described by few non-zero coefficients, in the pixel basis. This is taken into account

by a penalty term weighted by a regularization parameter α > 0, α ∥q∥1. Second, the scattering
object is supposed to have sharp edges. Thus, the total variation semi-norm is added as a penalty

term using the notation β ∥∇q∥1, where β > 0 is an additional regularization parameter. Third, an

indicator function δ[a,b](q) is introduced, that equals infinity if one or more entries of q are outside

a reasonable interval [a,b] and equals zero otherwise, to respect physical bounds of the real and

imaginary part of the contrast by adding

δ (q) = δ[a,b](Re(q)) + δ[c ,d ](Im(q)).

Altogether, the resulting penalty functional has the form

P(q) = α ∥q∥1 + β ∥∇q∥1 + δ (q).

Numerical Minimization Techniques. The minimization of the Tikhonov functional (17) with the

penalty functional discussed above is challenging because the forward operator F is nonlinear.

Therefore we use the typical approach for ill-posed problems: linearization and iteration. So,

the linearization of F leads us to consider dq(h) := ∥F ′(q)[h] + F (q) − F δ
meas

∥F instead of the

discrepancy d(q) := ∥F (q) − F δ
meas

∥F. This results in an extension of the Tikhonov functional (17)

to fq(h) :=
1

2
[dq(h)]

2 + P(q + h). Finally, the minimization functional is given by

min

h∈CND

1

2

∥F ′(q)[h] + F (q) − F δ
meas

∥2
F︸                                 ︷︷                                 ︸

=:f
dis
(h)

+α ∥q + h∥1︸      ︷︷      ︸
=:fspa(h)

+ β ∥∇(q + h)∥1︸          ︷︷          ︸
=:ftv(h)

+δ (q + h)︸   ︷︷   ︸
=:f

phy
(h)

. (18)

The minimization of that functional is tackled by the primal-dual algorithm, see [Chambolle and

Pock 2011], which consists of two fixed-point iterations and an over-relaxation step. The summands
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are the discrepancy of the linearized problem fdis(h), the sparsity penalty fspa(h), the total variation
penalty ftv(h) and the physical bounds fphy(h). We take up these terms and symbols in the user
guide as well as the source code and they already occurred in [Bürgel et al. 2017].

Then an iterative update for h is used as the second ingredient of the variational scheme.

Note that (18) is a simplified formulation of the actual minimization functional: actually, first, the

norms are weighted to model precisely the experimental set-up and second, to deal with complex-

valued contrasts a transformation into real-valued ones is inserted, such that all requirements of

the underlying primal-dual algorithm are satisfied; more information is given in the source code
documentation of the routine setFuncsPda.
It is well-known that the primal-dual algorithm requires the splitting of the minimization

functional (18) into two parts F andG withminh∈CND
F (Kh)+G(h), where K is a continuous linear

operator, see [Chambolle and Pock 2011]. Different choices for F and G are possible in the case

of (18). However, as elaborated in [Bürgel et al. 2017] the following approach was employed

F (Kh) = fdis(h) + ftv(h) and G(h) = fspa(h) + fphy(h). (19)

Variational Reconstruction Scheme. Finally, we give an overview of the steps that the component

Contrast Reconstruction processes. Afterwards we present stopping criteria for the two iterative

parts of the reconstruction algorithm. For a full pseudo code of the variational reconstruction

scheme with all technical details like the corresponding proximal mappings we refer to [Bürgel

et al. 2017, Sec. 4]. The scheme can be summarized as follows:

(1) Initialization: Set the contrast q = 0.

(2) Minimize fq(h)with respect toh, i.e. (18), with the primal-dual algorithm given in [Chambolle

and Pock 2011]. We call this iteration an inner iteration. If a stopping criterion is fulfilled,

then go to step 3.

(3) Update q := q + h. We call this linearization step an outer iteration. If a stopping criterion is

fulfilled, then the variational reconstruction scheme ends.

Stopping Criteria. Both the inner and the outer iteration can be stopped after a fixed number

of iterations. Following the best practice for inverse problems we recommend to stop the outer

iteration by Morozov’s discrepancy principle, i.e.

if d(q)/∥F δ
meas

∥F ≤ τδ with tolerance parameter τ > 1. (20)

Further, we used extensive numerical experiments, see [Bürgel et al. 2017], to establish two heuristic

strategies to stop the inner iteration and therefore provide them in IPscatt. Both ensure that only

a few inner iterations are executed inside the first outer iterations and allow a high number in

later iterations. As will be demonstrated in Sec. 4 in ideal case a huge number of inner iterations is

granted inside the last outer iteration to improve the reconstruction quality. The two strategies are

as follows:

(S1) Each time the inner iteration terminates the quantities dq(h) and d(q + h) are compared. If

they are similar, the number of inner iterations is increased, otherwise it is decreased.

(S2) Inside the inner iteration the quantities dq(h) and d(q) are compared. If they are similar, the

inner iteration is terminated. (This strategy follows an inexact stopping rule for a Newton-like

method, see [Rieder 2001].) We realize that it would be interesting to compare dq(h) and
d(q + h) directly, however, this involves an additional evaluation of the forward operator F ,

which was deemed too expensive for the purpose of a stopping criterion.
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3.4 Complexity
In this section we discuss the computational cost and main optimizations of the function groups

Scattering Simulation and Contrast Reconstruction.

Scattering Simulation. As can be seen in (10) and (15) the evaluation of the forward operator

consists of the single-layer potential, the data-to-solution operator and the evaluation of the

Lippmann-Schwinger solution operator Tq , see (7) respectively (14). The latter is equivalent to the

solution of the Lippmann-Schwinger equation (6).

The discretization of the first two operators (single-layer potential and data-to-solution operator)

consists of a matrix multiplication and therefore their computational cost is negligible. However,

the efficient solution of the Lippmann-Schwinger equation is more challenging.

Following [Vainikko 2000] the domain of the operator is periodized and the collocation method

is applied. Therefore the convolution structure of the periodized volume potential operator V2R ,
see (13), is exploited and Fourier coefficients are used. Further, using FFT lowers the number

of floating-point operations from N 2d
to O(N d

logN ), where N is the number of discretization

points in each dimension d . In contrast to [Vainikko 2000] IPscatt stores the necessary Fourier

coefficients such that unnecessary shift operations (and therefore memory operations) are avoided.

As already mentioned appropriate restriction and extension operators are used to lower the memory

footprint. In particular, all quantities outside of the periodized volume potential operator V2R are

only stored within the region of interest D instead of the whole computational domain D2R . Finally,

IPscatt solves the underlying system of linear equations with the GMRES from Kelley, see [Kelley

1995, Sec. 3.4] and [Kelley 2002] for the source code. In our numerical experiments this solver

turned out to be superior to standard GMRES.

Contrast Reconstruction. In the case of the Contrast Reconstruction the forward operator must

be evaluated and auxiliary matrices for the Jacobian matrix (Fréchet derivative) of the forward

operator are required, see (16). These two preparations (forward operator and auxiliary matrices)

for the inner iterations are time consuming. We remark that each of the steps of the inner iteration,

i.e. each of the steps in the primal-dual algorithm, see [Chambolle and Pock 2011], has a small

computational effort. However, for a sufficiently good reconstruction a large number of these steps

is necessary. Therefore the overall cost of these iterations is considerable.

As already mentioned, IPscatt provides the derivative of the least-squares error of the forward

operator although it is not part of our reconstruction scheme. Its computational cost is reasonable

because it can be computed without evaluating the full derivative first. Further, IPscatt reduces
the overall computational effort of reconstruction schemes using the forward operator as well as

the derivative of the least-squares error by evaluating both in one routine.

4 EXAMPLES
In this section we demonstrate the main applications of IPscatt using representative examples.

Further, we compare IPscatt with two other software packages (sparseScatt and GLIDE) per-
forming the same task, i.e. solving the inverse medium problem in scattering, and we discuss the

advantages of IPscatt over these packages.

In this regard, we put the Contrast Reconstruction in the foreground because the essential differ-

ences among the three packages are in this group. As mentioned before, Contrast Reconstruction
is only one of the five function groups of IPscatt apart from Initialization, Experimental Set-Up,
Data Readers and Scattering Simulation. However, we will choose the test cases such that all other

function groups are implicitly included in at least one of the discussed examples.
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4.1 Comparing Software Packages
We begin our discussion with a survey of the reconstruction methods implemented by the software

packages sparseScatt and GLIDE and refer to [Lechleiter et al. 2013] respectively [Strehlow 2014,

Ch. 5] for details.

Package sparseScatt. The package sparseScatt solves the nonlinear inverse medium problem

in scattering using a thresholded, nonlinear Landweber method, which employs the so-called

soft-shrinkage operator, see e.g. [Chan and Shen 2005]. In sparseScatt the contrast is assumed to

be sparse with respect to the pixel basis. Therefore the underlying Tikhonov functional is given by

min

q∈CND

1

2
∥F (q) − F δ

meas
∥2
F
+ α ∥q∥1. (21)

Package GLIDE. The package GLIDE relies on the Born approximation on the physical model

of scattering. The Born approximation can be considered as the linearization of the forward

operator (10) in the origin, cf. [Born 1926]. Further, for the reconstruction the contrast is assumed

to be sparse. However, in contrast to IPscatt and sparseScatt the sparsity is assumed to be with

respect to a wavelet basis, e.g. the Cohen-Daubechies-Feauveau-9/7 (CDF) wavelets. Finally, the

related variational problem is solved via the fast iterative shrinkage-thresholding algorithm for linear
inverse problems (FISTA), see [Beck and Teboulle 2009].

Package IPscatt. To the best of our knowledge, IPscatt is the first freely available software

package providing an advanced contrast reconstruction scheme in two and three dimensions,

providing data handling routines for real-world data from Institute Fresnel and finally, providing

several transmitter-receiver geometries.

4.2 Experimental Set-Ups
For our experiments we will consider the three transmitter-receiver geometries shown in Fig. 4,

that we call Fresnel case, borehole case and sphere case.

Fresnel Case. In the Fresnel case, we use the same experimental set-up as in [Strehlow 2014,

Sec. 5.5, Fig. 5.6], i.e. we consider scattering in two dimensions with a contrast consisting of a

plane of two homogeneous, long cylindrical dielectrics, see Fig. 5(a)/(e). This is the same set-up

as used in the real-world data set twodielTM_8f.exp from Institute Fresnel, see [Belkebir and

Saillard 2001]. There are 36 transmitters arranged on a circle with radius 720 ± 3mm. Each of these

point sources emits an electromagnetic wave in TM polarization with a frequency of 6GHz, i.e.

wave number k ≈ 126m
−1
. The 72 receivers are arranged on a circle with radius 760 ± 3mm. The

experimental set-up is depicted in Fig. 4(a). We would like to point out that for metrological reasons

some transmitter-receiver links are missing, i.e. the discretized forward operator F , see (15), maps

from CND
to an appropriate subspace of CNs×Ni

. Therefore the minimization functional (18) was

adapted accordingly.

Borehole Case. In the borehole case, we consider a synthetic contrast in two dimensions consisting

of a real and an imaginary part as depicted in Fig. 6(a)/(e). The contrast was constructed to be

challenging as it consists of a gradual contrast ramp (the thick horizontal rectangle at the bottom

of the real and imaginary part of the contrast) as well as fine features (a filled circle, small squares

with different contrasts in real as well as imaginary part and a rotated thin line in the real part). The

transmitter-receiver geometry consists of two boreholes 10m apart and 20m deep. Each borehole is

assumed to be equipped with 18 transmitters and receivers, that are arranged in the configuration

presented in Fig. 4(b). The transmitters are assumed to be point sources emitting with a wave
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(a) Fresnel case. (b) Borehole case. (c) Sphere case.

Fig. 4. Experimental set-ups for comparisons. Transmitters are blue filled circles and receivers red filled
squares. (a) Fresnel case: Transmitters and receivers are arranged on circles as in the experimental set-up of
Institute Fresnel, see [Belkebir and Saillard 2001]. (b) Borehole case: Transmitters and receivers are arranged
on two boreholes. (c) Sphere case: Transmitters (and receivers) are roughly equidistantly arranged on a sphere.

number k = 250m
−1
, i.e. a frequency of 11.9 GHz. Gaussian noise with noise level of 1% in real and

imaginary part was employed to simulate data in this case.

Sphere Case. In the sphere case, three-dimensional scattering is considered. The synthetic contrast

is depicted in Fig. 7(a)/(e). The transmitter-receiver geometry consists of 31 transmitters as well as

receivers that are distributed almost equidistantly on the surface of a sphere with a radius of 5m, see

Fig. 4(c). To approximate an equidistant distribution the so-called Fibonacci lattice, see [González

2010, Sec. 3.1], was employed. The transmitters are point sources emitting with a wave number

k = 10m
−1
, i.e. a frequency of 0.5 GHz. Again 1% Gaussian noise was used in the data simulation.

4.3 Results and Discussion
Results. The results of the reconstructions in 2D are depicted in Figs. 5 and 6. The results in 3D

are given in Fig. 7. We always show the contrast in the region of interest (ROI), i.e. it is a square

approximately from −0.07m to 0.07m in case of two dimensions and a cube from −0.70m to 0.70m
in three dimensions. We would like to point out that test cases are omitted if the package is not

able to tackle them.

The results were obtained with the following set of regularization parameters: In case of IPscatt
and sparseScatt we used the highest regularization parameter α , that fulfills the discrepancy
principle (20). Further, in the case of IPscatt we generally use β = α · 2 · 10−8 as the second

regularization parameter, because the ratio α/β = 500/10−5 was derived empirically, cf. [Bürgel

et al. 2017]. In addition, we enforce the real part of the contrast to be in [−1, 3] and the imaginary

part to be in [0, 3] by using physical bounds in IPscatt. However, an exception of the α-β-ratio is

made in IPscatt for the case of balanced penalty terms—i.e. sparsity penalty and total variation

penalty have the same scale. Balanced penalty terms are recommended when reconstruction quality

is paramount and increased computational cost is disregarded.

The reconstruction with sparseScatt turned out to be very sensitive to the choice of the step

size of the thresholded, nonlinear Landweber scheme. If the value was chosen too small sparse-
Scatt was very slow. If the value was chosen too big the reconstruction failed completely. After

several experiments the value of 10
−4

was deemed best for the Fresnel case, cf. Fig. 5(c)/(g), and the

value of 1 was deemed best for the borehole case, cf. Fig. 6(d)/(h).
In the case of GLIDE we took the same parameter values as were used in [Strehlow 2014, Sec. 5.5,

Fig. 5.6].
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Fig. 5. Comparison of IPscatt with sparseScatt and GLIDE in two dimensions in the Fresnel case: exact
contrast and reconstructions of two dielectrics from real-world data from Institute Fresnel with 6GHz, real
and imaginary part. The two dielectrics with a homogeneous contrast of q = 2 ± 0.3 have a radius of 15mm

and are positioned 45mm from the origin. The reconstructions with IPscatt and sparseScatt were stopped
by discrepancy principle. The reconstruction with GLIDE stopped because the maximum number of iterations
was reached. The run times, relative discrepancies and relative errors were with IPscatt (b)/(f) 1.3min,
dis. 0.216, err. 0.542 after 6 iterations with α = 10

6, β = 0.02, with sparseScatt (c)/(g) 4.4min, dis. 0.220,
err. 0.552 after 50 iterations with α = 114 and with GLIDE (d)/(h) 0.8min.

All computations were carried out on a workstation with an Intel(R) Core(TM) i7-3770 CPU with

3.40GHz and 32GByte RAM using MATLAB in version R2016b.

The contrast and the reconstructions relating the Fresnel case of the experimental set-up are

shown in Fig. 5. As mentioned above GLIDE relies on the Born approximation and therefore is

essentially comparable to IPscatt respectively sparseScatt with only one outer loop. However,

as can be seen in Fig. 5(d)/(h) the resulting reconstruction is reasonable. A better reconstruction

is obtained with sparseScatt with a significantly higher computational cost, see Fig. 5(c)/(g).

However, one notices that both reconstructions contain regions where the imaginary part of the

contrast is negative, i.e. the obtained reconstructions are physically not sensible. Finally, since

the reconstruction approach of IPscatt is based on physical constraints, it is able to avoid these

artifacts, see Fig. 5(b)/(f). At the same time it has only slightly higher computational cost than

GLIDE.
Next, the contrast and the reconstructions relating the borehole case are presented in Fig. 6. The

result of IPscatt was accurate and fast again, see Fig. 6(c)/(g). As in the previous example, the

reconstruction obtained by sparseScatt is reasonable as determined by visual inspection, see

Fig. 6(d)/(h). It is not surprising that the same physical artifacts as were discussed in the Fresnel case
are also encountered here. Further, we observe some artifacts around the rotated thin line. Moreover,

sparseScatt was much slower than IPscatt. In addition, we reconstructed the contrast with

ACM Trans. Math. Softw., Vol. 45, No. 4, Article 45. Publication date: December 2019.



Algorithm 1001: IPscatt—A MATLAB Toolbox for the Inverse Medium Problem 45:17

0

0.5

1

1.5

(a) Predefined contrast,
real part.

0

0.5

1

1.5

(b) Recon. with IPscatt
with balanced penalty
terms, real part.

0

0.5

1

1.5

(c) Recon. with IPscatt,
real part.

0

0.5

1

1.5

(d) Recon. with sparse-
Scatt, real part.

0

0.5

1

1.5

(e) Predefined contrast,
imag. part.

0

0.5

1

1.5

(f) Recon. with IPscatt
with balanced penalty
terms, imag. part.

0

0.5

1

1.5

(g) Recon. with IPscatt,
imag. part.

0

0.5

1

1.5

(h) Recon. with sparse-
Scatt, imag. part.

Fig. 6. Comparison of IPscatt (with and without balanced penalty terms) with sparseScatt in two dimen-
sions in the borehole case: predefined contrast and reconstructions in real and imaginary part from simulated
data with 1% noise level. The reconstructions with IPscatt and sparseScatt were stopped by discrepancy
principle. The run times, relative discrepancies and relative errors were with IPscatt using balanced penalty
terms (b)/(f) 12.4 h, dis. 0.026, err. 0.333 after 64 iterations (with 5 · 105 inner iterations in the last one) with
α = 2.04 · 10−4, β = 6 · 10−7, with IPscatt (c)/(g) 16.5min, dis. 0.025, err. 0.337 after 62 iterations with α = 310,
β = 6.2 · 10−6 and with sparseScatt (d)/(h) 5.1 h, dis. 0.015, err. 0.455 after 2319 iterations with α = 10

−4.

IPscatt with the above mentioned balanced penalty terms, see Fig. 6(b)/(f). The thick horizontal

rectangle is excellently recovered as well as is the gradual contrast ramp. However, the thickness

of the thin diagonal line is overestimated by the reconstruction algorithm.

Finally, the contrast and the reconstruction relating the sphere case of the experimental set-ups

are shown in Fig. 7. As neither sparseScatt nor GLIDE support reconstructions for scattering in
three dimensions only the reconstruction obtained by IPscatt is shown. As can be seen it delivers

a precise reconstruction result in a reasonable time.

Discussion. All three software packages have in common routines of the Data Readers group to

deal with real-world data from Institute Fresnel and routines of the Scattering Simulation group. In

the latter case, the only difference concerns the dimension: all can deal with 2D but only IPscatt
with 3D. Therefore we focus on the groups Experimental Set-Up and Contrast Reconstruction in the

discussion.

Out of the box the software package GLIDE is restricted to two-dimensional scattering problems

and transmitter-receiver geometries on circles. GLIDE has these properties in common with sparse-
Scatt. As the only package, amongst the three considered, GLIDE is restricted to small wave numbers

because it solves the linear inverse medium problem instead of the nonlinear one. Consequently,

in the case of high wave numbers GLIDE cannot compete with sparseScatt and IPscatt with
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Fig. 7. Sphere case: reconstruction of two tripods in real and imaginary part with IPscatt from simulated
data with 1% noise level. The arcs of the tripods have the contrast values 1.0, 0.8, 0.6 and 1.0i, 0.8i, 0.6i. The
contrast on a sectional plane through the scatterer is shown in the second direction in the case of the real
part and the first direction in the case of the imaginary part. Parameters for reconstruction were α = 1000,
β = 2 · 10−5. The reconstruction was stopped by the discrepancy principle after 15 iterations. The run time
was 6.01 h, relative discrepancy 0.012 and relative error 0.464.

regard to reconstruction quality. On the other hand, GLIDE outcompetes the compared packages

with the low computational effort. Altogether, GLIDE is recommended only if the run time is the

most important factor.

The package sparseScatt is also restricted to two-dimensional scattering problems and to

transmitter-receiver geometries on circles. Further, among the three compared packages sparse-
Scatt was consistently the computationally most expensive one. However, sparseScatt can deal

with the nonlinear inverse medium problem and therefore delivers a better reconstruction than

GLIDE but stays behind IPscatt.
The only disadvantage of IPscatt in comparison to GLIDE and sparseScatt is the slightly

higher computational effort in comparison to GLIDE. Altogether one can summarize that IPscatt
provides a better usability, reconstruction quality and run time properties than GLIDE or sparse-
Scatt.

5 SUMMARY AND OUTLOOK
We have discussed the main features and application cases of IPscatt. We have also compared it

to other existing software packages dealing with the inverse medium problem in time-independent

scattering. The comparisons were carried out for synthetic as well as real-world data.

We are confident that the modular and flexible design of IPscatt facilitates its use in a wide range
of applications. For example, the ability to define arbitrary transmitter and receiver geometries is

interesting for users interested in the simulation of scattering with extremely few transmitters and
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receivers. Together with IPscatt’s sophisticated reconstruction algorithm it allows to study the

limit cases of reconstructability in the inverse medium problem.

However, several open questions remain. For example, it is well-known that the quality of

the reconstruction is dependent on a suitable choice of the involved regularization parameters.

Therefore a subject of ongoing research is a heuristic algorithm for an automatic, data-driven

parameter choice.

In addition, there are still two interesting open questions regarding the scattering simulation’s and

the reconstruction scheme’s theory. The first question is about the convergence of the collocation

method. In the case of smooth contrasts it was proven in [Vainikko 2000]. However, in the case

considered here, i.e. piecewise smooth contrasts, the convergencewas usually given in our numerical

experiments but its proof remains elusive. The second question is about the convergence of the

underlying reconstruction scheme. Some of its aspects like the usage of the primal-dual algorithm

are justified by [Chambolle and Pock 2011; Pock et al. 2009] but its connection to the properties

of the outer iterations is yet to be entirely understood. However, as above although the proof is

still a matter of current research, the proposed reconstruction scheme turned out to be reliable in

comprehensive numerical experiments in two and three dimensions, in particular, in the case of

real-world data in two dimensions.
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