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Abstract

The dendritic growth of crystals under gravity influence shows a strong depen-
dence on convection in the liquid. The situation is modelled by the Stefan problem
with Gibbs—Thomson condition coupled with the Navier-Stokes equations in the
liquid phase. A finite element method for the numerical simulation of dendritic
crystal growth including convection effects is presented. It consists of a parametric
finite element method for the evolution of the interface, coupled with finite element
solvers for the heat equation and Navier—Stokes equations in a time dependent do-
main. Results from numerical simulations in two space dimensions with Dirichlet
and transparent boundary conditions are included.
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1 Introduction

When a small seed crystal is placed (or nucleates) in an undercooled melt, the solid
phase grows rapidly. Directional anisotropies of surface and kinetic energies, due to
the underlying molecular geometry, e.g., result in preferred growth directions and the
development of dendrites [13, 18]. Experiments under 1g earth gravity conditions show a
strong dependence of growth velocities and the resulting structures on the angle between
growth direction and gravity vector, especially for low undercooling [11]. These effects
are attributed to (natural) thermal convection in the liquid, driven by buoyancy forces.
Recent pg space shuttle experiments show similar effects that can also be ascribed to
thermal convection and thus underline its importance [12].

Some theoretical investigations of dendritic growth with convection were done for a
special case, where the interface is parabolic, the main growth direction is parallel to
the gravity vector, and the phase transition is modelled by the classical one-phase Stefan
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problem with an isothermal interface, without any surface tension or kinetic undercooling
and without any anisotropy in the equations. Using a boundary layer flow model, the
effect of fluid flow on steady dendrite growth was studied by Cantor and Vogel [8]. Ananth
and Gill [1, 2] are able to predict experimentally observed growth characteristics quite
well for a wide range of physical parameters.

Numerical simulations were done recently by Griebel et al. [16]. They consider an
extended model with additional density changes and present a numerical algorithm based
on a finite difference method and a surface tracking method to capture the phase bound-
aries.

We present a numerical algorithm based on a sharp interface model, i.e. the free
boundary is assumed to be a smooth curve (but maybe with high curvature). Finite ele-
ment approximations are used for temperature and velocity as well as for a parametriza-
tion of the moving interface. Adaptive methods based on local error indicators are used
to generate locally refined meshes which allow for a high resolution of relevant data,
especially near the interface.

The rest of this article is organized as follows: in Section 2 we present the equations,
Section 3 deals with the finite element discretization and finally, we present the numerical
results with different convection strengths and boundary conditions in Section 4.

2 The mathematical model

We consider a bounded container  C R? and an initial solid subdomain Q,(0) CC Q
with solid-liquid interface I'(0) = 0€Q4(0). The liquid subdomain is Q;(t) = Q\ Q,(¢).
The model includes the temperature 9, velocity u, pressure p, and the time dependent
distribution of phases with moving solid-liquid interface T

The heat equation (3), (4) models energy diffusion in both liquid and solid, with an
advection term in the liquid, the Stefan condition (5) and a Gibbs—Thomson condition (6)
with anisotropic kinetic and surface terms model the phase transition. Here, Vr and Cr
denote the scalar interface velocity and curvature respectively, while ey, ec are coefficient
functions which depend on the interface normal vp. If the surface energy anisotropy
~(v) is smooth, and F(s) := 7y(cos(s),sin(s)) = v(v), then ec(v) = F(s) + 7"'(s). A
generalization to (nearly) crystalline anisotropy is possible, compare [21]. We use an
additional coefficient C.,py to model different strengths of advection.

The Boussinesq approximation with gravity vector g = —es = (0,—1)7 is used to
account for the buoyancy forces (1), and the liquid is assumed to be incompressible (2).
We assume that the material density is constant and does not change between solid and
liquid. This leads to a non—slip boundary condition on the interface (7). A density
change between solid and liquid would induce a normal velocity u - vp proportional to
the interface velocity Vi, compare [16].

After an appropriate scaling, introducing the Grashof number Gr, Prandtl number
Pr, and scaled latent heat L, the dimensionless equations read:

ou 1
— 4+ u-Vu — —Au + Vp = de in €, 1
ot \/CT’{’ p 2 1 ()

Veu =0 in Q. 2)
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Figure 1: Setting of the problem
09 1
— 4+ Ceompu- VO — ———A% =0 in Q, 3
ot “ Prv/Gr e ®)
09 1
— — ———A9 =0 in ;. 4
ot PrvGr @
[;(m] + Lk =0 onT, (5)
Prv/Gr
evVr + e¢Cr + 9 =0 onT, (6)
u =20 on . (7

In the Stefan condition (5), [] := (*)iiquida — (*)sotia denotes the jump across the interface.
The system is completed by initial and boundary conditions:

u(-,0) = 0 in 0,
u(-,t) =0 on 0,

9,00 = do  in®,
’19(',t) = ’190 on OQ,
[(0) = To.

With appropriately low initial temperature data 19, the liquid is undercooled, and den-
dritic growth of the solid phase is expected.
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3 Weak formulations and discretization

3.1 Heat equation with Stefan and Gibbs—Thomson conditions

Following the lines of [6, 20, 21], we divide the problem (3)—(6) into an anisotropic mean
curvature flow equation for I' and a modified heat equation. The weak formulation and
discretization of the interface motion uses the approach of Dziuk [9] to mean curvature
evolution of curves and surfaces.

Using an extension u = 0 in Q,, we multiply (3)-(4) with a test function ¢ € H'(Q),
use integration by parts in both subdomains, and replace the occurring jump of normal
derivatives by the Stefan and Gibbs—Thomson conditions to arrive at

89 1 L Lec
| (G o+ Ceomou- V004 5290 vo) + [ 00 = - [ oo )
for all ¢. For the interface motion, the Gibbs—Thomson condition (6) leads to a weak
formulation that is similar to a heat equation. To begin, the curvature vector Crv can be
written as the Laplace-Beltrami operator applied to the identity id : T — R2, or (sloppy)
a parametrization z : I' — R?. After multiplication with a test function ¢ € H(T') and
integration by parts, where V denotes the tangential (covariant) derivative, we get:

/(i@¢+vx-vw) = —/ivﬁw for all 1. (9)
r \ec Ot r €C

Assuming that T is a closed Lipschitz curve or hypersurface, all terms are well defined
and no boundary integrals appear from integration by parts.

Both weak formulations are well suited for finite element discretizations. After a time
discretization with time steps to = 0 < t; < t3 < ... and time step sizes 7, = t,, — tp_1,
we use conforming subdivisions 7" of {2 into triangles and corresponding spaces V" of
piecewise quadratic finite element functions over 7" and V§ := V" N H} (). Given an
approximation ©° € V§ of 1, discrete temperatures ©@™+! € V" *+1 are defined for n > 0
by

/(M@Jrc u- VO d 4 Ve . va)
o _— conv P’I‘\/@
+/ L oty — _/ @CF d for all & € V31, (10)
Tn+1 €V re+1 €v

with appropriate Dirichlet boundary conditions on 992. By using the Gibbs—Thomson
relation, we get an implicit term for @1 on the free boundary I'*! on the left hand side,
which is positive, and additionally leads to a good approximation for the temperature
on the interface. Such values will be used on the right hand of the interface propagation
equation (11) below.

Using a polygonal, piecewise quadratic discretization of the interface I'" and isopara-
metric finite element spaces W™ over I'", we define parametrizations X"+ € (Wn)?2 :
"™ = R? of I™+! by

n+1 _ » _ _
/ (iuq,+v;(n+1.w) :_/ Loow  foralwewr (11)
n \€C Tn+1 r» €C
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and define the discrete interfaces by
ot o= xnt(rm). (12)

Note that by this approach we restrict ourselves to the case where no topological
changes of liquid/solid occur. In particular, the solid region Q,(t) CC Q is bounded
by the embedded curve T'(t) CC Q during the whole time interval (without any self—
intersection or intersection with 9f2). We will see in the numerical simulations that this
is no real restriction, at least for moderate time intervals and in the range of parameters
that we currently use. The only true restriction is an upper bound for the time interval
given by the fact that the interface must not meet the boundary 9.

Recently, Veeser proved convergence and error estimates for a semi discrete finite
element method for dendritic growth with a slightly different discretization of the mean
curvature evolution [22, 23].

3.2 Navier—Stokes flow in a time dependent domain

One particular problem in computing the flow field by equations (1)—(2) is the time
dependent definition of ;(t). There are several ways to solve this problem in the discrete
case, for instance

¢ An explicit definition for Qp;(t,) and a no-slip condition for u on 0Qp ;(ty).

e Fictitious domain approaches, where the Navier—Stokes equations are solved in the
whole domain 2 and the no—slip boundary condition on I is enforced only in a
weak sense:

— A penalty approach, using an additional term 1/ [, 4, u-¢ in the correspond-
ing bilinear form in the momentum equation, where 1/§ >> 1 is the penalty
parameter.

— An implementation of the no—slip boundary condition on T" by an additional
constraint, see for instance [14, 15].

Numerical experiments with all three methods above gave comparable solutions, but the
first method turned out to be the most robust and by far most efficient one. Therefore we
will only address this method here. In order to apply this method we use the following
definition for Qp, ;(t,):

An element T € T™ is called liguid, iff T lies completely in the liquid region, i.e. all
x € T lie outside the solid region defined by the curve T'", it is called solid iff it is not
liquid. Define

Qpi(tn) =U{T € T"|T is liquid },

see Figure 2. An algorithm to mark all mesh elements as either liquid or solid is the
following:

e Follow the interface curve and mark all triangles T with TN T # () as solid.

e Mark all non—solid elements at 9Q as liquid.
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e Continue by marking all non—solid neighbors of liquid elements as liquid, and repeat
this step as long as possible.

e Finally, all not yet marked elements are solid elements.

This algorithm can be implemented easily with a computational complexity that is linear
in the number of mesh elements.

Figure 2: Liquid and solid triangles

To solve the Navier—Stokes equations we use a time discretization based on the frac-
tional #-scheme in a variant as an operator splitting, which was proposed in [7]. For the
space discretization the Taylor—Hood element, i.e. piecewise quadratics for the velocity
and piecewise linears for the pressure, is used. More precisely, let Y™ := {® € (V§)?|® =
0on Q\ Q’,})l} be the space of globally continuous, vector valued piecewise quadratics on
Qp ;== Qp(tn), vanishing on 9QF ;, and for convenience extended to 2\ Qf ; by zero.

)

Likewise, Z™ denotes the space of globally continuous, piecewise linears on Qg’l.

Let 8 =1— g =0.2928... and o, € (0,1), a+3 =1, a > % Split each time
interval [tp,tnt1] into three subintervals [tn,t, + 07nt1], [tn + 0Tnt1,tn + 8'Thya], and
[t + 0'Tni1,tny1] with 8 = 1 — 6. The fractional §—scheme applied to our case reads:
For n > 0 find U™He Unte’ ntl ¢ yntl gnd prté prtl ¢ zntl guch that

U°=0 inQ
and for all ® € Y"1, ¥ ¢ Zntl

( / (M@ + & yyntiye — priiy. @)

0Tnt1 VGr
optt
= / ( b gurve - U -v)Ure + ort e @)
< VGr ’ (13)

Q;jl
/ vV-Ue = o,

n41
\ Qh,l
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/ (Un+o'_Un+o<I) N ki YUV 4 (U””’-V)U”*"'@)
(1 - 2‘9)"%—%-1 VvGr
Qnrtt
" a +0 +6 +1 (14)
- / (—EVU V® + PHV. &+ 0 e2-q>),
Q;jl
r 7
Un+1 _ Un+u9 a
- 2 P+ —VUVP — PIV. B
/ ( OTn41 VvGr )
Q;jl
_ —/@ n+6’ n+0’ n+6’ n+1
< = / (EVU Vo — (U W)U + 07 ey D), (15)
Q;jl
/ V.Ut = 0.
Qnrtl
\ "“h.l

In (13), 7,41 denotes a projection operator from Y™ to the discretely solenoidal
functions in Y7 t1:

Tpgr s V" = Yyt = {® e YT /v-cmzo for all ¥ € 2"}

n41
Q1

This projection is used in order to prevent spurious pressure spikes in regions, where the
mesh changes from %, to 1, see Section 3.5 below.

By the scheme (13)—(15), two major numerical difficulties of the Navier—Stokes equa-
tions, the treatment of the solenoidal condition and the nonlinearity, are decoupled. In
(13) and (15), one has to solve a linear, selfadjoint Stokes—like system, where the nonlin-
earity is treated explicitly. The nonlinear part (14) is a Burger’s-like system of equations,
the divergence free condition is dropped and the pressure gradient is taken from the pre-
vious time step. Thus by this operator splitting one reduces the Navier—Stokes equations
to two considerably simpler subproblems.

The Stokes—like subproblems are solved by a preconditioned CG method applied to
the Schur complement operator for P and a nonlinear GMRES solver is used for the
Burger’s problem, see [5] for details.

3.3 Coupling of equations

The overall numerical method is based on a semi implicit time discretization scheme
with a GauB—Seidel type coupling of the three subproblems of interface, temperature,
and velocity evolution. In each time step:
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(A) Solve one timestep of the mean curvature flow equation (11) for the parametric
interface, giving I"*1. The temperature ©" is taken explicitly from the last time
step.

(B) Using the old velocity field U™ and the new interface I *1, solve one timestep for
the heat equation with Stefan—condition on the phase boundary (10), giving ©™*!.

(C) Using the new temperature and interface (and thus the new liquid domain QZ’JIA),
solve one timestep for the Navier—Stokes equation (13)—(15), giving U™*! and P™*1.

3.4 Initial values

For the first time step, values of the initial temperature on the initial interface are used
in step (A) as driving force for the interface evolution. In order to obtain compatible
temperature values for this problem, the initial temperature @° € V° is defined as the
solution to a stationary problem similar to the time dependent one, compare [20]. In
particular, we solve

1 L ecL
7V@0-V<I>+/ —®0<I>=—/ —Cr @ for all ® € V0 16
/Q Prv/Gr ro €V ro €v : 0 (16)

with Dirichlet boundary values on dQ and given initial interface T'°. The implicit treat-
ment of ©° on I'° guarantees that the initial temperature is compatible. The initial mesh
T° and finite element space V° are adapted to the initial temperature in the same way
as described in the next section.

3.5 Adaptive finite element method

During the evolution, the interface grows a lot in length and complexity. Thus, an
adaption of the interface discretization is indispensable. Here, we use a simple adaption
criterion, namely an upper limit for the length of each segment of the interface discretiza-
tion. Every segment which grows longer than a given tolerance is refined by bisection at
its midpoint. Such refinements are done in each time step at the beginning of part (A),
before calculating the new interface.

The same triangulations 7" of the domain 2 are used to define finite element spaces
for discrete temperature and velocity. Local refinement of the meshes is based on a pos-
teriori control of the discrete temperature. Numerical tests show that it is not necessary
to use a combination of error estimators for temperature and velocity, as the velocity is
much smoother than the temperature.

The Stefan condition (5) for the temperature implies a jump in the normal derivatives
of ¥ at I'. Moreover, steep gradients of 9 occur close to the free boundary I'. In order to
approximate such a temperature field sufficiently well, we use adaptively refined meshes.
Using highly refined meshes at I' one also reduces the “roughness” of 9 ;.

Following the lines of [10, 20], we use a posteriori error indicators which can be
computed from the discrete temperature and given data for the heat equation. Assuming
regularity of the temperature J(-,t) € H>>(Q) N H%2(; U Q,) with corresponding a
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priori estimates, the usual derivation of residual a posteriori error estimates leads to local
error indicators

) AO |2
h%—v”@;‘,@ + (iconv ’U‘a(—)v@Q_ T\/@ L2(T) '
el o | P et
2 _ AO |2

nT((-)) ] h%ﬂ|‘ét@z'cconvu VG)Q_ T\/@ L2(T)

+ hZTH ;(@ + ecC)| LaEn)

) 1 00112 i
R R —

for all T € T, where 0;0 denotes the temporal difference quotient and [‘?9—(3] the jump
of normal derivatives over inner edges of the triangulation. In part (B) of each time
step, the triangulation is adapted by local refinement and coarsening of mesh elements
such that the indicators n7(0)? are (nearly) equidistributed over all elements and the
total estimate (ETeTnT(G)z)l/ 2 is smaller than a given error tolerance. We use a semi—

implicit adaptive method [4]; in particular, a solution On*t! € Y7 is calculated on the
old mesh, then the mesh is adapted using indicators 57(07*1), and finally @"+! ¢ Yn+1
is computed on the new mesh. For the refinement and coarsening of triangular meshes
we use algorithms based on the bisection of elements [3, 19].

As indicated, the same meshes are used for velocity discretization. Unfortunately,
mesh changes between timesteps which imply changing velocity spaces may introduce an
inconsistency in the discrete Navier—Stokes equation due to the violation of the discrete
solenoidal condition. The use of a simple nodal interpolation, say I,+1U"™ instead of
Tnt1U™ in (13) would add a term

1
g Int1U" ¢ Yo+t
n
which is not discretely divergence free. This would lead to strong numerical oscillations
in the pressure P. Therefore we use a projection 7,1, defined by:
For U € Y" find (741U, q) € Y™ x Z™+1 such that for all (@, ¥) € Y+l x Zntt

/ (’ylwn_HU(I) + %V (1 U)VE — qV - q>) - / (71U¢ n 72VUV<I>),
opt apt
V- (7Tn+1U)‘I’ = 0
ot

with 71,2 > 0. This means that m,; is a weighted H'-projection to the space of dis-
cretely divergence free functions Vg +!. Note that mnq1 = id if {T € Qp4! | T is liquid} =
{T € Q3 ;| T is liquid}, i. e. no refinement or coarsening was done in the liquid subdo-
main.
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4 Numerical Simulations

We consider problem (1)—(7) in the domain Q = (—8, +8)2 with Grashof number Gr =
100, Prandtl number Pr = 0.1, latent heat L = 1, and anisotropy functions

ec(cos s,sin s) = 0.001 + 0.0003 cos(4s), ey (coss,sins) = 0.01 + 0.003 cos(4s).

The initial interface Iy is a circle of radius 0.05 with center (0,0). Boundary values
for the temperature are chosen as the external undercooling 4 = —0.5 on 9€2; initial
temperature is then given by (16). Finite element computations use piecewise quadratic
approximations of u, 9, and I'. The meshes are adapted using the a posteriori techniques
described in Section 3.5, and the time step size is fixed for all computations to 7 = 0.01.

4.1 Dirichlet problem

We want to demonstrate the influence of the parameter C.,,, in a Dirichlet environment.
Boundary values are
9 = —0.5, u = 0on 0.

The following figures compare results for Ceony € {0,10,100}. For Ceony = 0, the
convection has no influence on the heat equation and on the phase transition; this case
describes crystal growth under zero gravity with diffusion only. For C.,y,, = 10 or 100,
the influence of the additional advection in the heat equation is clearly visible. Due to the
convection in the liquid the latent heat set free during solidification is faster transported
away from the lower dendrite branches. This results in larger growth velocities for the
lower branches of the crystal.

Figures 4-6 show the interfaces after 0, 20, ..., 400 time steps at times ¢t = k % 0.2,
k =0,1,2,...,20. While the upper and lower dendrite branches are symmetric for
Ceonv = 0, the lower branches are faster than the upper ones for C,,, > 0. It can be
seen that, with strong convection, both upper and lower branches may be faster than in
the diffusion—only case.

The three pictures in Figure 3 show the velocities of dendrite tips from the three
simulations. The faster tip velocities correspond to the lower dendrite branches.

v v v
350 350 350
3.00 300 3.00
250 250 250
' |\
. L ',
2.00 2.00 m ; qi‘“ i t— 2.00
, R
n e
150 SENTY BTN | 150 : L.J.ML"” 150
Ll
W RV R R N
100 1.00 [H i T - 100
i L
050 050 050
000 000 000
t t t
000 1.00 200 3.00 400 0.00 100 200 300 400 000 1.00 200 300 400

Figure 3: Problem 4.1, C,p,, = 0,10,100; Tip velocities
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Figure 4: Problem 4.1, C.onp = 0; Interfaces at ¢t =

Figure 5: Proble

Figure 6: Problem 4.1, C.ony = 100; Interfaces at t = 0.0,0.2,...,4.0

convection

0.0,0.2,...,4.0

11
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Figure 7: Problem 4.1, C.pny = 10; Velocity at ¢ = 3.0
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Figure 8: Problem 4.1, C,ony = 100; Velocity at ¢t = 3.0
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Figure 9: Problem 4.1, C,pny = 0; Isothermal lines at ¢ = 3.0

Figure 10: Problem 4.1, C.opny = 10; Isothermal lines at ¢t = 3.0

13
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Figure 11: Problem 4.1, C.y,p = 100; Isothermal lines at ¢t = 3.0

Figure 12: Problem 4.1, C.ony = 100; Triangulation at ¢ = 3.0
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Velocities and interfaces at ¢ = 3.0 are shown in Figures 7 and 8. The maximal
velocities, ||V ||co = 0.34 and 0.24 resp., are attained near the upper dendrite tips. Figures
9-11 show interfaces and isothermal lines ® = —0.05, —0.15, —0.25,—0.35, —0.45 at t =
3.0. The heat transport to upper parts of the domain for C¢,p, > 0 is clearly seen. The
adapted mesh for C,y,, = 100 at t = 3.0 is shown in Figure 12.

4.2 Transparent boundary conditions

In order to reduce the influence of the Dirichlet boundary and approximate the problem in
an unbounded domain, we impose natural boundary conditions for the coupled problem,
i.e. absorbing boundary conditions for the flow problem and Neumann conditions for the
temperature. To be more precise, we impose the following condition for u and p:

\/%ayu —pv=gv on 0. (17)

Here, g is a given function, accounting for the hydrostatic pressure and for a possibly
horizontal pressure gradient in case of a horizontal advection:

T2
g(@1,22) = Cro1 + /9(&:1,3) ds (18)
0
with a constant C; (C; = 0 in case of no horizontal advection) and # := —0.5 the “main”

part of 6.

In the variational formulation for the momentum equation (17) turns out to be just
the natural boundary condition for v and p at 02 if the velocity space is defined such
that the functions may have arbitrary values on 02 and the right hand side is given by

F(®):= A Pea- P + /ngl/-{),
1

see also [17] for details.

For the temperature equation we impose a homogeneous Neumann condition on 952,
which means that the normal heat flux ¢ - v = (—ﬁ@Vﬁ + Ceony¥u) - v on 0N is
given by the convective flux only: ¢ -v = CiopyPu - v. Again, defining the temperature
accordingly, the Neumann condition is the natural boundary condition for the variational
formulation.

Note that all subsequent simulations use the convection parameter C.,,, = 100.

4.2.1 Natural convection problem

Figures 13-16 show a problem similar to the third Dirichlet case, with only natural
convection, i.e. Ci; = 0 in (18). Since the boundary condition (17) mimics an infinite
domain, there are no convection rolls like in the previous examples and the transport is
mainly upward.
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Figure 13: Problem 4.2.1; Interfaces after 0, 10, ..., 200 time steps

Figure 14: Problem 4.2.1; Triangulation at t = 2.0
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4.2.2 Problem with additional advection

Figures 17-20 show a problem with additional horizontal advection, i.e. C; = —0.2. The
influence of the advection on the crystal growth is again clearly visible, resulting in a fast
and strongly non symmetric growth.
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Figure 17: Problem 4.2.2; Interfaces after 7, 17, ..., 157 time steps

Figure 18: Problem 4.2.2; Triangulation at ¢ = 1.57
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Figure 19: Problem 4.2.2; Interface and velocity at ¢t = 1.57

Figure 20: Problem 4.2.2; Interface and isothermal lines at ¢t = 1.57
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