
Non-linear Tikhonov Regularization in Banach Spaces for

Inverse Electromagnetic Scattering from Anisotropic Penetrable

Non-Magnetic Media

Marcel Rennoch∗

November 23, 2016

Abstract

We consider Tikhonov and sparsity-promoting regularization in Banach spaces for inverse elec-
tromagnetic scattering from penetrable linear inhomogeneous anisotropic non-magnetic media,
which are free of sources. For that purpose we work with material parameters of an admissible
set, equipped with the L∞-topology. Further we use H1-estimates for solutions of Maxwell’s
equations to analyze the dependence of scattered fields and their derivatives on the material
parameter. Therewith we show convergence of a non-linear Tikhonov regularization against a
minimum-norm solution to the inverse problem, and extend that method to a sparsity-promoting
version.

1 Introduction

Although the field of inverse problems was treated with skepticism in the beginning, its significance
was quickly realized during World War II, such that inverse scattering problems have become the
most popular and well-studied amongst ill-posed problems (for a survey introduction see e.g. [11]).
The first applications arises in the inventions of RADAR and SONAR, trying to determine the dis-
tance of an object by the use of acoustic and electromagnetic waves. However, whereas determining
the location of a target is kind of straight-forward, the problem of identification is way more difficult
to handle, since the solution of the modeled problem does not depend continuously on the measured
data. Such problems are called to be ill-posed. Thus, it was not until Tikhonov and his Western
pendant Miller established their mathematical theories, that prepared the ground for the invention
of synthetic aperture radar (SAR), marking the first successful application in object identification
using electromagnetic waves [10]. Subsequently theoretical and numerical improvements consoli-
dated the position of inverse scattering in daily routine, such that nowadays the theory of inverse
scattering is for example an inherent part of medical detection devices as in electrical impedance
tomography (EIT) or ultrasonics.

However, detection and identification of objects using inverse scattering theory is relatively new
in the field of non-destructive material testing, but has already proven itself as highly promising
approach. Therein, testing the intactness of a machine-made component is about detection of non-
obvious cracks, bumps or the like. Therefore one can legitimately assume that the object, that is
to say the crack, is very small compared to its surrounding media, in fact the manufactured item.
Mathematically the contrast of such a scatterer is described by few non-zero coefficients for a chosen
basis and is commonly called sparse. Since a-priori informations are reasonably used, like in using
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ultrasound to image the human body, the idea is now to improve detection methods in material
testing by regarding the assumption of sparse contrasts.

But, although methods involving sparsity constraints are widely accepted in image processing,
they are barely used in the theory of inverse scattering. Thus inspired, [15] presented so called
Tikhonov and soft-shrinkage regularization methods for non-linear inverse medium scattering prob-
lems with sparsity-promoting penalty terms. The therein shown analysis rely on the scattering of
time-harmonic acoustic waves from inhomogeneous media described by scalar valued refractive in-
dices. Their results were then extended to anisotropic penetrable media with matrix valued material
parameter in [16]. Further herein, the formerly restriction to Hilbert spaces as image spaces of the
contrast-to-measurement operator, seen in [15], was generalized to Banach spaces.

Whereas both previous works deal with acoustic waves, we now adapt the techniques of [16]
to electromagnetic scattering for penetrable linear inhomogeneous non-magnetic anisotropic media
(see aluminum-copper alloys as an example). Therefore we remind that in general the propagation
of time-harmonic electromagnetic waves in three dimensions is governed by Maxwell’s equations
for the electric and magnetic fields E and H. Given a circular frequency ω > 0 and a medium
with electric permittivity ε, magnetic permeability µ, and conductivity σ, linear and time-harmonic
electromagnetic waves are governed by the differential equations

curlE − iωµH = 0 ,

curlH + iωεE = σE
in R3. (1)

We assume the tangential components of E and H to be continuous on interfaces, where σ, ε and
µ are discontinuous. (Instead, the normal components might jump across the material boundary.)
Denoting the constant background permittivity and permeability by ε0 and µ0, we introduce the
anisotropic relative permittivity εr and relative permeability µr

εr(x) =
ε(x)

ε0
+ i

σ(x)

ωε0
, µr(x) =

µ(x)

µ0
.

In the following we assume that ε ≡ ε0, µ ≡ µ0, and σ ≡ 0 outside some bounded domain. Further
the scattered fields satisfy the Silver-Müller radiation condition√

µ0

ε0
Hs(x)× x− |x|Es(x) = O

(
1

|x|

)
as |x| → ∞, uniformly with respect to x̂ :=

x

|x|
∈ S2.

As mentioned above, we intend to handle the important case of non-magnetic media, that is the
magnetic permeability µ is constant and equal to the permeability µ0 of vacuum such that µr ≡ 1.
An example for that case can be seen during the solidification of an aluminum-copper alloy with a
non-magnetic Al2CU phase. Herein strong magnetic fields are used to control the crystal growth and
the solid-liquid interface morphology to align the phase and therefore avoiding the embrittlement of
the material. Hence we will work from now on with the magnetic field H only, which is divergence
free in case of non-magnetic media. Thus the system (1) can be reduced to the second-order Maxwell
system

curl
(
ε−1

r curlH
)
− k2H = 0 in R3 (2)

for the positive wave number k := ω
√
ε0µ0 ∈ C\{0}, such that Re k ≥ 0 and Im k ≥ 0. Accordingly,

the electric field is determined by E = i curlH/(ωε0εr).
First of all in the ongoing part we generalize the scattering problem in more details. Section 3 is

then devoted to the construction of a solution operator to the according scattering problem, mapping
material parameters to scattered fields. Therefor we will establish H1-regularity estimates, provided
by [21], which are used to show continuity of the solution operator. Note that the chosen setting will
yield convergence results for Tikhonov regularization, which seems to be impossible when one works
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in H(curl). Following [16], we derive in Section 4 some results of differentiability for the solution
operator, which we extend in Section 5 to a parameter-to-far field mapping, called the forward
operator. Finally, Section 6 states sparsity promoting Tikhonov regularization results in wavelet
bases and also for functions of bounded variation.

Notation: By S2 = {x ∈ R3, |x| = 1} we denote the unit sphere in R3 and BR(x) is the ball of
radius R about x ∈ R3. For any bounded Lipschitz domain B ⊂ R3 we denote the Sobolev space
W 1,2(B,C3) = H1(B,C3). Hence, we define the Hilbert spaceH(curl, B) := {v ∈ L2(B,C3), curl v ∈
L2(B,C3)}, with inner product (v, w)H(curl,B) := (v, w)L2(B) + (curl v, curlw)L2(B). The closure of
C∞0 (B,C3) in the norm of H(curl, B) is named H0(curl, B) = {v ∈ H(curl, B), ν × v = 0 on ∂B}.
Further,

Hloc(curl,R3) :=
{
v : R3 → C3, v|B ∈ H(curl, B) for all balls B ⊂ R3

}
and H

−1/2
t (∂B) := {v ∈ H−1/2(∂B,C3), v · ν = 0 a.e. on ∂B} in which ν denotes the unit outward

normal to B. Therewith one defines the trace space of H(curl, B) with respect to the trace v 7→ ν×v,

H−1/2(Div, ∂B) :=
{
v ∈ H−1/2

t (∂B), ∇∂B · v ∈ H−1/2(∂B)
}
,

where ∇∂B· denotes the surface divergence. Its dual space is given by H−1/2(Curl, ∂B) := {v ∈
H
−1/2
t (∂B), ∇∂B×v ∈ H−1/2(∂B)}, within use of the surface scalar curl ∇∂B× (for details see, e.g,.

[18, Section 3.4]). By abuse of notation, a duality pairing between the trace space of H(curl, B) and
its dual (see, e.g., [18, Section 3.5.3], [6]) will for simplicity always be written as a boundary integral
over ∂B. Analogously we have H(div, B) := {v ∈ L2(B,C3), div v ∈ L2(B,C3)} with inner product
(v, w)H(div,B) := (v, w)L2(B) + (div v,divw)L2(B). To improve readability, we use a generic constant
C in our estimates, maybe changing its value from one occurrence to the other.

2 Scattering from non-magnetic media

We consider for now the time-harmonic Maxwell’s equations to model scattering of an incident
electromagnetic wave from a non-magnetic medium modeled by space-dependent relative electric
permittivity εr. As the material parameter εr ∈ L∞(D,Sym(3)) take values in the complex-valued
symmetric 3×3 matrices Sym(3) ⊂ C3×3, its real part correlates physically to the electric permittiv-
ity, whereas the imaginary part is proportional to the electric conductivity σ. We assume that there

exists a positive constant λ > 0 such that λ|ξ|2 ≤ Re(ξ
>
εr ξ) for all ξ ∈ C3 and for almost all x on

the bounded Lipschitz domain D ⊂ R3 with connected complement R3 \D. Since in particular we
have that also ε−1

r ∈ L∞(D,Sym(3)), we suppose that the closure of D equals the support of I3−ε−1
r

and, moreover, that the imaginary part of ε−1
r is bounded from above, that is to say Im(ξ

>
ε−1

r ξ) ≤ 0
for ξ ∈ C3. To generalize notation we thus abbreviate the material parameter as an element ρ := ε−1

r

of the bounded subset P of L∞(D,Sym(3)), which is equipped with the L∞-topology and defined
for a λ > 0 as

P =
{
ρ ∈ L∞(D,Sym(3)), λ|ξ|2 ≤ Re(ξ

>
ρ−1ξ), Im(ξ

>
ρ ξ) ≤ 0, a.e. in D and for all ξ ∈ C3

}
.

Remember that we have already derived in the introduction that the total magnetic field solves

curl (ρ curlH)− k2H = 0 in R3. (3)

On interfaces where ρ−1 is discontinuous, the tangential components of the magnetic field H and of
ρ curlH are continuous across the interface. In particular, if ρ−1 is discontinuous across ∂D, then

ν × [H]∂D = 0 and ν × [ρ curlH]∂D = 0, (4)
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where [·]∂D denotes the jump of a function across ∂D. Assume that a time-harmonic incident plane
wave

H i(x, d; p) := p eikx·d, x ∈ R3, where d ∈ S2, p ∈ C3, and p · d = 0,

with direction d and polarization p propagates through the inhomogeneity D. Due to the different
material parameters inside D there arises a scattered wave Hs, solving

curl (ρ curlHs)− k2Hs = curl
(
(I3−ρ) curlH i

)
in R3. (5)

Since H i solves curl2H i − k2H i = 0 in R3, the total field H = H i + Hs is still a solution to (3).
Furthermore Hs is radiating, i.e. it satisfies the Silver-Müller radiation condition

curlHs(x)× x̂− ikHs(x) = O
(
|x|−2

)
as |x| → ∞, uniformly with respect to x̂ :=

x

|x|
∈ S2, (6)

and therefore has the asymptotic behavior

Hs(x) =
exp (ik|x|)

4π|x|
H∞(x̂, d; p) +O

(
|x|−2

)
, as |x| → ∞,

uniformly in all directions x̂ = x/|x| ∈ S2. Here H∞ is called the far field pattern of Hs, which (see,
e.g. [11, Theorem 6.9]) is an analytic and tangential vector field on the unit sphere, i.e.,

H∞(x̂, d; p) · x̂ = 0 for all x̂ ∈ S2 and all d ∈ S2 and p ∈ C3 with p · d = 0.

In particular, H∞ belongs to the space of square-integrable tangential vector fields

L2
t (S2) :=

{
g ∈ L2(S2,C3), g(x̂) · x̂ = 0 for a.e. x̂ ∈ S2

}
⊂ L2(S2,C3).

The far field patterns H∞ define the far field operator F : L2
t (S2)→ L2

t (S2) by

(Fg) (x̂) :=

∫
S2
H∞(x̂, d; g(d)) dS(d) for x̂ ∈ S2, (7)

which is linear since H∞ depends linearly on p, i.e. H∞(x̂, d; p) = Ĥ∞(x̂, d)p for all p ∈ C3 with
p · d = 0 and Ĥ∞(x̂, d) ∈ C3×3. Due to reciprocity relations, H∞ is moreover a smooth function in
both variables x̂ and d which implies that F is a compact operator on L2

t (S2). Note that Fg with
g ∈ L2

t (S2), is the far field pattern of the magnetic field corresponding to an incident Herglotz wave
function

vg(x) =

∫
S2
H i(x, d; g(d)) dS(d) =

∫
S2

eikx·dg(d) dS(d), x ∈ R3, in H(curl, BR). (8)

Regarding a generalization of source terms f ∈ C∞(D,C3) on the right of (5), we seek weak
radiating solutions v ∈ Hloc(curl,R3) to

curl (ρ curl v)− k2v = curl ((I3−ρ) f) in R3, (9)

ν × v|− = ν × v|+ , ν × ρ curl v|− − ν × curl v|+ = ν × (I3−ρ) f on ∂D. (10)

Note that we always implicitly use natural, homogeneous transmission conditions (10) on ∂D in the
rest of this paper and that setting f = curlH i yields the original problem (5). The weak radiating
solution v ∈ Hloc(curl,R3) thus needs to satisfy∫

R3

[
ρ curl v · curlψ − k2v · ψ

]
dx =

∫
R3

(I3−ρ) f · curlψ dx (11)

for all ψ ∈ H(curl,R3) with compact support.
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Remark 1. (a) Choosing ψ = ∇ϕ to be a gradient field, the equation curl∇ϕ = 0 implies that∫
R3 v · ∇ϕdx = 0 for all ϕ ∈ H1(R3) with compact support, i.e. div v = 0 in R3. Thus, the solution
v is divergence free.

(b) The Silver-Müller radiation condition is well-defined for any weak solution v to (11): Outside
D the solution v solves curl2 v−k2v = 0 together with div v = 0; thus, the identity ∆ = ∇ div− curl2

implies that ∆v+k2v = 0 and elliptic regularity results imply that v is a smooth function in R3 \D.

3 The solution operator

Now we transform the weak formulation (11) into a variational equation on a bounded domain.
Therefore we denote by BR a ball, containing the support D of I3−ρ in its interior and the tan-
gential trace mapping γt : H(curl, BR) → H−1/2(Div, ∂BR) by γt(u) = ν × u|∂BR

for the outward
unit normal vector ν = ν(x) at x ∈ ∂BR. Further the “dual” tangential trace γT : H(curl, BR) →
H−1/2(Curl, ∂BR) is given by γT (u) = (ν × u)|∂BR

× ν, see [18, Theorem 3.31] or [6] for a general-

ization to Lipschitz domains. If v ∈ Hloc(curl,R3) solves (11), then v solves also∫
BR

[
ρ curl v · curlψ − k2v · ψ

]
dx+

∫
∂BR

γt(curl v) · γT (ψ) dS =

∫
D

(I3−ρ) f · curlψ dx, (12)

for all test functions ψ ∈ H(curl, BR) with compact support included in BR, since ρ ≡ 1 on ∂BR.
Regarding the transmission conditions (10) and the relation between the magnetic and electric fields,
see below (2), we denote the exterior magnetic-to-electric Calderon operator by

Λ: H−1/2(Div, ∂BR)→ H−1/2(Div, ∂BR),

mapping ϕ ∈ H−1/2(Div, ∂BR) into (ν × i
ωε0

curlu)
∣∣∣
∂BR

, where u satisfies

curl2 u− k2u = 0 in R3 \BR, γt(u) = ν × u = −iωε0ϕ on ∂BR

and the Silver-Müller radiation condition (6). Therewith we can rewrite (12) as∫
BR

[
ρ curl v · curlψ − k2v · ψ

]
dx+

∫
∂BR

Λ(γt(v)) · γT (ψ) dS =

∫
D

(I3−ρ) f · curlψ dx (13)

for all ψ ∈ H(curl, BR). (We omit the trace operators γt and γT from now on if a tangential
restriction to the boundary is obvious.)

Remark 2. If v ∈ H(curl, BR) solves (13) then v can be extended into the exterior of BR, for
simplicity denoted by v again, such that the extension v solves (11).

We now define a sesquilinear form for ρ ∈ P and for all ϕ, ψ ∈ H(curl, BR) by

aρ(ϕ,ψ) :=

∫
BR

[
ρ curlϕ · curlψ − k2ϕ · ψ

]
dx+

∫
∂BR

Λ(ν × ϕ) · ψ dS,

and the solution operator L: P × H(curl, BR) → H(curl, BR), which maps material parameters ρ
and incident fields ui to the solution of the variational problem

aρ(L(ρ, ui), ψ) =

∫
D

(I3−ρ) curlui · curlψ dx for all ψ ∈ H(curl, BR). (14)

Thus, L(ρ, ui) = v is still the weak solution to the variational formulation (13) for f = curlui and
the radiating extension of v to R3 (see Remark 2) weakly solves

curl(ρ curl v)− k2v = curl
(
(I3−ρ) curlui

)
in R3.
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Using either this variational formulation in involving the exterior Calderon operator [18] or a
volume integral approach [14], it is possible to show that the underlying problem (11) can be reduced
to a Fredholm problem of index zero (see, e.g. [14, Lemma 2.4]), i.e. uniqueness implies existence of
solution (see, e.g. [14, Theorem 2.5], [18, Theorem 10.2]):

Lemma 3. The scattering problem (9), (10), and (6) satisfies the Fredholm alternative, i.e. there
exists a unique radiating solution v ∈ Hloc(curl,R3) of (11) for every f ∈ L2(D,C3), provided
uniqueness holds for all ρ ∈ P. If uniqueness holds, then there exists a constant C > 0 (depending
on BR, k, ρ only) such that

‖v‖H(curl,BR) ≤ C‖(I3−ρ)f‖L2(D,C3) (15)

for the right-hand side of (22). Further, the restriction v|D is the unique solution of (22) in
H(curl, BR).

Assumption 4. We assume in the following that for the connected, convex set P any solution
to (11) for f ∈ L2(D,C3) is unique, such that existence and continuous dependence of this solution
follow from uniqueness. For example, in the case of dielectric media (i.e. σ ≡ 0), this assumption
is always satisfied if ρ ∈ P is globally Hölder continuous and differentiable, except at one point of
Coulomb-type singularity, since, under this smoothness assumption, unique continuation results for
Maxwell’s equations are applicable, see [19],[23].

Thus the solution operator L(ρ, ·) exists for all ρ ∈ P, together with a constant C = C(P) such
that ‖L(ρ, ui)‖H(curl,BR) ≤ C ‖ui‖H(curl,D).

To handle derivatives of L in Lp-spaces, we use an H1-estimate stated by [21]. Since we will
work with a couple of solutions to equations with slightly different right-hand sides, we state the
following result for a broader range of coefficients A on the right-hand side.

Theorem 5. Let ρ ∈ P, f ∈ L2(D,C3) and the support D of A ∈ L∞(BR, Sym(3)) be a subset of
the ball BR. If v in H(curl, BR) is a weak solution of

curl (ρ curl v)− k2v = curl (Af) in R3, (16)

then v ∈ H1(BR,C3) and there holds that

‖v‖H1(BR,C3) ≤ C ‖Af‖L2(BR,C3), (17)

for some constant C depending on BR, k, and ρ only.

Proof. To apply results of [21], we have to ensure that the solution is part of an appropriate function
space. Therefore we choose a cut-off function χ ∈ C∞c (R3), such that χ ≡ 1 in BR ⊇ D = suppA
and vanishes outside of the convex domain B2R ⊇ BR. Then the function w = χv satisfies ν×w = 0
on ∂B2R, such that w ∈ H0(curl, B2R). We further have divw ∈ L2(B2R,C3)–as we will see in the
next lines–and thus w ∈ H0(curl, B2R) ∩H(div, B2R). Due to Theorem 4.2 of [21], the field w then
satisfies

‖w‖H1(B2R,C3) ≤ C
(
‖ curlw‖L2(B2R,C3) + ‖ divw‖L2(B2R,C3)

)
.

Considering that w = χv, we can rewrite the norms on the right-hand side by applying the product
rules of the rotation, respectively of the divergence, as

‖ curlw‖L2(B2R,C3) = ‖χ curl v +∇χ× v‖L2(B2R,C3) <∞,
‖ divw‖L2(B2R,C3) = ‖χdiv v +∇χ · v‖L2(B2R,C3) <∞.

Further, for two vectors a and b, the identities

|a× b| = |a||b| sin^(a, b) and a · b = |a||b| cos^(a, b),
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where the absolute values of sin and cos are bounded by one, provide some estimates for the cross
product and dot product respectively. Therewith, after applying triangle-inequality, we gain that

‖χ curl v +∇χ× v‖L2(B2R,C3) ≤ ‖χ‖L∞(B2R)‖ curl v‖L2(B2R,C3) + ‖χ‖C1(B2R)‖v‖L2(B2R,C3),

‖χdiv v +∇χ · v‖L2(B2R,C3) ≤ ‖χ‖C1(B2R)‖v‖L2(B2R,C3) (respecting that div v = 0).

So far, we have shown that ‖w‖H1(B2R,C3) ≤ C(χ)‖v‖H(curl,B2R). Using Lemma 3 and bearing in
mind that suppA is strictly contained in BR only, we have that

‖w‖H1(B2R,C3) ≤ C(χ, ρ)‖Af‖L2(BR,C3).

Finally, regarding that the H1-norm of w = χv over B2R is bounded from below by the H1-norm of
v over BR, finishes the proof.

Corollary 6. Let ρ ∈ P and supp(I3−ρ) = D ⊂ BR ⊂ R3. If v in H(curl, BR) is a weak solution
of (9), then v ∈ H1(BR,C3) and there holds that

‖v‖H1(BR,C3) ≤ C ‖(I3−ρ) f‖L2(BR,C3), (18)

for some constant C depending on BR, k, and ρ only.

Remark. Since the tangential trace of v is in H−1/2(Div, ∂BR), v is also an element of H−1/2(∂BR),
which can be characterized as the completion of L2(∂BR) [17, p.98], and further satisfies v · ν = 0
a.e. on ∂BR. We thus have that ν × v ∈ L2

t (∂BR), such that v is a function of

WN =
{
u ∈ H(curl, BR) ∩H(div, BR), div u = 0 in BR, ν × v ∈ L2

t (∂BR)
}
,

which is compactly embedded in L2(BR,C3) [18, Corollary 3.49]. Therefore one could show Theo-
rem 5 alternatively via Riesz-Fredholm theory.

At the end of this section we show that L is Lipschitz continuous:

Theorem 7. Let Assumption 4 hold and ρ′ ∈ L∞(BR,Sym(3)) be a small perturbation of ρ ∈ P,
such that ρ+ ρ′ ∈ P, then

‖L(ρ+ ρ′, ui)− L(ρ, ui)‖H1(BR,C3) ≤ C‖ρ′‖L∞(BR,Sym(3))‖ui‖H(curl,BR),

where C > 0 depends on BR, k and ρ, but is independent of ρ′ and ui.

Proof. For a fixed incident field ui we set vρ+ρ′ = L(ρ + ρ′, ui) and v = L(ρ, ui) and denote the
radiating extensions (see Remark 2) of these functions to R3 again by vρ+ρ′ , v and the corresponding
total fields by uρ+ρ′ = ui + vρ+ρ′ and u = ui + v. The difference vρ+ρ′ − v = uρ+ρ′ − u is the weak,
radiating solution to

curl
(
ρ curl(uρ+ρ′ − u)

)
− k2(uρ+ρ′ − u) = − curl

(
ρ′ curluρ+ρ′

)
in R3.

Now applying Theorem 5, yields

‖uρ+ρ′ − u‖H1(BR,C3) ≤ C(ρ) ‖ρ′ curluρ+ρ′‖L2(BR,C3) ≤ C ‖ρ′‖L∞(BR,Sym(3))‖uρ+ρ′‖H(curl,BR).

By triangle-inequality ‖uρ+ρ′‖ ≤ ‖ui‖+‖vρ+ρ′‖ in H(curl)-norms, we get rid of the total field, where
due to Assumption 4

‖vρ+ρ′‖H(curl,BR) ≤ C(BR, ρ)‖ui‖H(curl,BR).

Note that the underlying inequality originally gives an upper bound in D, but we simply increased
the norm by enlarging the domain. This will be done implicitly during further estimates.

Putting this altogether yields the stated inequality.
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4 Differentiability of the solution operator

To have a glance at the differentiability of the solution operator, we fix the incident field and the
parameter ρ ∈ P in this section, such that the solution operator L(ρ, ·) is bounded on H(curl, BR).
Further we introduce the function v′ ∈ H(curl, BR) by

aρ(v
′, ψ) = −

∫
D
θ curl

(
L(ρ, ui) + ui

)
· curlψ dx for all ψ ∈ H(curl, BR), (19)

for which we will show in Theorem 10 that v′ is indeed the derivative L′(ρ, ui)[θ] of L with respect
to ρ ∈ P in direction θ ∈ L∞(BR, Sym(3)).

Lemma 8. For every ρ ∈ P the mapping θ 7→ L′(ρ, ui)[θ] in L(L∞(BR, Sym(3)), H(curl, BR)) has
the following continuity property:

‖L′(ρ, ui)[θ]‖H1(BR,C3) ≤ C‖θ‖L∞(BR,Sym(3))‖ui‖H(curl,BR),

where C > 0 depends on BR, k and ρ only.

Proof. In the following we denote by u = L(ρ, ui) +ui the total field, such that due to (19) applying
the H1-estimate of Theorem 5 gains

‖L′(ρ, ui)[θ]‖H1(BR,C3) ≤ C(ρ) ‖θ curlu‖L2(BR,C3)

≤ C ‖θ‖L∞(BR,Sym(3))

(
‖ui‖H(curl,BR) + ‖L(ρ, ui)‖H(curl,BR)

)
,

where for the last step we estimated the L2-norm by H(curl)-norm and separated the total field by
triangle inequality. Herein Lemma 3 states that

‖L(ρ, ui)‖H(curl,BR) ≤ C ‖ I3−ρ‖L∞(BR,Sym(3))‖ curlui‖L2(BR,C3) ≤ C ‖ui‖H(curl,BR), (20)

due to the boundedness of the L∞-term.

Theorem 9. Under the assumptions of Theorem 7, the map ρ 7→ L′(ρ, ui) is locally Lipschitz
continuous: There is a C > 0 independent of ρ′ and ui such that for all θ ∈ L∞(BR,Sym(3)) there
holds

‖L′(ρ+ ρ′, ui)[θ]− L′(ρ, ui)[θ]‖H1(BR,C3) ≤ C ‖ρ′‖L∞(BR,Sym(3))‖θ‖L∞(BR,Sym(3))‖ui‖H(curl,BR).

where C > 0 depends on BR, k and ρ only.

Proof. For θ ∈ L∞(BR,Sym(3)), the functions L′(ρ + ρ′, ui)[θ] and L′(ρ, ui)[θ] satisfy by (19) the
variational formulations

aρ+ρ′(L
′(ρ+ ρ′, ui)[θ], ψ) = −

∫
D
θ curluρ+ρ′ · curlψ dx,

aρ(L
′(ρ, ui)[θ], ψ) = −

∫
D
θ curlu · curlψ dx,

where the perturbed total field uρ+ρ′ consists of the perturbed scattered field L(ρ + ρ′, ui) and the
incident field ui, whereas u = L(ρ, ui) + ui. Thus, w := L′(ρ+ ρ′, ui)[θ]− L′(ρ, ui)[θ] satisfies

aρ(w,ψ) = −
∫
D
θ curl(L(ρ+ ρ′, ui)− L(ρ, ui)) · curlψ dx−

∫
D
ρ′ curl L′(ρ+ ρ′, ui)[θ] · curlψ dx.
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Therefore Theorem 5 states

‖w‖H1(BR,C3) ≤ C
(
‖θ curl(L(ρ+ ρ′, ui)− L(ρ, ui))‖L2(BR,C3) + ‖ρ′ curl L′(ρ+ ρ′, ui)[θ]‖L2(BR,C3)

)
≤ C

(
‖θ‖L∞(BR,Sym(3))‖L(ρ+ ρ′, ui)− L(ρ, ui)‖H(curl,BR)

+ ‖ρ′‖L∞(BR,Sym(3))‖L′(ρ+ ρ′, ui)[θ]‖H(curl,BR)

)
.

Here, the first H(curl)-norm is bounded by a constant times ‖ρ′‖L∞(BR,Sym(3))‖ui‖H(curl,BR) due to
Theorem 7 and the last one by a constant times ‖θ‖L∞(BR,Sym(3))‖ui‖H(curl,BR) due to Lemma 8.

Theorem 10. Let Assumption 4 hold, then the solution operator L is differentiable in the sense that
for every small perturbation ρ′ ∈ L∞(BR, Sym(3)) of ρ ∈ P such that ρ+ ρ′ ∈ P, it holds that

‖L(ρ+ ρ′, ui)− L(ρ, ui)− L′(ρ, ui)[ρ′]‖H1(BR,C3) ≤ C ‖ρ′‖2L∞(BR,Sym(3))‖u
i‖H(curl,BR),

where C > 0 depends on BR, k and ρ only. Thus, if {ρ′n}n∈N ⊂ L∞(BR, Sym(3)) such that ρ+ρ′n ∈ P
for all n ∈ N as well as ‖ρ′n‖L∞(BR,Sym(3)) → 0 as n→∞, then

‖L(ρ+ ρ′n, u
i)− L(ρ, ui)− L′(ρ, ui)[ρ′n]‖H1(BR,C3)

‖ρ′n‖L∞(BR,Sym(3))
→ 0 as n→∞.

Proof. For w := L(ρ + ρ′, ui) − L(ρ, ui) − L′(ρ, ui)[ρ′] we first consider the variational formulations
defining all three terms,

aρ+ρ′(L(ρ+ ρ′, ui), ψ) =

∫
D

(I3−ρ− ρ′) curlui · curlψ dx,

aρ(L(ρ, ui), ψ) =

∫
D

(I3−ρ) curlui · curlψ dx,

aρ(L
′(ρ, ui)[ρ′], ψ) = −

∫
D
ρ′ curl(L(ρ, ui) + ui) · curlψ dx,

for all ψ ∈ H(curl, BR). Thus, for all ψ ∈ H(curl, BR) there holds

aρ+ρ′(w,ψ) = aρ+ρ′(L(ρ+ ρ′, ui), ψ)− aρ+ρ′(L(ρ, ui)ψ)− aρ+ρ′(L
′(ρ, ui)[ρ′], ψ)

= aρ+ρ′(L(ρ+ ρ′, ui), ψ)− aρ(L(ρ, ui)ψ)− aρ(L′(ρ, ui)[ρ′], ψ)

−
∫
BR

ρ′ curl L(ρ, ui) · curlψ dx−
∫
BR

ρ′ curl L′(ρ, ui)[ρ′] · curlψ dx

=

∫
D

(I3−ρ− ρ′) curlui · curlψ dx+

∫
D
ρ′ curl(L(ρ, ui) + ui) · curlψ dx

−
∫
D

(I3−ρ) curlui · curlψ dx−
∫
D
ρ′ curl L(ρ, ui) · curlψ dx

−
∫
D
ρ′ curl L′(ρ, ui)[ρ′] · curlψ dx

= −
∫
D
ρ′ curl L′(ρ, ui)[ρ′] · curlψ dx. (21)

Now the H1-estimate of Theorem 5 implies that

‖w‖H1(BR,C3) ≤ C(ρ) ‖ρ′ curl L′(ρ, ui)[ρ′]‖L2(BR,C3) ≤ C ‖ρ′‖L∞(BR,Sym(3))‖L′(ρ, ui)[ρ′]‖H(curl,BR).
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Due to the equation (21), we gain by Lemma 3 that

‖L′(ρ, ui)[ρ′]‖H(curl,BR) ≤ C ‖ρ′ curlu‖L2(BR,C3) ≤ C ‖ρ′‖L∞(BR,Sym(3))‖u‖H(curl,BR),

for the total field u = L(ρ, ui)+ui. After separation into incident and scattered fields, again applying
Lemma 3 like in (20) finally results in the stated estimate.

5 The forward operator

In this section we define the so called forward operator which maps material parameters to their
corresponding far field operators, such that the forward operator corresponds to the inverse scattering
problem we are actually interested in.

Therefore we follow the volume integral approach mentioned in Section 3, by which one can show,
see [14, Theorem 2.3], that the scattering problem (9), (10), and (6) is equivalent to an integro-
differential equation defined via the radiating fundamental solution to the Helmholtz equation:

Φk(x) =
1

4π|x|
eik|x|, x 6= 0.

More precisely, v ∈ Hloc(curl,R3) is a radiating solution to (11) iff v solves

v = curl

∫
BR

Φk(· − y)(I3−ρ)(y) curl
[
v(y) + ui(y)

]
dy in Hloc(curl,R3). (22)

Analogously the radiating extension of the function v′ = L′(ρ, ui)[θ] to R3 satisfies

v′ = curl

∫
BR

Φk(· − y)
[
(I3−ρ) curl v′(y)− θ curl(L(ρ, ui) + ui)(y)

]
dy (23)

in H(curl, BR), because v′ solves, by definition, the variational formulation (19). Now for a direction
x̂ ∈ S2, the far field pattern of v∞(x̂) hence equals

v∞(x̂) =

(
curl

∫
BR

Φk(· − y)(I3−ρ)(y) curl
[
v(y) + ui(y)

]
dy

)∞
(x̂)

=

∫
BR

[curl e−ikx̂·y](I3−ρ)(y) curl
[
v(y) + ui(y)

]
dy (24)

= ikx̂×
∫
BR

e−ikx̂·y(I3−ρ)(y) curl
[
v(y) + ui(y)

]
dy, x̂ ∈ S2.

This shows that the far field v∞ is an analytic function, since the latter integral expression is analytic
in x̂. To keep notation simple, we introduce the integral operator

V : L2(BR,C3)→ H2(BR,C3), V f =

∫
BR

Φk(· − y)f(y) dy.

(See [11] for the mapping properties of V .) The scattered field restricted to BR satisfies

v = {I3− curlV ((I3−ρ) curl(·))}−1 [curlV ((I3−ρ) curlui)
]
,

such that the total field v + ui equals Sρu
i, in particular

Sρ(u
i) := [I3− curlV ((I3−ρ) curl(·))]−1(ui) = v + ui.
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Thus we represent the far field pattern v∞ = L(ρ, ui)∞, computed for direction x̂ ∈ S2 in (24), as

v∞(x̂) = ik

∫
BR

x̂× (I3−ρ)(y) curl(Sρu
i)(y) e−ikx̂·y dy.

If we further introduce the integral operator

Z : Lr(BR,C3)→ L2
t (S2), f 7→ ik

∫
BR

x̂× f(y) e−ikx̂·y dy, (25)

then there holds that
L(ρ, ui)∞ = Z ◦ [(I3−ρ) curlSρ(u

i)].

Using smoothing properties of Z, which is a trace class operator (see [13]), the following lemma
from [16, Lemma 5.1] shows that the composition on the right is well-defined and bounded, since
I3−ρ ∈ L∞(BR, Sym(3)) and curlSρu

i ∈ L2(BR,C3).

Lemma 11. Choose m ∈ N, 1 < r <∞, and f ∈ Lr(BR,C3).

(i) There is C = C(m, r) such that ‖Zf‖Cm(S2) ≤ C(m, r)‖f‖Lr(BR,C3).

(ii) The operator Z is of trace class from Lr(BR,C3) into L2
t (S2).

Now we are able to introduce the forward operator, which maps material parameters to associated
far field operators. As mentioned in Section 2, from now on we assume to have Herglotz wave
functions vg for g ∈ L2

t (S2), see (8), as incident fields. Thus note that g 7→ vg|BR
is a bounded

mapping from L2
t (S2) into H1(BR), see [11]. For the incident field vg a far field operator F =

Fρ : L2
t (S2) → L2

t (S2) defines by Fg = (L(ρ, vg))
∞ for g ∈ L2

t (S2). We mention that Fρ is compact,
since the integral kernel u∞ = u∞ρ : S2 × S2 → C of F(ρ) is analytic in both variables. Because of
the summability of its singular values sj(Fρ), i.e., ‖Fρ‖S1 =

∑
j∈N |sj(Fρ)| < ∞, it even belongs to

the set S1 of trace class operators on L2
t (S2). The embedding `p ⊂ `q for 1 ≤ p < q ≤ ∞ of the

sequence spaces `p further implies that trace class operators belong to the qth Schatten class Sq for
all q ∈ [1,∞), a Banach space of all compact operators on L2

t (S2) with q-summable singular values
sj(F ), equipped with the norm defined by

‖F‖qSq =
∑
j∈N
|sj(F )|q, for q ≥ 1.

Therewith the contrast-to-far field mapping defines as an operator from P into the qth Schatten
class Sq:

F(·)g : P → Sq, F(ρ)g = Z ◦ [(I3−ρ) curlSρ(vg)] for g ∈ L2
t (S2), q ≥ 1, (26)

Remark 12.

(i) Due to Lemma 11 with r = 2 and the continuity properties of the solution operator L, the
composition Z ◦ [(I3−ρ) curlSρ(vg)] is well-defined in L2

t (S2).

(ii) As trace class operators form an ideal in the space of all bounded operators, and as F(ρ)g =
Z((I3−ρ) curlSρ(vg)) with a trace class operators Z, the forward operator is a trace class
operator as well, and hence belongs to all spaces Sq for q ≥ 1.

(iii) An alternative to the Sq-norms are Lq-norms for integral operators on the sphere: Since F(ρ)g =∫
S2 u

∞(·, θ)g(θ) dS(θ) is represented by the far field pattern u∞(·, θ) of the scattered fields us =
L(ρ, vg), the Lq-Norm of u∞ defines an operator norm for F(ρ) by ‖F(ρ)‖q := ‖u∞‖Lq(S2×S2),
1 < q <∞. The contrast-to-far field map ρ 7→ F(ρ) as defined in (26) is then continuous from
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Lq
′
(S2) into Lq(S2) with q′ = q/(q − 1), because g 7→ vg|D is continuous from Lq

′
(S2) into

C1(D) for all q ∈ (1,∞). For q = 2, it is well-known that ‖ · ‖S2 = ‖ · ‖2. The advantage of the
Lq-norms with respect to the implementation of inversion algorithms is that the computation of
adjoints or subdifferentials is straightforward for these spaces. Since the subsequent theoretic
results do not depend on the choice of the discrepancy norm, we continue to work with the
Schatten norms ‖ · ‖Sq , noting that all results holds as well for the ‖ · ‖q-norms.

Be aware that the far field of the radiating extension of L(ρ, vg) depends boundedly and linearly
on L(ρ, vg). Thus, since L(ρ, vg) = Sρ(vg)−vg, the derivative θ 7→ F′(ρ)[θ] ∈ L(L∞(BR,Sym(3)),Sq)
of F with respect to ρ ∈ P in direction θ ∈ L∞(BR,Sym(3)) equals, by the product rule in Banach
spaces, see [24],

F′(ρ)[θ]g = Z ◦ [(I3−ρ) curl(L′(ρ, vg)[θ]) + θ curl(Sρ(vg))]. (27)

Since the non-linear forward operator F is linked to the solution operator L, we are able to transfer
the results of Theorem 7, 9, and 10 from L to F.

Corollary 13. Let Assumption 4 hold and ρ′ ∈ L∞(BR, Sym(3)) be a small perturbation of ρ ∈ P,
such that ρ+ ρ′ ∈ P and let q ≥ 1.

(i) There is a constant C = C(ρ,BR, k) such that

‖F(ρ+ ρ′)− F(ρ)‖Sq ≤ C‖ρ′‖L∞(BR,Sym(3)). (28)

(ii) The operator F′(ρ) is locally Lipschitz continuous with respect to L∞(BR, Sym(3)): There is
C = C(ρ,BR, k) such that ‖F′(ρ+ ρ′)− F′(ρ)‖L(L∞(BR,Sym(3)),Sq) ≤ C ‖ρ′‖L∞(BR,Sym(3)).

(iii) The far field operator F(ρ) is differentiable in the sense that

‖F(ρ+ ρ′)− F(ρ)− F′(ρ)[ρ′]‖Sq ≤ C‖ρ′‖2L∞(BR,Sym(3))

for a constant C depending on BR, k and ρ. If {ρ′n}n∈N ⊂ L∞(BR,Sym(3)) such that ρ+ρ′n ∈
P for all n ∈ N as well as ‖ρ′n‖L∞(BR,Sym(3)) → 0 as n → ∞, then ‖F(ρ + ρ′) − F(ρ) −
F′(ρ)[ρ′]‖Sq/‖ρ′‖L∞(BR,Sym(3)) → 0.

Proof. The basic ingredient of the proof is the smoothing property of the far field mapping Z defined
in (25), which is a trace class operator from L2(BR,C3) into L2

t (S2). Since the incident field ui is
chosen to be a Herglotz wave function vg for some g ∈ L2(S2), we have

‖F(ρ+ ρ′)− F(ρ)‖Sq = ‖g 7→ Z
[
(I3−(ρ+ ρ′)) curlSρ+ρ′(vg)− (I3−ρ) curlSρ(vg)

]
‖Sq

≤ C ‖g 7→ Z
[
(I3−(ρ+ ρ′)) curlSρ+ρ′(vg)− (I3−ρ) curlSρ(vg)

]
‖S1

(∗)
≤ C ‖g 7→

[
(I3−(ρ+ ρ′)) curlSρ+ρ′(vg)− (I3−ρ) curlSρ(vg)

]
‖L(L2

t (S2),L2(BR,C3))

≤ C sup
‖g‖L2=1

[
‖ρ′ curlSρ+ρ′(vg)‖L2(BR,C3) + ‖(I3−ρ) curl[Sρ+ρ′(vg)− Sρ(vg)]‖L2(BR,C3)

]
,

where inequality (∗) follows from Lemma 11. Now we obtain the bound

‖ρ′ curlSρ+ρ′(vg)‖L2(BR,C3) ≤ ‖ρ′‖L∞(BR,Sym(3))‖ curlSρ+ρ′(vg)‖L2(BR,C3)

≤ ‖ρ′‖L∞(BR,Sym(3))‖Sρ+ρ′(vg)‖H(curl,BR),

where for the total field ‖Sρ+ρ′(vg)‖H(curl,BR) ≤ C‖vg‖H(curl,BR) ≤ C‖g‖L2(S2) = C with a constant
C = C(ρ) independent of ρ′, due to Assumption 4. The same technique yields

‖(I3−ρ) curl[Sρ+ρ′(vg)− Sρ(vg)]‖L2(BR,C3) ≤ ‖ I3−ρ‖L∞(BR,Sym(3))‖Sρ+ρ′(vg)− Sρ(vg)‖H(curl,BR).
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As Sρ+ρ′(vg)− Sρ(vg) = L(ρ+ ρ′, vg)− L(ρ, vg), Theorem 7 further shows that

‖Sρ+ρ′(vg)− Sρ(vg)‖H(curl,BR) ≤ C ‖ρ′‖L∞(BR,Sym(3))‖vg‖H(curl,BR),

such that by plugging the last estimates together we deduce the statement. The bounds in (ii) and
(iii) are shown analogously, using Theorems 9 and 10 instead of Theorem 7.

6 Non-linear Tikhonov and sparsity regularization

We observe the stable approximation of ρexa from perturbed measurements of its far field operator
F(ρexa). This will be referred to as our inverse problem. In detail, we seek to approximate ρ by
non-linear Tikhonov regularization for noisy measurements F δmeas with noise level δ > 0 such that
‖F(ρexa) − F δmeas‖Sq ≤ δ. Thus, for a convex regularization functional R we consider to minimize
the Tikhonov functional

Jα,δ(ρ) :=
1

2
‖F(ρ)− F δmeas‖2Sq + αR(ρ), (29)

over some appropriate admissible parameter set included in P. Note that under Assumption 4 the
operator F(ρ) is well-defined.

Theorem 14 (Tikhonov regularization). If D(F) is a closed subset of a Banach space, equipped with
the weak*-topology such that additionally D(F) is weak*-closed, and if the imagespace of F is also a
Banach space for which any (norm-)bounded subset is weakly precompact, and if F is a (norm-norm)-
continuous map, whose graph is (weak*,weak)-closed, then for any weak*-lower semicontinuous R
with weak*-precompact level sets, such that R(D(F)) ∩ R 6= ∅, there exists a minimizer for the
Tikhonov functional Jα,δ, defined in (29).

If further δn → 0 as n → ∞ and if one chooses αn = αn(δn) such that 0 < αn → 0 and
0 < δ2

n/αn → 0, then every sequence of minimizers of Jαn,δn contains a subsequence that weak*-
converges to a solution ρ† such that F(ρ†) = F(ρexa) holds in the imagespace of F and ρ† minimizes
R.

Proof. Combining Definition 5.2.1 and Theorems 5.2.2 to 5.2.4 of [20] yields a more general version
of this theorem for a broader range of topologies. But due to [12, Chapter 5, Ex. 51], the weak*-
topology is suitable.

We thus apply this result to our setting by following the techniques of [20]. Therefore be aware
that the domain of definition P of F, equipped with the weak*-topology, is a closed and bounded
subset of the Banach space L∞(BR,Sym(3)). Alaoglu’s theorem then states that closed balls are
weak*-compact, in particular P is weak*-closed. Recalling (26), the forward operator F can be
written as

F(·)g : P → Sq, F(ρ)g = Z ◦ [(I3−ρ) curl(L(ρ, vg) + vg)] ∈ L2
t (S2) for all g ∈ L2(S2),

for the Banach space Sq of qth Schatten-class operators, q ≥ 1. Additionally, we like to quote the
following statement from [20, Corollary 8.3.7], combining results for weak*-convergent sequences:

Lemma 15. Let {fn} ∈ Lq(X) a weak*-convergent sequence, where (X,λ) is a finite measure space
and q ∈ (1,∞]. Then we find a subsequence {fnk

}, converging in the Lr-norm for all 1 ≤ r < q.

We now show the (weak*,weak)-closedness of the graph of F, i.e. F is sequentially closed from
(P,weak*) to Sq with its weak topology. Therefore one assumes to have a sequence of parameters
{ρn}n∈N from P, such that ρn ⇀

∗ ρ0 and F(ρn) ⇀ Fρ0 in Sq for n → ∞. Then one has to show
that this implies that F(ρ0) = Fρ0 (since ρ0 ∈ P due to the weak*-closedness). Hence we define
vn := L(ρn, vg), i.e. F(ρn)g = Z((I3−ρn) curl(vn + vg)) for all g ∈ L2(S2).
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Lemma 16. F is sequentially closed from (P,weak*) to Sq equipped with its weak topology.

Proof. Since in Banach spaces weak*-convergent sequences are bounded (see e.g. [1]), the sequence
{ρn}n∈N is norm-bounded and due to Theorem 7 L is Lipschitz continuous. Hence the sequence
{vn}n∈N is bounded in H1-norm. (Alternatively, Theorem 5 states the same.) Thus there exists
a subsequence {vnm}m∈N, weakly converging to a v ∈ H1(BR,C3) by Alaoglu’s theorem. Because
of that, curl vnm ⇀ curl v in L2(BR,C3) and due to the compact embedding of H1(BR,C3) in
Lq(BR,C3) for 1 ≤ q < 6, we have also that vnm → v in L2(BR,C3) for m→∞.

Further, by assumption, ρn ⇀∗ ρ0 in L∞(BR,Sym(3)), for the finite measure space (BR, λ)
(where λ denotes the Lebesgue-measure), such that Lemma 15 implies the existence of a subsequence
{ρnm}m∈N which converges in Lr(BR,Sym(3)) for all 1 ≤ r <∞; hence ρnm → ρ0 in L2(BR, Sym(3)).

Therewith one can show that

ikx̂×
∫
BR

e−ikx̂·y[(ρ0 − ρnm) curl(vnm − v)
]
(y) dy → 0,

by rewriting the term as in (24):∣∣∣∣ ∫
BR

[
curl e−ikx̂·y][(ρ0 − ρnm) curl(vnm − v)

]
(y) dy

∣∣∣∣
≤ ‖ curl e−ikx̂·y‖∞‖ curl(vnm − v)‖L2(BR,C3)‖ρ0 − ρnm‖L2(BR,Sym(3)),

where the first norm is bounded as well as the second one, while the last norm vanishes as discussed
above. Thus,

Z ◦ [(I3−ρnm) curl(vnm + vg)]→ Z ◦ [(I3−ρ0) curl(v + vg)] in L2
t (S2).

Since by assumption we have that Z((I3−ρn) curl(vn + vg)) = F(ρn)g ⇀ Fρ0g in L2
t (S2) for all

g ∈ L2(S2), we conclude that Fρ0g = Z((I3−ρ0) curl(v + vg)).
Now we show that v = L(ρ0, vg), because this implies Fρ0g = Z((I3−ρ0) curl(v + vg)) =

Z((I3−ρ0) curl(L(ρ0, vg) + vg)) = F(ρ0)g.
Therefor remember that, according to (14), vnm solves

aρnm
(vnm , ψ) =

∫
D

(I3−ρnm) curl vg · curlψ dx for all ψ ∈ C1(BR)

for

aρnm
(vnm , ψ) =

∫
BR

[ρnm curl vnm · curlψ − k2vnmψ] dx+

∫
∂BR

Λ(ν × vnm) · γT (ψ) dS.

Note that the original equation was stated for test functions in H(curl, BR), but since C1(BR,C3)-
functions are dense in H(curl, BR), we switch to those test functions to profit from their boundedness
in the maximum norm.

Now, instead of showing that aρnm
(vnm , ψ) − aρ0(v, ψ) → 0 we rewrite the difference into

aρnm
(v, ψ)− aρ0(v, ψ) + aρnm

(vnm − v, ψ).
To show convergence of the difference of the first terms, note that both the boundary integrals

and the integrals which do not contain any parameter ρ cancel themselves, such that we only have
to have a glance at∣∣∣∣ ∫

BR

(ρnm − ρ0) curl v · curlψ dx

∣∣∣∣ ≤ ‖ρnm − ρ0‖L2(BR,Sym(3))‖ curl v · curlψ‖L2(BR,C3).
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As discussed above, we know that ρnm → ρ0 in L2(BR,Sym(3)). Since the other term is bounded,
the integral tends to zero.

To show that

aρnm
(vnm−v, ψ) =

∫
BR

[ρnm curl(vnm−v)·curlψ−k2(vnm−v)ψ] dx+

∫
∂BR

Λ(ν×(vnm−v))·γT (ψ) dS

converges to zero, we first have a glance at the integral over BR without material parameter. Recall
that vnm → v in L2(BR,C3) and thus∣∣∣∣k2

∫
BR

(vnm − v)ψ dx

∣∣∣∣ ≤ k2‖vnm − v‖L2(BR,C3)‖ψ‖L2(BR,C3) → 0.

To show convergence of the integral containing the material parameter, recall that curl vnm ⇀
curl v in L2(BR,C3) and by the same arguments as above we deduce again that ρnm → ρ0 in
L2(BR, Sym(3)). Respecting the a.e. boundedness of ψ and curlψ, this implies∣∣∣∣ ∫

BR

ρnm curl(vnm − v) · curlψ dx

∣∣∣∣
≤
∣∣∣∣ ∫

BR

(ρnm − ρ0) curl(vnm − v) · curlψ dx

∣∣∣∣+

∣∣∣∣ ∫
BR

ρ0 curl(vnm − v) · curlψ dx

∣∣∣∣
≤ ‖ρnm − ρ0‖L2(BR,Sym(3))‖ curl(vnm − v) · curlψ‖L2(BR,C3) +

∣∣∣∣ ∫
BR

ρ0 curl(vnm − v) · curlψ dx

∣∣∣∣.
Since in Banach spaces also weak-convergent sequences are bounded (see e.g. [1]), curl(vnm − v) is
bounded and since ‖ρnm − ρ0‖L2(BR,Sym(3)) → 0, the first term converges. The last one converges
since curl(vnm − v) ⇀ 0 in L2(BR,C3).

At least, to see the convergence of the boundary integral, we have to be aware, that the solution is
a smooth function on a neighborhood S of ∂BR, not containing D, such that S∩D = ∅. To see this,
we choose a cut-off function χ ∈ C∞0 (R3) with supp(χ) ⊂ S, such that χ ≡ 1 in a neighborhood of
∂BR but vanishes elsewhere. Therefore v|S := χv is a smooth function outside D, see Remark 1(b),
and thus for j ≥ 1 one derives, using the integro-differential form (22) of the solution, the estimate

‖ v|S ‖Cj(S) ≤ C(S, j)‖(I3−ρ) [curl v + f ]‖L2(BR,C3)

≤ C(S, j)‖ I3−ρ‖L∞(BR,C3)

(
‖v‖H(curl,BR) + ‖f‖L2(BR,C3)

)
,

where in fact f = curl vg. That shows vnm |S , v|S ∈ C∞(S) for all m ∈ N, implying vnm → v in
H(curl, S) due to the density of C∞(S) in H(curl, S), from where the tangential trace mapping γt
and the exterior Calderon operator Λ maps vnm − v into H−1/2(Div, ∂BR), the dual space of the
range H−1/2(Curl, ∂BR) of the trace γT . Thus,∫

∂BR

Λ(ν × (vnm − v)) · γT (ψ) dS → 0.

Hence, we have shown that∫
BR

[ρnm curl vnm · curlψ − k2vnmψ] dx+

∫
∂BR

Λ(ν × vnm) · γT (ψ) dS

→
∫
BR

[ρ0 curl v · curlψ − k2vψ] dx+

∫
∂BR

Λ(ν × v) · γT (ψ) dS,

i.e. aρnm
(vnm , ψ) → aρ0(v, ψ) for all ψ ∈ C1(BR). Since due to Assumption 4 the problem is

uniquely solvable, this implies that v = L(ρ0, vg).
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To gain sparse reconstruction techniques, we follow an approach with respect to basis functions
of D(F). Note that, since BR is of finite measure, we have P ⊆ L∞(BR,Sym(3)) ⊆ L2(BR,Sym(3))
with continuous embedding. We thus fix a biorthogonal wavelet Riesz basis {ψi}i, {ψ̃i}i, assuming
that each ψi is also a function in L∞(BR, Sym(3)). Further, due to Hölder interpolation it holds
that (Lp(BR, Sym(3))∩P) ⊆ L2(BR,Sym(3)) for p ∈ (1, 2], such that we define our penalty term as
some weighted `p-norm, i.e.

Rp(ρ) :=
1

p

∑
i∈N

ωi|〈 ρ , ψ̃i〉|p, ρ ∈ P, p ∈ (1, 2], (30)

with non-negative weights (ωi)i, satisfying ‖ρ‖L∞ ≤ Rp(ρ). Note that such weights exist, since one
can achieve a norm equivalence for an appropriate Besov space (see, e.g. [9, Theorem 3.7.7]), such
that Sobolev/Besov embedding theorems yields an L∞-embedding.

Theorem 17 (Sparsity regularization I). For p ∈ (1, 2], the Tikhonov functional Jα,δ, defined in
(29), with R = Rp, defined in (30), possesses a minimizer in P ∩ Lp(BR,Sym(3)).

If δn → 0 as n→∞ and if one chooses αn = αn(δn) such that 0 < αn → 0 and 0 < δ2
n/αn → 0,

then every sequence of minimizers of Jαn,δn contains a subsequence that converges P-weakly to a
Rp-minimizing solution ρ† ∈ P ∩ Lp(BR, Sym(3)) of the equation F(ρ) = F(ρexa) in Sq.

Recall that ρ† is a Rp-minimizing solution to F(ρ†) = F(ρexa) if

Rp(ρ†) = min{Rp(ρ), ρ ∈ P ∩ Lp(BR,Sym(3)), F(ρ) = Fexa}.

Proof. As carried out above, the choices of P and Sq satisfy the conditions for the Tikhonov regu-
larization of Theorem 14, as well as the sequentially closedness of F, shown in Lemma 16. Further
note that |〈 · , ψ̃i〉|p is L2-weakly lower semicontinuous and any P-weak* convergent sequence is
also L2-weakly convergent due to continuous embedding of P into L2(BR,Sym(3)). Since scalar
multiplication does not impact lower semicontinuity properties as well as summation of lower semi-
continuous functions (see, e.g. [5, Lemma 6.14]), the penalty termRp is weak*-lower semicontinuous,
for p ∈ (1, 2]. Finally, it has weak*-precompact sublevel sets, since P itself is weak*-compact by
Alaoglu’s theorem.

To avoid Hölder continuous spaces we now give a second approach by adapting techniques of
image processing, where the gradient is used to highlight edges of objects, whereas homogeneous
regions stay as more connected areas. Traditionally this leads to Sobolev penalty terms ‖Dmw‖Lp(Ω)

for all w ∈ Wm,p(Ω) with p ∈ (1,∞) and m ≥ 1 in a bounded Lipschitz domain Ω ⊂ R3. It can be
shown that p→ 1 yields better reconstructions. Since theW 1,1-seminorm is not lower semicontinuous
[5, Satz 6.101], the boundedness of a sequence does not imply the existence of a weak-convergent
subsequence, such that the Sobolev penalty term for p = 1 can not be used directly.

In fact, this holds in general for p = 1, since L1(Ω) without a σ-finite measure is not a reflexive
dual space of L∞(Ω). Thus one generalizes the integral

∫
Ω |Dw|dx by regarding L1(Ω) as a subset

of the space of vector valued, finite Radon measures on Ω, that is

M(Ω,R3) :=
{
µ : B(Ω)→ R3, µ vector valued finite Radon measure

}
,

equipped with the norm ‖µ‖M(Ω,R3) = |µ|(Ω). Therefore M(Ω,R3) is a Banach space and isometri-
cally isomorphic to the dual space C0(Ω,R3)∗ by Riesz-Markow’s representation theorem. Note that
the characterization as a dual space implies a weak*-convergence.

Due to that, one then defines the distributional gradient by the representation of such a vector-
valued finite Radon measure:
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Definition 18. For a domain Ω ⊂ R3, µ ∈M(Ω,R3) is the distributional gradient of w ∈ L1
loc(Ω),

if for every ψ ∈ C∞0 (Ω,R3) it holds, that∫
Ω
w divψ dx = −

∫
Ω
ψ dµ.

The norm of such a measure µ is called total variation of w and we write

TVΩ(w) :=

{
‖Dw‖M(Ω,R3) if the measure µ =: Dw exists,

∞ else.

If the distributional derivative of w can be written as a finite Radon measure, we say the function
w has bounded total variation. Therefore one often also writes

TVΩ(w) = sup

{∫
Ω
w divψ dx, ψ ∈ C∞0 (Ω), ‖ψ‖L∞(Ω) ≤ 1

}
. (31)

The space of all functions with bounded total variation is thus defined by

BV (Ω) :=
{
w ∈ L1(Ω), TVΩ(w) <∞

}
.

Roughly speaking, BV (Ω) contains functions in L1(Ω), whose distributional gradients are finite
Radon measures, and is a Banach space equipped with the norm ‖w‖BV (Ω) := ‖w‖L1(Ω) + TVΩ(w),
whereas TVΩ(w) is the BV -seminorm (obviously ‖w‖W 1,1(Ω) = ‖w‖BV (Ω) for w ∈ W 1,1(Ω)). Note
that compared to Sobolev spaces, the BV -space also contains piecewise smooth functions, such that
by total variation as penalty, one can handle functions with discontinuities.

Since BV is the dual space of the separable space L1 on which bounded sets are pre-compact
[2, Theorem 3.23], [3, Remark B.7], a weak*-convergence can be defined which yields the general
weak*-topology, i.e.

Definition 19. Let w,wn ∈ BV (Ω), then {wn}n∈N is called weakly*-convergent to w in BV (Ω), if

wn → w in L1(Ω) and Dwn
M
⇀ Dw in Ω, i.e.

lim
n→∞

∫
Ω
ψ dDwn =

∫
Ω
ψ dDw for all ψ ∈ C0(Ω).

We now restrict our set P and further operate on the set of material parameters, called

PTV :=
{
ρ ∈ P, TV(BR,Sym(3))(ρ) <∞

}
.

Although, the authors of [22] suggest to use the BV semi-norm (31) as penalty, i.e. R = TVΩ, [4]
remarks that using only the BV semi-norm as penalty, does not guarantee the possibility to make
the to-be-solved variational problem locally convex, such that the global minimum can be computed
by local descent methods. Because of that, they add a multiple of the squared L2-norm to gain
sufficient compactness properties of the functional. Even though the full BV-norm as penalty would
provide the same compactness properties, they state that numerical minimization can be handled
easier by adding L2-norm instead of L1-norm. However, since [7] provide promising reconstructions
for the full BV -norm (taking into account an additional term respecting some physical constraints),
we suppose to use the penalty

RBV (ρ) := ‖ρ‖BV (BR,Sym(3)) = ‖ρ‖L1(BR,Sym(3)) + TV(BR,Sym(3))(ρ), ρ ∈ P. (32)
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Theorem 20 (Sparsity regularization II). The Tikhonov functional Jα,δ, defined in (29), with
R = RBV , defined in (32), possesses a minimizer in PTV ∩BV (BR,Sym(3)).

If δn → 0 as n→∞ and if one chooses αn = αn(δn) such that 0 < αn → 0 and 0 < δ2
n/αn → 0,

then every sequence of minimizers of Jαn,δn contains a subsequence that converges PTV -weakly to
an RBV -minimizing solution ρ† ∈ PTV ∩BV (BR,Sym(3)) of the equation F(ρ) = F(ρexa) in Sq.

Proof. As in Theorem 17, Sq and especially PTV satisfy the conditions for the Tikhonov regularization
of Theorem 14, since PTV ⊂ P. Further, Lemma 16, i.e. the sequentially closedness of F, also holds
for PTV . Since the total variation TV is weak*-lower semicontinuous (see, e.g. [8, Proposition 3.7])
as well as the L1-norm, the penalty RBV is weak*-lower semicontinuous as well. Again, R has
weak*-precompact sublevel sets, since PTV is again weak*-compact by Alaoglu’s theorem.

A The adjoint of the forward operator’s linearization

Most gradient-based schemes, which are used to solve the inverse scattering problem, i.e. stably solv-
ing the non-linear equation F(ρ) = Fmeas for some given data Fmeas ∈ Sq, like iterated shrinkage al-
gorithm, rely on the adjoint operator of the linearization F′. This is why we give an explicit and com-
putable representation, following [16]. Therefore we fix ρ ∈ P, consider F′(ρ) : L∞(BR, Sym(3))→ Sq
and aim to determine F′(ρ)∗ : Sq′ → L1(BR,Sym(3)) such that

(F′(ρ)[θ],K)S2
!

= (θ,F′(ρ)∗K)L2 for all θ ∈ L∞(BR, Sym(3)) and K ∈ Sq′ . (33)

Here, q′ denotes the conjugate Lebesgue index to q, respectively, such that 1/q + 1/q′ = 1, and
(· , ·)L2(BR,Sym(3)) is the usual scalar product in L2(BR,Sym(3)),

(A,B)L2(BR,Sym(3)) =

∫
BR

A : B dx =

∫
BR

d∑
i,j=1

AijBij dx.

extended to the anti-linear dual product between L∞(BR,Sym(3)) and L1(BR,Sym(3)). Further,
(·, ·)S2 is the scalar product in the Hilbert space of Hilbert-Schmidt operators,

(F,K)S2 =
∑
j∈N

sj(F)sj(K) =
∞∑
j=1

(Fgj , K gj)L2
t (S2)

for an arbitrary orthonormal basis (gj)j∈N of L2
t (S2). Consequently, (33) becomes

∞∑
j=1

(F′(ρ)[θ]gj ,K gj)L2
t (S2)

!
= (θ,F′(ρ)∗K)L2

t (BR,Sym(3)) for all θ ∈ L∞(BR, Sym(3)), K ∈ Sq′ .

Thus, we consider at first a single L2-scalar product and for fixed ρ ∈ P and g ∈ L2
t (S2) we seek for

A : L2(S2)→ L1(BR,Sym(3)), such that

(F′(ρ)[θ]g, f)L2
t (S2)

!
= (θ,Af)L2(BR,Sym(3)) for all θ ∈ L∞(BR,Sym(3)) and f ∈ L2

t (S2).

Recall from (23) that L′(ρ, vg)[θ] = v′ ∈ H(curl, BR), a function whose radiating extension satisfies

v′ = −Sρ [curlV (θ curl[L(ρ, vg) + vg])] in H(curl, BR),

where Sρ = [I3− curlV ((I3−ρ) curl)]−1. Since F′ involves the far field of L′, see (27), we note that

F′(ρ)[θ]g = Z ◦
[
(I3−ρ) curl v′ + θ curlSρ(vg)

]
= Z ◦ [θ curlSρ(vg)− (I3−ρ) curlSρ [curlV (θ curlSρ(vg))]] .
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Consequently, we compute that

(F′(ρ)[θ]g, f)L2
t (S2) =

(
θ curlSρ(vg)− (I3−ρ) curlSρ [curlV (θ curlSρ(vg))] , Z

∗f
)
L2(BR,C3)

=
(
θ curlSρ(vg), Z

∗f
)
L2(BR,C3)

−
(
θ curlSρ(vg), [curlV ]∗ ◦ [(I3−ρ) curlSρ]

∗ ◦ Z∗f
)
L2(BR,C3)

=
(
θ, [(I3−[(I3−ρ) curlSρ ◦ curlV ]∗) ◦ Z∗f ]⊗ curlSρ(vg)

)
L2(BR,Sym(3))

where the last matrix-valued function is defined by (a⊗ b)i,j = aibj for 1 ≤ i, j ≤ 3.

Lemma 21. For ρ ∈ P and g ∈ L2(S2), the adjoint of θ 7→ F′(ρ)[θ](g) with respect to the L2-inner
product maps L2

t (S2) into L1(BR, Sym(3)) and is represented by

g 7→
([

I3−[(I3−ρ) curlSρ ◦ curlV ]∗
]
◦ Z∗g

)
⊗ curlSρ(vg).

For all orthonormal bases {gj}j∈N of L2
t (S2) and all K ∈ Sq′, the bounded operator F′(ρ)∗ : Sq′ →

L1(BR, Sym(3)) is represented by

F′(ρ)∗(K) =

∞∑
j=1

([
I3−[(I3−ρ) curlSρ ◦ curlV ]∗

]
◦ Z∗

(
K gj

))
⊗ curlSρ[vgj ].
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