An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem

Peter Benner
Heike Faßbender

Report 98–01

Berichte aus der Technomathematik

Report 98–01 Juli 1998
AN IMPLICITLY RESTARTED SYMPLECTIC LANCZOS METHOD
FOR THE SYMPLECTIC EIGENVALUE PROBLEM

PETER BENNER and HEIKE FAßBENDER

Abstract. An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue
problem is presented. The Lanczos vectors are constructed to form a symplectic basis. The inherent
numerical difficulties of the symplectic Lanczos method are addressed by inexpensive implicit restarts.
The method is used to compute some eigenvalues and eigenvectors of large and sparse symplectic
matrices.

Key words. eigenvalues, symplectic Lanczos method, implicit restarting, symplectic matrix.

AMS subject classifications. 65F15, 65F50, 15A18

1. Introduction. We consider the numerical solution of the real symplectic
eigenvalue problem

\begin{equation}
Mx = \lambda x
\end{equation}

where $M \in \mathbb{R}^{2n \times 2n}$ is large and possibly sparse. A matrix M is called symplectic iff

\begin{equation}
MJM^T = J,
\end{equation}

or equivalently, $M^TJM = J$, where

\begin{equation}
J = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}
\end{equation}

and I_n is the $n \times n$ identity matrix. The symplectic matrices form a group under
multiplication. The eigenvalues of symplectic matrices occur in reciprocal pairs: If λ is
an eigenvalue of M with right eigenvector x, then λ^{-1} is an eigenvalue of M with
left eigenvector $(Jx)^T$. The computation of eigenvalues and eigenvectors of such
matrices is an important task in applications like the discrete linear-quadratic regulator
problem, discrete Kalman filtering, or the solution of discrete-time algebraic Riccati
equations. See, e.g., [21, 22, 28] for applications and further references. Symplectic
matrices also occur when solving linear Hamiltonian difference systems [6].

In order to develop fast, efficient, and reliable methods, the symplectic structure of
the problem should be preserved and exploited. Then important properties of symplectic
matrices (e.g., eigenvalues occurring in reciprocal pairs) will be preserved and
not destroyed by rounding errors. Different structure-preserving methods for solving (1.1) have been proposed. In [25], Lin introduces the $S + S^{-1}$-transformation which can be used to compute the eigenvalues of a symplectic matrix by a structure-preserving method similar to Van Loan's square-reduced method for the Hamiltonian eigenvalue problem [38]. Flaschka, Mehrmann, and Zywietz show in [14] how to construct structure-preserving methods based on the SR method [10, 11, 26]. Petal [34, 33] and Mehrmann [27] developed structure-preserving algorithms for the symplectic generalized eigenproblem $L - \lambda N$ where $L, N \in \mathbb{R}^{2n \times 2n}$, and $LJL^T = NJN^T$.
Recently, Banse and Bunse-Gerstner [2, 3] presented a new condensed form for symplectic matrices. The $2n \times 2n$ condensed matrix is symplectic, contains $8n - 4$ nonzero entries, and is determined by $4n - 1$ parameters. This condensed form, called *symplectic butterfly form*, can be depicted as a symplectic matrix of the following form:

$$
\begin{bmatrix}
\begin{array}{cccc}
\bullet & & & \\
\end{array}
\end{bmatrix}
$$

Once the reduction of a symplectic matrix to butterfly form is achieved, the SR algorithm [10, 11, 26] is a suitable tool for computing the eigenvalues/eigenvectors of a symplectic matrix. The SR algorithm preserves the butterfly form in its iterations and can be rewritten in a parameterized form that works with the $4n - 1$ parameters instead of the $(2n)^2$ matrix elements in each iteration. Hence, the symplectic structure, which will be destroyed in the numerical process due to rounding errors, can be restored in each iteration for this condensed form. An analysis of the butterfly SR algorithm can be found in [2, 4, 5].

In [2, 3] an elimination process for computing the butterfly form of a symplectic matrix is given which uses elementary unitary symplectic transformations as well as non-unitary symplectic transformations. Unfortunately, this approach is not suitable when dealing with large and sparse symplectic matrices as an elimination process can not make full use of the sparsity. Hence, symplectic Lanczos methods which create the symplectic butterfly form if no breakdown occurs are derived in [2, 4]. Given $v_1 \in \mathbb{R}^{2n}$ and a symplectic matrix $M \in \mathbb{R}^{2n \times 2n}$, these Lanczos algorithms produce a matrix $S^{2n, 2k} = [v_1, v_2, \ldots, v_k, w_1, w_2, \ldots, w_k] \in \mathbb{R}^{2n \times 2k}$ which satisfies a recursion of the form

$$
M S^{2n, 2k} = S^{2n, 2k} B^{2k, 2k} + r_{k+1} e_{2k}^T
$$

(1.4)

where $B^{2k, 2k}$ is a butterfly matrix of order $2k \times 2k$, and the columns of $S^{2n, 2k}$ are orthogonal with respect to the indefinite inner product defined by J (1.3). The latter property will be called *J-orthogonality* throughout this paper. The residual r_{k+1} depends on v_{k+1} and w_{k+1}; hence $(S^{2n, 2k})^T J r_{k+1} = 0$. Such a symplectic Lanczos method will suffer from the well-known numerical difficulties inherent to any Lanczos method for unsymmetric matrices. In [2], a symplectic look-ahead Lanczos algorithm is presented which overcomes breakdown by giving up the strict butterfly form. Unfortunately, so far there do not exist eigenvalue methods that can make use of that special reduced form. Standard eigenvalue methods as QR or SR algorithms have to be employed resulting in a full symplectic matrix after only a few iteration steps.

A different approach to deal with the numerical difficulties of the Lanczos process is to modify the starting vectors by an implicitly restarted Lanczos process (see the fundamental work in [9, 35]); for the unsymmetric eigenproblem the implicitly restarted Arnoldi method has been implemented very successfully, see [24]). The problems are addressed by fixing the number of steps in the Lanczos process at a prescribed value k which depends upon the required number of approximate eigenvalues. *J*-orthogonality of the k Lanczos vectors is secured by re-*J*-orthogonalizing these vectors when necessary. The purpose of the implicit restart is to determine initial vectors such that the associated residual vectors are tiny. Given (1.4), an implicit Lanczos restart computes the Lanczos factorization

$$
M S^{2k} = S^{2k} B^{2k, 2k} + r_{k+1} e_{2k}^T
$$
which corresponds to the starting vector

\[\hat{v}_1 = p(M)v_1 \]

(where \(p(M) \in \mathbb{R}^{2n \times 2n} \) is a polynomial) without having to explicitly restart the Lanczos process with the vector \(\hat{v}_1 \). Such an implicit restarting mechanism is derived here analogous to the technique introduced in [4, 18, 35].

Section 2 reviews the symplectic butterfly form and some of its properties that will be helpful for analyzing the symplectic Lanczos method which reduces a symplectic matrix to butterfly form. This symplectic Lanczos method is presented in Section 3. Further, that section is concerned with finding conditions for the symplectic Lanczos method terminating prematurely such that an invariant subspace associated with certain desired eigenvalues is obtained. We will also consider the important question of determining stopping criteria. The implicitly restarted symplectic Lanczos method itself is derived in Section 4. Numerical properties of the proposed algorithm are discussed in Section 5. In Section 6, we present some preliminary numerical examples.

2. The Symplectic Butterfly Form. A symplectic matrix

\[
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} = \begin{bmatrix}
\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots
\end{array}
\end{bmatrix}, \quad \text{where } B_{ij} \in \mathbb{R}^{n \times n},
\]

is called a butterfly matrix if \(B_{11} \) and \(B_{21} \) are diagonal, and \(B_{12} \) and \(B_{22} \) are tridiagonal. Bunea and Bunse-Gerstner [2, 3] showed that for every symplectic matrix \(M \), there exist numerous symplectic matrices \(S \) such that \(B = S^{-1}MS \) is a symplectic butterfly matrix. In [2], an elimination process for computing the butterfly form of a symplectic matrix is presented (see also [4]).

In [4], an unreduced butterfly matrix is introduced in which the lower right tridiagonal matrix is unreduced, that is, the subdiagonal elements of \(B_{22} \) are nonzero. Using the definition of a symplectic matrix, one easily verifies that if \(B \) is an unreduced butterfly matrix, then \(B_{21} \) is nonsingular. This allows the decomposition of \(B \) into two simpler symplectic matrices:

\[
(2.1) \quad B = \begin{bmatrix}
B_{21}^{-1} & B_{11} \\
0 & B_{21}
\end{bmatrix} \begin{bmatrix}
0 & -I \\
I & T
\end{bmatrix} = \begin{bmatrix}
\begin{array}{ccc}
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots
\end{array}
\end{bmatrix},
\]

where \(T = B_{21}^{-1}B_{22} \) is tridiagonal and symmetric. Hence \(4n-1 \) parameters that determine the symplectic matrix can be read off directly. The unreduced butterfly matrices play a role analogous to that of unreduced Hessenberg matrices in the standard QR theory [2, 4, 5].

We will frequently make use of the decomposition (2.1) and will denote it by

\[
(2.2) \quad B_1 = \begin{bmatrix}
B_{21}^{-1} & B_{11} \\
0 & B_{21}
\end{bmatrix} = \begin{bmatrix}
\begin{array}{ccc}
a_1^{-1} & \cdots & b_1 \\
\cdots & a_n^{-1} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
a_1 & \cdots & a_n
\end{array}
\end{bmatrix},
\]
(2.3) \[B_2^{-1} = \begin{bmatrix} 0 & -I \\ I & B_{21}B_{22} \end{bmatrix} = \begin{bmatrix} 1 & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \end{bmatrix} \begin{bmatrix} -1 \\ \vdots \\ \vdots \\ \vdots \end{bmatrix} \]

(2.4) \[B = \begin{bmatrix} b_1 & b_n & b_{n-1} & \cdots \\ b_n & b_d & b_{d_n} & \cdots \\ \vdots & \vdots & \ddots & \ddots \\ \vdots & \vdots & \ddots & b_{d_n} & b_{d_n} & \cdots \\ a_1 & a_n & a_{n-1} & \cdots \end{bmatrix} \]

Remark 2.1. (See [4].)

a) Any unreduced butterfly matrix is similar to an unreduced butterfly matrix with \(b_i = 1, |a_i| = 1 \) for \(i = 1, \ldots, n \) and \(\text{sign}(a_i) = \text{sign}(d_i) \) for \(i = 2, \ldots, n \).

b) We will have deflation if \(d_j = 0 \) for some \(j \). Then the eigenproblem can be split into two smaller ones with unreduced symplectic butterfly matrices.

Eigenvalues and eigenvectors of symplectic butterfly matrices can be computed efficiently by the SR algorithm [7], which is a QR like algorithm in which the QR decomposition is replaced by the SR decomposition. Almost every matrix \(A \in \mathbb{R}^{2n \times 2n} \) can be decomposed into a product \(A = SR \) where \(S \) is symplectic and \(R \) is \(J \)-triangular; that is

\[R = \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix}, \]

where all submatrices \(R_{ij} \in \mathbb{R}^{n \times n} \) are upper triangular, and \(R_{21} \) is strictly upper triangular [12]. In the following a matrix \(D \in \mathbb{R}^{2n \times 2n} \) will be called trivial if it is both symplectic and \(J \)-triangular. \(D \) is trivial if and only if it has the form

\[D = \begin{bmatrix} C & F \\ 0 & C^{-1} \end{bmatrix}, \]

where \(C \) and \(F \) are diagonal matrices, \(C \) nonsingular.

If the SR decomposition \(A = SR \) exists, then other SR decompositions of \(A \) can be built from it by passing trivial factors back and forth between \(S \) and \(R \). That is, if \(D \) is a trivial matrix, \(S = SD \) and \(R = D^{-1}R_0 \) then \(A = SR \) is another SR decomposition of \(A \). If \(A \) is nonsingular, then this is the only way to create other SR decompositions. In other words, the SR decomposition is unique up to trivial factors.

The SR algorithm is an iterative algorithm that performs an SR decomposition at each iteration. If \(B \) is the current iterate, then a spectral transformation function
q is chosen (such that $q(B) \in \mathbb{R}^{2n \times 2n}$) and the SR decomposition of $q(B)$ is formed, if possible:

$$q(B) = SR.$$

Then the symplectic factor S is used to perform a similarity transformation on B to yield the next iterate, which we will call \hat{B}:

$$\hat{B} = S^{-1}BS.$$

If rank$(q(B)) = 2n$ and B is an unreduced symplectic butterfly matrix, then so is \hat{B} in (2.5) [2, 3]. If rank $(\mu(B)) = 2n - \nu =: 2k$ and B is an unreduced symplectic butterfly matrix, then \hat{B} in (2.5) is of the form (see [4])

$$\hat{B} = \begin{bmatrix}
\hat{B}_{11} & \hat{B}_{13} \\
\hat{B}_{31} & \hat{B}_{33}
\end{bmatrix} \begin{bmatrix}
\hat{B}_{22} & \hat{B}_{24} \\
\hat{B}_{42} & \hat{B}_{44}
\end{bmatrix}
= \begin{bmatrix}
\hat{B}_{11} & \hat{B}_{13} \\
\hat{B}_{31} & \hat{B}_{33}
\end{bmatrix} \begin{bmatrix}
\hat{B}_{22} & \hat{B}_{24} \\
\hat{B}_{42} & \hat{B}_{44}
\end{bmatrix}
= \begin{bmatrix}
\begin{bmatrix}k & n-k \\
k & n-k
\end{bmatrix} & \begin{bmatrix}k & n-k \\
\end{bmatrix}
\end{bmatrix} \begin{bmatrix}
\begin{bmatrix}k & n-k \\
k & n-k
\end{bmatrix} & \begin{bmatrix}k & n-k \\
\end{bmatrix}
\end{bmatrix},$$

where

- $\begin{bmatrix}\hat{B}_{11} & \hat{B}_{13} \\
\hat{B}_{31} & \hat{B}_{33}\end{bmatrix}$ is a symplectic butterfly matrix and
- the eigenvalues of $\begin{bmatrix}\hat{B}_{22} & \hat{B}_{24} \\
\hat{B}_{42} & \hat{B}_{44}\end{bmatrix}$ are just the ν shifts that are eigenvalues of B.

An algorithm for explicitly computing S and R is presented in [8]. As with explicit QR steps, the expense of explicit SR steps comes from the fact that $q(B)$ has to be computed explicitly. A preferred alternative is the implicit SR step, an analogue to the Francis QR step [15, 17, 20]. As the implicit SR step is analogous to the implicit QR step, this technique will not be discussed here (see [4, 5] for details).

A natural way to choose the spectral transformation function q is to choose a polynomial $p_4(\lambda) = (\lambda - \mu)(\lambda - \mu^{-1})$ for $\mu \in \mathbb{R}$ (or $\mu \in \mathbb{C}$, $|\mu| = 1$) or $p_4(\lambda) = (\lambda - \mu)(\lambda - \mu^{-1})(\lambda - \mu^2)(\lambda - \mu^3)$ for $\mu \in \mathbb{C}$ as these choices make use of the symmetries of the spectrum of symplectic matrices. But, as explained in [5], a better choice is a Laurent polynomial to drive the SR step. For example, instead of $p_4(\lambda)$ we will use

$$q_4(\lambda) = p_4(\lambda)\lambda^{-2} = (\lambda + \lambda^{-1})^2 - (\mu + \mu^{-1} + 1)(\lambda + \lambda^{-1}) - (\mu + \mu^{-1} + 1)(\mu + \mu^{-1}) - 2.$$

This reduces the size of the bulges that are introduced, thereby decreasing the number of computations required per iteration. Moreover, the use of Laurent polynomials improves the convergence and stability properties of the algorithm by effectively treating each reciprocal pair of eigenvalues as a unit. Using a generalized Rayleigh-quotient strategy, the butterfly SR algorithm is typically cubic convergent [5].

The right eigenvectors of unreduced butterfly matrices have the following property which will be helpful when analyzing the symplectic Lanczos method introduced in the next section.
LEMMA 2.2. Suppose that $B \in \mathbb{R}^{2n \times 2n}$ is an unreduced butterfly matrix as in (2.4). If $Bx = \lambda x$ with $x \neq 0$ then $e_j^T x \neq 0$.

In order to prove this lemma we need the following definition. Let P_n be the permutation matrix
\begin{equation}
P_n := [e_1, e_3, \ldots, e_{2n-1}, e_2, e_4, \ldots, e_{2n}] \in \mathbb{R}^{2n \times 2n}.
\end{equation}
If the dimension of P_n is clear from the context, we leave off the subscript.

Proof. The proof is by induction on the size of B. The entries of the eigenvector x will be denoted by $x_i; x = [x_1, x_2, \ldots, x_{2n}]^T$.

Suppose that $n = 2$. The second and fourth row of $Bx = \lambda x$ yield
\begin{align}
&b_2 x_2 + b_3 d_2 x_3 + (b_2 c_2 - a_2^2) x_4 = \lambda x_2, \\
&a_2 x_2 + a_3 d_2 x_3 + a_2 c_2 x_4 = \lambda x_4,
\end{align}
Since B is unreduced, we know that $a_2 \neq 0$ and $d_2 \neq 0$. If $x_4 = 0$ then from (2.9) we obtain
\begin{equation}
x_2 + d_2 x_3 = 0,
\end{equation}
while (2.8) gives $b_2 (x_2 + d_2 x_3) = \lambda x_2$. Using (2.10) we obtain $x_2 = 0$ and further $x_3 = 0$.

The third row of $Bx = \lambda x$ gives
\begin{equation}
a_1 x_1 + a_1 c_1 x_3 + a_1 d_2 x_4 = \lambda x_3.
\end{equation}
Using $x_2 = x_3 = x_4 = 0$ and $a_1 \neq 0$, since B is unreduced, we obtain $x_1 = 0$. Thus $x = 0$ which contradicts the assumption $x \neq 0$.

Assume that the lemma is true for matrices of order $2(n-1)$. Let $B^{2n \times 2n} \in \mathbb{R}^{2n \times 2n}$ be an unreduced butterfly matrix. For simplicity we will consider the permuted equation $B^{2n \times 2n} x_P = \lambda x_P$ where $B_{P}^{2n \times 2n} = PB^{2n \times 2n} P^T$ and $x_P = Px$. Partition $B^{2n \times 2n}, x_P$ as
\begin{equation}
B^{2n \times 2n}_P = \begin{bmatrix}
B^{(n-1) \times (n-1)}_P & 0 \\
0 & d_n (b_{n-1} c_{2n-3} + a_{n-1} c_{2n-2})
\end{bmatrix},
\end{equation}
\begin{equation}
x_P = \begin{bmatrix}
y \\
x_{2n-1} \\
x_{2n}
\end{bmatrix},
\end{equation}
where $B^{(n-1) \times (n-1)}_P \in \mathbb{R}^{(n-1) \times (n-1)}$ is an unreduced butterfly matrix and $y \in \mathbb{R}^{2n-2}$. Suppose $x_{2n} = \tilde{x}_{2n} = 0$. This implies
\begin{equation}
d_n y_{2n-2} + \tilde{x}_{2n-1} = 0
\end{equation}
since $a_n \neq 0$ as $B^{2n \times 2n}$ is unreduced. Further we have
\begin{equation}
b_n (d_n y_{2n-2} + \tilde{x}_{2n-1}) = \lambda \tilde{x}_{2n-1}.
\end{equation}
Hence, using (2.11) we get $\tilde{x}_{2n-1} = 0$. This implies $B^{2n-1 \times 2n-1}_P y = \lambda y$. Using $\tilde{x}_{2n-1} = \tilde{x}_{2n} = 0$ we further obtain from (2.11) $y_{2n-2} = 0$. This is a contradiction, because by induction hypothesis $e_j^T y \neq 0$.

REMARK 2.3. If $Bx = \lambda x$, then $(Jx)^T B = \lambda^{-1} (Jx)^T$. Let y be the right eigenvector of B to λ^{-1}: $B y = \lambda^{-1} y$, then $(Jy)^T B = \lambda (Jy)^T$. From Lemma 2.2 it follows that $e_j^T y \neq 0$, hence the nth component of the left eigenvector of B corresponding to λ is $\neq 0$.

\[\square\]
3. A Symplectic Lanczos Method for Symplectic Matrices. In this section, we review the symplectic Lanczos method to compute the butterfly form (2.4) for a symplectic matrix M derived in [4]. The usual unsymmetric Lanczos algorithm generates two sequences of vectors. Due to the symplectic structure of M it is easily seen that one of the two sequences can be eliminated here and thus work and storage can essentially be halved. (This property is valid for a broader class of matrices, see [16].) Further, this section is concerned with finding conditions for the symplectic Lanczos method terminating prematurely such that an invariant subspace associated with certain desired eigenvalues is obtained. Finally we will consider the important question of determining stopping criteria.

In order to simplify the notation we use in the following permuted versions of M and B as in the previous section. Let

$$M_P = PMP^T, \quad B_P = PBP^T, \quad S_P = PSP^T, \quad J_P = PJP^T$$

with the permutation matrix P as in (2.7).

3.1. The symplectic Lanczos factorization. We want to compute a symplectic matrix S such that S transforms the symplectic matrix M to a symplectic butterfly matrix B; in the permuted version $MS = SB$ yields

$$M_P S_P = S_P B_P,$$

Equivalently, as $B = B_1 B_2^{-1}$, we can consider

$$M_P S_P (B_2)_P = S_P (B_1)_P$$

where

$$\begin{bmatrix}
0 & \cdots & 0 \\
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\end{bmatrix}$$

$$\begin{bmatrix}
a_1^{-1} & -b_1 & \cdots & 0 \\
0 & a_1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & a_n \\
\end{bmatrix}$$

The structure preserving Lanczos method generates a sequence of permuted symplectic matrices

$$S_P^{2n,2k} = [v_1, w_1, v_2, w_2, \ldots, v_k, w_k] \in \mathbb{R}^{2n \times 2k}$$

satisfying

$$M_P S_P^{2n,2k} = S_P^{2n,2k} B_P^{2k,2k} - d_{k+1}(b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) e_{2k}^T$$
where $B_{P}^{2k,2k} = P_{k}B_{P}^{k,k}P_{k}^{T}$ is a permuted $2k \times 2k$ symplectic butterfly matrix.

The vector $r_{k+1} := d_{k+1}(b_{k+1}v_{k+1} + a_{k+1}w_{k+1})$ is the residual vector and is J_{P}-orthogonal to the columns of $S_{P}^{2n \times 2k}$, the Lanczos vectors. The matrix $B_{P}^{2k,2k}$ is the J_{P}-orthogonal projection of M_{P} onto the range of $S_{P}^{2n \times 2k}$,

$$B_{P}^{2k,2k} = J_{P}^{2k,2k}(S_{P}^{2n \times 2k})^{T}J_{P}M_{P}S_{P}^{2n \times 2k},$$

Here $J_{P}^{2k,2k}$ denotes a permuted $2k \times 2k$ matrix J of the form (1.3). Equation (3.5) defines a length $2k$ Lanczos factorization of M_{P}. If the residual vector r_{k+1} is the zero vector, then equation (3.5) is called a truncated Lanczos factorization when $k < n$. Note that r_{n+1} must vanish since $(S_{P}^{2n \times 2n})^{T}J_{P}r_{n+1} = 0$ and the columns of $S_{P}^{2n \times 2n}$ form a J_{P}-orthogonal basis for \mathbb{R}^{2n}. In this case the symplectic Lanczos method computes a reduction to permuted butterfly form.

The symplectic Lanczos factorization is, up to multiplication by a trivial matrix, specified by the starting vector v_{1} (see [4, Theorem 4.1]).

Let $S_{P} = [v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{n}, w_{n}]$. For a given v_{1}, a Lanczos method constructs the matrix S_{P} columnwise from the equations

$$M_{P}S_{P}(B_{j})_{re} = S_{P}(B_{i})_{re}v_{j}, \quad j = 1, 2, \ldots.$$

From this we obtain the algorithm given in Table 3.1 (for a more detailed discussion see [4]).

```
Algorithm: Symplectic Lanczos method

Choose an initial vector $\hat{v}_{1} \in \mathbb{R}^{2n}, \hat{v}_{1} \neq 0$.
Set $v_{0} = 0 \in \mathbb{R}^{2n}$.
Set $d_{1} = \|\hat{v}_{1}\|_{2}$ and $v_{1} = \frac{1}{d_{1}}\hat{v}_{1}$.

for $m = 1, 2, \ldots$ do
  (update of $w_{m}$)
  set
  $\tilde{w}_{m} = M_{P}w_{m} - d_{m}v_{m}$
  $a_{m} = v_{m}^{T}J_{P}M_{P}w_{m}$
  $w_{m} = \frac{1}{a_{m}}\tilde{w}_{m}$

  (computation of $c_{m}$)
  $c_{m} = a_{m}^{-1}v_{m}^{T}J_{P}M_{P}^{-1}w_{m}$

  (update of $v_{m+1}$)
  $\hat{v}_{m+1} = -d_{m+1}v_{m+1} - c_{m}v_{m} + w_{m} + a_{m}^{-1}M_{P}^{-1}v_{m}$
  $d_{m+1} = \|\hat{v}_{m+1}\|_{2}$
  $v_{m+1} = \frac{1}{d_{m+1}}\hat{v}_{m+1}$

end for

Table 3.1
Symplectic Lanczos Method

Remark 3.1. Using the derived formulae for $w_{k+1}$, the residual term $r_{k+1} = d_{k+1}(b_{k+1}v_{k+1} + a_{k+1}w_{k+1})$ can be expressed as

$$r_{k+1} = d_{k+1}M_{P}v_{k+1}.$$
There is still some freedom in the choice of the parameters that occur in this algorithm. Essentially, the parameters $b_m$ can be chosen freely. Here we set $b_m = 1$. Likewise a different choice of the parameters $a_m, d_m$ is possible.

Note that $M_P^{-1} = -J_P M_P J_P$ since $M$ is symplectic. Thus $M_P^{-1} v_m$ is just a matrix-vector-product with the transpose of $M_P$. Hence, only one matrix-vector product is required for each computed Lanczos vector $w_m$ or $v_m$. Thus an efficient implementation of this algorithm requires $6n + (4nz + 32n)k$ flops\footnote{Following [17], we define each floating point arithmetic operation together with the associated integer indexing as a flop.} where $nz$ is the number of nonzero elements in $M_P$ and $2k$ is the number of Lanczos vectors computed (that is, the loop is executed $k$ times). The algorithm as given in Table 3.1 computes an odd number of Lanczos vectors, for a practical implementation one has to omit the computation of the last vector $v_{k+1}$ (or one has to compute an additional vector $w_{k+1}$).

In the symplectic Lanczos method as given above we have to divide by parameters that may be zero or close to zero. If such a case occurs for the normalization parameter $d_{m+1}$, the corresponding vector $\xi_{m+1}$ is zero or close to the zero vector. In this case, a (good approximation to a) $J_P$-orthogonal invariant subspace of $M_P$ or equivalently, a symplectic invariant subspace of $M$ is detected. By redefining $\xi_{m+1}$ to be any vector satisfying

$$v_{m+1}^T J_P v_{m+1} = 0, \quad w_{m+1}^T J_P w_{m+1} = 0,$$

for $j = 1, \ldots, m$, the algorithm can be continued. The resulting butterfly matrix is no longer unreduced; the eigenproblem decouples into two smaller subproblems. In case $\hat{v}_m$ is zero (or close to zero), an invariant subspace of $M_P$ with dimension $2m - 1$ is found (or a good approximation to such a subspace). In this case the parameter $a_m$ will be zero (or close to zero). From Table 3.1 we further obtain that in this case $M_P v_m = b_m v_m$, i.e., $b_m$ is a real eigenvalue of $M_P$ (and hence of $M$) with corresponding eigenvector $v_m$ ($P^T v_m$). Due to the symmetry of the spectrum of $M$, we also have that $1/b_m$ is an eigenvalue of $M$. Computing an eigenvector $y$ of $M_P$ corresponding to $1/b_m$, we can try to augment the $(2m - 1)$-dimensional invariant subspace to an $M_P$-invariant subspace of even dimension. If this is possible, the space can be made $J_P$-orthogonal by $J_P$-orthogonalizing $y$ against $\{v_1, v_2, \ldots, v_{m-1}, w_{m-1}\}$ and normalizing such that $y^T J_P v_m = 1$.

Thus if either $v_{m+1}$ or $w_{m+1}$ vanishes, the breakdown is benign. If $v_{m+1} \neq 0$ and $w_{m+1} \neq 0$ but $a_{m+1} = 0$, then the breakdown is serious. No reduction of the symplectic matrix to a symplectic butterfly matrix with $v_1$ as first column of the transformation matrix exists.

A convergence analysis for the symplectic Lanczos algorithm analogous to the one for the unsymmetric Lanczos algorithm presented by Ye [39] can be given. Moreover, an error analysis of the symplectic Lanczos algorithm in finite-precision arithmetic analogous to the analysis for the unsymmetric Lanczos algorithm presented by Bai [1] can also be derived. These results will be presented in [13]. As to be expected, the computed Lanczos vectors lose $J(J_P)$-orthogonality when some Ritz values begin to converge.

3.2. Truncated symplectic Lanczos factorizations. This section is concerned with finding conditions for the symplectic Lanczos method terminating prematurely. This is a welcome event since in this case we have found an invariant symplectic
subspace $S^{2n-2k}$ and the eigenvalues of $B^{k,2k}$ are a subset of those of $M$. We will first discuss the conditions under which the residual vector of the symplectic Lanczos factorization will vanish at some step $k$. Then we will show how the residual vector and the starting vector are related. Finally a result indicating when a particular starting vector generates an exact truncated factorization is given.

First the conditions under which the residual vector of the symplectic Lanczos factorization will vanish at some step $k$ will be discussed. From the derivation of the algorithm it is immediately clear that if no breakdown occurs, then

$$\text{span}\{v_1, \ldots, v_{k+1}, w_1, \ldots, w_k\}$$
$$= \text{span}\{v_1, M_p^{-1}v_1, \ldots, M_p^{k}v_1, M_p v_1, \ldots, M_p^{k}v_1\}$$
$$= \text{span}\{\text{span}(K(M_p, v_1, k)) \cup \{M_p^{k}v_1\}\}$$
$$= \text{span}\{v_1, \ldots, v_{k+1}, w_1, \ldots, w_{k+1}\}$$
$$= \text{span}\{v_1, M_p^{-1}v_1, \ldots, M_p^{k}v_1, M_p v_1, \ldots, M_p^{k+1}v_1\}$$
$$= \text{span}(K(M_p, v_1, k+1))$$

where $K(X, v, k) = \{v_1, X^{-1}v, X^{-2}v, \ldots, X^{-(k-1)}v, X^{k}v\}$. Further it is easy to see that

$$\dim K(M_p, v_1, k+1) = d < 2k \implies \dim K(M_p, v_1, j) = d \quad \forall j > k.$$  

If $\dim K(M_p, v_1, k+1) = 2k + 1$, then

$$w_{k+1} = M_p v_{k+1} - b_{k+1} v_{k+1} \in \text{span}\{v_1, \ldots, v_{k+1}, w_1, \ldots, w_k\}.$$  

Hence, there exist real scalars $\alpha_1, \ldots, \alpha_{k+1}$ and $\beta_1, \ldots, \beta_k$ such that

$$M_p v_{k+1} = \alpha_1 v_1 + \ldots + \alpha_{k+1} v_{k+1} + \beta_1 w_1 + \ldots + \beta_k w_k.$$  

Using the definition of $a_{k+1}$ as given in Table 3.1 and the above expression we obtain because of $J$-orthogonality,

$$a_{k+1} = v_{k+1}^T J_p M_p v_{k+1}$$
$$= \alpha_1 v_{k+1}^T J_p v_1 + \ldots + \alpha_{k+1} v_{k+1}^T J_p v_{k+1} + \beta_1 v_{k+1}^T J_p w_1 + \ldots + \beta_k v_{k+1}^T J_p w_k$$
$$= 0.$$  

As $\tilde{w}_{k+1} = a_{k+1} w_{k+1} = M_p v_{k+1} - b_{k+1} v_{k+1}$ (see Table 3.1) it follows that $\tilde{w}_{k+1} = 0$. This implies that an invariant subspace of $M_p$ with dimension $2k + 1$ is found.

If $\dim K(M_p, v_1, k+1) = 2k$, then $M_p v_k \in \text{span}\{v_1, \ldots, v_k, w_1, \ldots, w_k\}$. Hence

$$a_{k+1}^{-1} M_p^{-1} v_k = \alpha_1 v_1 + \ldots + \alpha_k v_k + \beta_1 w_1 + \ldots + \beta_k w_k,$$

for properly chosen $\alpha_j, \beta_j$ and from the algorithm in Table 3.1

$$a_{k+1} v_1 + \ldots + a_k v_k + (\alpha_{k+1} - d_k) w_{k+1} + (\alpha_k - c_k) w_k + \beta_1 w_1 + \ldots + \beta_k w_k.$$

Since $[v_1, w_1, \ldots, v_k, w_k]^T J_p \tilde{w}_{k+1} = [0, \ldots, 0]$ we obtain

$$v_j^T J_p \tilde{w}_{k+1} = \beta v_j^T J_p v_j = \beta_j = 0 \quad \text{for } j < k$$
$$v_{k+1}^T J_p \tilde{w}_{k+1} = \left(\beta_k + 1\right) v_{k+1}^T J_p w_k = \beta_k + 1 = 0$$
$$w_j^T J_p \tilde{w}_{k+1} = \alpha_j w_j^T J_p v_j = -\alpha_j = 0 \quad \text{for } j < k$$
$$w_{k+1}^T J_p \tilde{w}_{k+1} = (\alpha_{k+1} - d_k) w_{k+1}^T J_p v_{k+1} = d_k - \alpha_{k+1} = 0$$
$$w_k^T J_p \tilde{w}_{k+1} = (\alpha_k - c_k) w_k^T J_p v_k = c_k - \alpha_k = 0.$$
Therefore \( \mathcal{Y}_{k+1} = 0 \) and further \( d_{k+1} = 0 \). This implies that the residual vector of the symplectic Lanczos factorization will vanish at the first step \( k \) such that the dimension of \( K(M, v_1, k + 1) \) is equal to \( 2k \) and hence is guaranteed to vanish for some \( k \leq n \).

Next we will discuss the relation between the residual term and the starting vector. If \( \dim K(M, v_1, n) = 2n \) then

\[
MK(M, v_1, n) = K(M, v_1, n)C_n
\]

where \( K(M, v_1, n) = [v_1, M^{-1}v_1, M^{-2}v_1, \ldots, M^{-(n-1)}v_1, Mu, M^2u, \ldots, M^nv] \in \mathbb{R}^{2n \times 2n}, \)

and \( C_n \) is a generalized companion matrix of the form

\[
\begin{bmatrix}
0 & 1 & & & c_1 \\
\vdots & \ddots & & \vdots & \vdots \\
0 & \ddots & \ddots & c_{n-1} \\
1 & \ddots & \ddots & c_n \\
0 & c_{n+1} & \cdots & 0 & c_{2n-1} \\
1 & c_n & \cdots & 0 & c_{2n}
\end{bmatrix}
\]

(see [2, proof of Satz 3.6]). Thus,

\[
(3.7) \quad MK(M, v_1, k) = K(M, v_1, k)C_k + (M^{k+1}v_1 - K(M, v_1, k)Cke_{2k})e_{2k}^T.
\]

Define the residual in (3.7) by

\[
(3.8) \quad f_{k+1} := M^{k+1}v_1 - K(M, v_1, k)Cke_{2k}.
\]

Note that

\[
(3.9) \quad f_{k+1} = p_k(M)v_1
\]

where

\[
p_k(\lambda) := \lambda^{k+1} - \sum_{j=0}^{k-1} (c_{k+j+1} \lambda^{j+1} + c_{j+1} \lambda^{-j}).
\]

We will now show that \( f_{k+1} \) is up to scaling the residual of the length \( 2k \) symplectic Lanczos iteration with starting vector \( v_1 \). Together with (3.9) this reveals the relation between residual and starting vectors. Since \( \det (C_k - \lambda I) = \lambda^{2k} - \sum_{j=0}^{k-1} (c_{k-j} \lambda^j + c_{k-j+1} \lambda^{k-j}) \), we obtain

\[
p_k(\lambda) = \lambda^{-k-1} \det (C_k - \lambda I).
\]

Let \( K(M, v_1, k) \equiv S^{2n \times 2k}R \) where \( S^{2n \times 2k} \in \mathbb{R}^{2n \times 2k} \) with \( J \)-orthogonal columns (that is, \( (S^{2n \times 2k})^T J_{2n \times 2k} = J_k \)) and \( R \in \mathbb{R}^{2k \times 2k} \) is a \( J \)-triangular matrix. Then \( S^{2n \times 2k}e_1 = v_1 \). The diagonal elements of \( R \) are nonzero if and only if the columns of \( K(M, v_1, k) \) are linear independent. Choosing

\[
c = \left[ \begin{array}{c} c_1 \\ \vdots \\ c_{2k} \end{array} \right] = R^{-1}(-J^k(S^{2n \times 2k})^T J^n)M^{k+1}v_1
\]
assures that \((-J^k(S^{2n2k})T^m)f_{k+1} = 0\). Now multiplying (3.7) from the right by 
\(R^{-1}\) yields

\[
MK(M_0v_1, k)R^{-1} - K(M_0v_1, k)C_kR^{-1} = f_{k+1}c_k^T R^{-1}
\]

\[
(3.10)
\]

\[
\iff
MS^{2n2k} - S^{2n2k}B = f_{k+1}c_k^T R^{-1}/R^{2k,2k}
\]

where \(B = RC_kR^{-1}\) is an unreduced butterfly matrix (see [2, proof of Satz 3.6]) with the same characteristic polynomial as \(C_k\). Equation (3.10) is a valid symplectic Lanczos recursion with starting vector \(v_1 = S^{2n2k}c_1\) and residual vector \(f_{k+1}/R^{2k,2k}\).

By (3.9) and due to the essential uniqueness of the symplectic Lanczos recursion any symplectic Lanczos recursion with starting vector \(v_1\) yields a residual vector that can be expressed as a polynomial in \(M\) times the starting vector \(v_1\).

**Remark 3.2.** From (3.8) it follows that if \(\dim \mathcal{K}(M_0v_1, k+1) \leq 2k\), then we can choose \(c_1, \ldots, c_{2k}\) such that \(f_{k+1} = 0\). This shows that if the Krylov subspace \(\mathcal{K}(M, v_1, k+1)\) forms a 2\(k\)-dimensional \(M\)-invariant subspace, the residual of the symplectic Lanczos recursion will be zero after \(k\) Lanczos steps such that the columns of \(S^{2n2k}\) span a symplectic basis for the subspace \(\mathcal{K}(M, v_1, k+1)\).

The final result of this section will give necessary and sufficient conditions for a particular starting vector to generate an exact truncated factorization in a similar way as stated for the Arnoldi method in [35]. This is desirable since then the columns of \(S^{2n2k}\) form a basis for an invariant symplectic subspace of \(M\) and the eigenvalues of \(B^{2k,2k}\) are a subset of those of \(M\). Here, \(v_k, \omega_k\) will denote the Lanczos vectors after permuting them back, i.e., \(v_k = P^T v_k, \omega_k = P^T \omega_k\).

**Theorem 3.3.** Let \(MS^{2n2k} = S^{2n2k}B^{2k,2k}\) be the symplectic Lanczos factorization after \(k\) steps, with \(B^{2k,2k}\) unreduced. Then \(d_{k+1} = 0\) if and only if \(v_1 = Xy\) where \(MX = XJ\) with rank \((X) = 2k\) and \(J\) a Jordan matrix of order \(2k\).

**Proof.** If \(d_{k+1} = 0\), let \(B^{2k,2k}X = XJ\) be the Jordan canonical form of \(B^{2k,2k}\) and put \(X = S^{2n2k}X\). Then \(MX = S^{2n2k}B^{2k,2k}X = S^{2n2k}XJ = XJ\) and \(v_1 = S^{2n2k}c_1 = S^{2n2k}Xe_1 = Xy\) with \(y = X^{-1}e_1\).

Suppose now that \(MX = XJ, \text{rank}(X) = 2k\) and \(v_1 = Xy\). Then \(M^mX = XJ^m\) for \(m \in \mathbb{N}\) and it follows that

\[
M^m v_1 = M^m Xy = XJ^m y \in \text{Range}(X)
\]

for \(m \in \mathbb{N}\). Hence by (3.6) \(\dim \mathcal{K}(M_0v_1, k+1) \leq \text{rank}(X) = 2k\). Since \(B^{2k,2k}\) is unreduced, \(\dim \mathcal{K}(M_0v_1, j) = 2j\) for \(j = 1, \ldots, k\). Hence \(\dim \mathcal{K}(M, v_1, k+1) = 2k\) and therefore, \(d_{k+1} = 0\).

A similar result may be formulated in terms of Schur vectors or symplectic Schur vectors (see, e.g., [28, 29] for the real symplectic Schur decomposition of a symplectic matrix). These theorems provide the motivation for the implicit restart developed in the next section. Theorem 3.3 suggests that one might find an invariant subspace by iteratively replacing the starting vector with a linear combination of approximate eigenvectors corresponding to eigenvalues of interest. Such approximations are readily available through the Lanczos factorization.

**3.3. Stopping Criteria.** Now assume that we have performed \(k\) steps of the symplectic Lanczos method and thus obtained the identity (after permuting back)

\[
MS^{2n2k} = S^{2n2k}B^{2k,2k} + d_{k+1}(b_{k+1}v_{k+1} + a_{k+1}\bar{\omega}_{k+1})e_k^T
\]
If the norm of the residual vector is small, the $2k$ eigenvalues of $B^{2k,2k}$ are approximations to the eigenvalues of $M$. Numerical experiments indicate that the norm of the residual rarely becomes small by itself. Nevertheless, some eigenvalues of $B^{2k,2k}$ may be good approximations to eigenvalues of $M$. Let $\lambda$ be an eigenvalue of $B^{2k,2k}$ with the corresponding eigenvector $y$. Then the vector $x = S^{2n,2k}y$ satisfies

$$||Mx - \lambda x|| = ||(MS^{2n,2k} - S^{2n,2k}B^{2k,2k})y||$$

$$= |d_{k+1}| ||e_{2k}^T|| \|b_{k+1} \delta_{k+1} + a_{k+1} \delta_{k+1}||. \tag{3.11}$$

The vector $x$ is referred to as a Ritz vector and $\lambda$ as the Ritz value of $M$. If the last component of the eigenvector $y$ is sufficiently small, the right-hand side of (3.11) is small and the pair $\{\lambda, x\}$ is a good approximation to an eigenvalue-eigenvector pair of $M$. Note that by Lemma 2.2 $|e_{2k}^T| > 0$ if $B^{2k,2k}$ is unreduced. The pair $(\lambda, x)$ is exact for the nearby problem

$$(M - E)x = \lambda x \quad \text{where} \quad E = d_{k+1}(b_{k+1} \delta_{k+1} + a_{k+1} \delta_{k+1})e_{2k}^T(S^{2n,2k})^TJ^T.$$

A small $\|E\|$ is not sufficient for the Ritz pair $\{\lambda, x\}$ being a good approximation to an eigenvalue-eigenvector pair of $M$. The advantage of using the Ritz estimate $|d_{k+1}| ||e_{2k}^T|| \|b_{k+1} \delta_{k+1} + a_{k+1} \delta_{k+1}||$ is to avoid the explicit formation of the residual $(MS^{2n,2k} - S^{2n,2k}B^{2k,2k})y$ when deciding about the numerical accuracy of an approximate eigenpair.

It is well-known that for non-normal matrices the norm of the residual of an approximate eigenvector is not by itself sufficient information to bound the error in the approximate eigenvalue. It is sufficient however to give a bound on the distance to the nearest matrix to which the given approximation is exact. In the following, we will give a computable expression for the error. Assume that $B^{2k,2k}$ is diagonalizable

$$Y^{-1}B^{2k,2k}Y = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_k \end{bmatrix} = \Lambda.$$

Let $X = S^{2n,2k}Y = [x_1, \ldots, x_{2k}]$ and denote $d_{k+1}(b_{k+1} \delta_{k+1} + a_{k+1} \delta_{k+1})$ by $r_{k+1}$. Since $MS^{2n,2k} = S^{2n,2k}B^{2k,2k} + r_{k+1}e_{2k}^T$, it follows that

$$MS^{2n,2k} = S^{2n,2k}Y^{-1}B^{2k,2k}Y + r_{k+1}e_{2k}^TY$$

or $MX = \Lambda + r_{k+1}e_{2k}^TY$. Thus

$$MX_i = \lambda_i x_i + y_{2k}e_{k+1}$$

and

$$MX_{k+i} = \lambda_i^{-1} x_{k+i} + y_{2k}e_{k+1}$$

for $i = 1, \ldots, k$. The last equation can be re-written as

$$(Jx_{k+i})^T = \lambda_i (Jx_{k+i})^T + y_{2k}e_{k+1}^T JM.$$

Using Theorem 2' of [19] we obtain that $(\lambda_i, x_i, (Jx_{k+i})^T)$ is an eigen-triplet of $M - E$ where

$$||E|| = \max \left\{ \frac{||r_{k+1}|| ||y_{2k}||}{||x_i||}, \frac{||r_{k+1}^T JM|| ||y_{2k}e_{k+1}||}{||x_i||} \right\}.$$

An implicitly restarted symplectic Lanczos method
Furthermore, when $|E|$ is small enough, then
\[ |\lambda_i - \lambda_j| \leq \text{cond}(\lambda_j) ||E|| + O(||E||^2), \]
where $\lambda_i$ is an eigenvalue of $M$ and
\[ \text{cond}(\lambda_j) = \frac{||x_i||_2 ||Jx_j||_2}{||x_i||_2 ||x_j||_2} = ||x_i||_2 ||x_j||_2. \]

Consequently, the symplectic Lanczos algorithm should be continued until both $||E||$ is small and cond$(\lambda_j) ||E||$ is below a given threshold for accuracy.

4. An Implicitly Restarted Symplectic Lanczos Method. In the previous sections we have briefly mentioned two algorithms for computing approximations to the eigenvalues of a symplectic matrix $M$. The symplectic Lanczos algorithm is appropriate when the matrix $M$ is large and sparse. If only a small subset of the eigenvalues is desired, the length $k$ symplectic Lanczos factorization may suffice. The analysis in the last chapter suggests that a strategy for finding $2k$ eigenvalues in a length $k$ factorization is to find an appropriate starting vector that forces the residual $r_{k+1}$ to vanish. The SR algorithm, on the other hand, computes approximations to all eigenvalues and eigenvectors of $M$. From Theorem 4.1 in [4] (an implicit Q-theorem for the SR case) we know that in exact arithmetic, when using the same starting vector, the SR algorithm and the length $n$ Lanczos factorization generate the same symplectic butterfly matrices (up to multiplication by a trivial matrix). Forcing the residual for the symplectic Lanczos algorithm to zero has the effect of deflating a sub-diagonal element during the SR algorithm: by Remark 3.1 $r_{k+1} = -d_{k+1} M v_{k+1}$ and from the symplectic Lanczos process we have $d_{k+1} = ||v_{k+1}||_2$. Hence a zero residual implies a zero $d_{k+1}$ such that deflation occurs for the corresponding butterfly matrix.

Our goal in this section will be to construct a starting vector that is a member of the invariant subspace of interest. Our approach is to implicitly restart the symplectic Lanczos factorization. This was first introduced by Sorensen [35] in the context of unsymmetric matrices and Arnoldi process. The scheme is called implicit because the updating of the starting vector is accomplished with an implicit shifted SR mechanism on $B^{2j2j}$, $j \leq n$. This allows to update the starting vector by working with a symplectic matrix in $\mathbb{R}^{2j \times 2j}$ rather than in $\mathbb{R}^{2n \times 2n}$ which is significantly cheaper.

The iteration starts by extending a length $k$ symplectic Lanczos factorization by $p$ steps. Next, $2p$ shifts are applied to $B^{2(k+p)2(k+p)}$ using double or quadruple SR steps. The last $2p$ columns of the factorization are discarded resulting in a length $k$ factorization. The iteration is defined by repeating this process until convergence.

For simplicity let us first assume that $p = 1$ and that a $2n \times 2(k + 1)$ matrix $S_P^{2n \times 2k+2}$ is known such that
\begin{equation}
M_P S_P^{2n \times 2k+2} = S_P^{2n \times 2k+2} B_P^{(2k+2)(2k+2)} + r_{k+2} e^{T}_{2k+2}. \tag{4.1}
\end{equation}
as in (3.5). Let $\mu$ be a real shift and
\[ q_2(B^{(2k+2)(2k+2)}) = (B^{(2k+2)(2k+2)} - \mu I)(B^{(2k+2)(2k+2)} - \mu^{-1} I)(B^{(2k+2)(2k+2)})^{-1} = SR. \]
Then using (2.6) $S_P^{-1} B_P^{(2k+2)(2k+2)} S_P$ will be a permuted butterfly matrix and $S_P$ is an upper triangular matrix with two additional subdiagonals.

With this we can re-express (4.1) as
\[ M_P(S_P^{2n \times 2k+2} S_P) = (S_P^{2n \times 2k+2} S_P)(S_P^{-1} B_P^{(2k+2)(2k+2)} S_P) + r_{k+2} e^{T}_{2k+2} S_P. \]
Defining $S_P^{2n,2k+2}=S_P^{2n,2k+2}S_P$, $B_P^{2k+2,2k+2}=S_P^{-1}B_P^{2k+2,2k+2}S_P$, this yields

$$M_P S_P^{2n,2k+2} = S_P^{2n,2k+2} B_P^{2k+2,2k+2} + r_{k+2} e_{2k+2}^T S_P.$$  \hspace{1cm} (4.2)

The above equation fails to be a symplectic Lanczos factorization since the columns $2k, 2k+1, 2k+2$ of the matrix $d_{k+2}^T (b_{k+2} v_{k+2} + a_{k+2} w_{k+2}) e_{2k}^T e_{2k}$ are nonzero. Let $s_{ij}$ be the $(i,j)$th entry of $S_P$. The residual term in (4.2) is

$$d_{k+2} (b_{k+2} v_{k+2} + a_{k+2} w_{k+2})(s_{2k+2,2k+1} e_{2k}^T e_{2k+1} + s_{2k+2,2k+1} e_{2k}^T e_{2k+1} + s_{2k+2,2k+1} e_{2k}^T e_{2k+1}).$$

Rewriting (4.2) as

$$M_P S_P^{2n,2k+2} = [S_P^{2n,2k}, \delta_{k+1}, \delta_{k+1}, v_{k+2}, w_{k+2}] Z,$$

where $Z$ is blocked as

$$\begin{bmatrix}
B_P^{2k,2k} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} b_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) \\
\ell_{k+1} d_{k+1} & 0 & d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1})
\end{bmatrix}
$$

we obtain as a new Lanczos identity

$$M_P S_P^{2n,2k} = S_P^{2n,2k} B_P^{2k,2k} + r_{k+1} e_{2k}^T,
$$

where

$$r_{k+1} = d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}) + d_{k+1}^T (b_{k+1} v_{k+1} + a_{k+1} w_{k+1}).$$

Here, $d_{k+1}, b_{k+1}, d_{k+1}, a_{k+1}$ denote parameters of $B_P^{2k+2,2k+2}$, while $a_{k+2}, b_{k+2}, d_{k+2}$ are parameters of $B_P^{2k+2,2k+2}$. In addition, $v_{k+1}, w_{k+1}$ are the last two columns vectors from $S_P^{2n,2k+2}$, while $v_{k+2}, w_{k+2}$ are the last two column vectors of $S_P^{2n,2k+2}$.

As the space spanned by the columns of $S_P^{2n,2k+2} = (P_n)^T S_P^{2n,2k+2} P_k$ is $J$-orthogonal, and $S_P$ is a permuted symplectic matrix, the space spanned by the columns of $S_P^{2n,2k+2} = (P_n)^T S_P^{2n,2k+2} P_k$ is $J$-orthogonal. Thus (4.3) is a valid symplectic Lanczos factorization. The new starting vector is $\delta_1 = \rho e_1 M_P e_1$ for some scalar $\rho \in \mathbb{R}$. This can be seen as follows: first note that for unreduced butterfly matrices $B_P^{2k+2,2k+2}$ we have $q_2(B_P^{2k+2,2k+2}) e_1 \neq 0$. Hence, from $q_2(B_P^{2k+2,2k+2}) = S_P R_P$, we obtain $q_2(B_P^{2k+2,2k+2}) e_1 = \rho S_P e_1$ for $\rho = e_1^T R_P e_1$ as $R_P$ is an upper triangular matrix. As $q_2(B_P^{2k+2,2k+2}) e_1 \neq 0$, we have $\rho \neq 0$. Using (4.3) it follows that

$$\begin{align*}
S_P^{2n,2k+2} e_1 &= S_P^{2n,2k+2} S_P e_1 \\
&= \frac{1}{\rho} S_P^{2n,2k+2} q_2(B_P^{2k+2,2k+2}) e_1 \\
&= \frac{1}{\rho} S_P^{2n,2k+2} (B_P^{2k+2,2k+2} - \mu I)(B_P^{2k+2,2k+2} - \mu^{-1} I)(B_P^{2k+2,2k+2})^{-1} e_1 \\
&= \frac{1}{\rho} (M_P S_P^{2n,2k+2} - r_{k+2} e_{2k+2}^T - \mu S_P^{2n,2k+2}(I - \mu^{-1}(B_P^{2k+2,2k+2})^{-1}) e_1 \\
&= \frac{1}{\rho} (M_P S_P^{2n,2k+2} - \mu S_P^{2n,2k+2}(I - \mu^{-1}(B_P^{2k+2,2k+2})^{-1}) e_1
\end{align*}
as \( r_k+2e_{2k+2}^T(I - \mu^{-1}(B_P^{2k+2,2k+2})^{-1})e_1 = 0 \). Thus using again (4.3) we get

\[
S_P^{2n,2k} e_1 = \frac{1}{\rho} (M_P - \mu I) (S_P^{2n,2k+2} - \mu^{-1} S_P^{2n,2k+2} (B_P^{2k+2,2k+2})^{-1}) e_1 \\
= \frac{1}{\rho} (M_P - \mu I) (S_P^{2n,2k+2} - \mu^{-1} M_P^{-1} S_P^{2n,2k+2}) e_1 \\
= \frac{1}{\rho} \mu^{-1} M_P^{-1} r_k+2e_{2k+2}^T (B_P^{2k+2,2k+2})^{-1} e_1 \\
= \frac{1}{\rho} (M_P - \mu I) (I - \mu^{-1} M_P^{-1}) S_P^{2n,2k+2} e_1 \\
= q_2(M_P) e_1,
\]

as \( c_{2k+2}^T (B_P^{2k+2,2k+2})^{-1} e_1 = 0 \).

Note that in the symplectic Lanczos process the vectors \( v_j \) of \( S_P^{2n,2k} \) satisfy the condition \( \|v_j\|_2 = 1 \) and the parameters \( b_j \) are chosen to be one. This is no longer true for the odd numbered column vectors of \( S_P \) generated by the SR decomposition and the parameters \( b_j \) from \( B_P^{2k,2k} \) and thus for the new Lanczos factorization (4.3). Both properties could be forced using trivial factors. Numerical tests indicate that there is no obvious advantage in doing so.

Using standard polynomials as shift polynomials instead of Laurent polynomials as above results in the following situation: In \( p_2(B_P^{2k+2,2k+2} - \mu I) (B_P^{2k+2,2k+2} - \mu^{-1} I) = S_P R_P S_P \) is an upper triangular matrix with four (!) additional subdiagonals. Therefore, the residual term in (4.2) has five nonzero entries. Hence not the last two, but the last four columns of (4.2) have to be discarded in order to obtain a new valid Lanczos factorization. That is, we would have to discard wanted information which is avoided by using Laurent polynomials.

This technique can be extended to the quadruple shift case using Laurent polynomials as the shift polynomials as discussed in Section 2. The implicit restart can be summarized as given in Table 4.1. In the course of the iteration we have to choose \( p \) shifts \( \Delta = \{\mu_1, \ldots, \mu_p\} \) in order to apply \( 2p \) shifts; choosing a real shift \( \mu_k \) implies that \( \mu_k^{-1} \) is also a shift due to the symplectic structure of the problem. Hence, \( \mu_k^{-1} \) is not added to \( \Delta \) as the use of the Laurent polynomial \( q_2 \) guarantees that \( \mu_k^{-1} \) is used as a shift once \( \mu_k \in \Delta \). In case of a complex shift \( \mu_k \), \( |\mu_k| = 1 \), this implies that \( \overline{\mu_k} \) is also a shift not added to \( \Delta \). For complex shifts \( \mu_k \), \( |\mu_k| \neq 1 \), we include \( \mu_k, \mu_k^{-1} \) in \( \Delta \).

Numerous choices are possible for the selection of the \( p \) shifts. One possibility is the case of choosing \( p \) "exact" shifts with respect to \( B_P^{2k+2,2k+2} \). That is, first the eigenvalues of \( B_P^{2(k+p),2(k+p)} \) are computed (by the SR algorithm), then \( p \) unwanted eigenvalues are selected. One choice for this selection might be: sort the eigenvalues by decreasing magnitude. There will be \( k+p \) eigenvalues with modulus greater than or equal to 1

\[
|\lambda_k| \geq \ldots \geq |\lambda_k| \geq |\lambda_{k+1}| \geq \ldots \geq |\lambda_{k+p}| \geq 1 \\
\geq |\lambda_{k+1}^{-1}| \geq \ldots \geq |\lambda_{k+p}^{-1}| \geq \ldots \geq |\lambda_k^{-1}|.
\]

Select the \( 2p \) eigenvalues with modulus closest to 1 as shifts. If \( \lambda_{k+1} \) is complex with \( |\lambda_k| = |\lambda_{k+1}| \neq 1 \), then we either have to choose \( 2p+2 \) shifts or just \( 2p-2 \) shifts, as \( \lambda_{k+1} \) belongs to a quadruple pair of eigenvalues of \( B_P^{2(k+p),2(k+p)} \) and in order to preserve the symplectic structure either \( \lambda_k \) and \( \lambda_{k+1} \) have to be chosen or none.
Algorithm: $k$-step restarted symplectic Lanczos method

perform $k$ steps of the symplectic Lanczos algorithm to compute $S_P^{2n,2k}$ and $B_P^{2k,2k}$

obtain the residual vector $r_{k+1}$

while $||r_{k+1}|| > tol$

perform $p$ additional steps of the symplectic Lanczos method to compute $S_P^{2n,2(k+p)}$ and $B_P^{2(k+p),2(k+p)}$

select $p$ shifts $\mu_i$

compute $B_P^{2k,2k}$ and $S_P^{2n,2k}$ via implicitly shifted $SR$ steps

set $S_P^{2n,2k} = S_P^{2n,2k}$ and $B_P^{2k,2k} = B_P^{2k,2k}$

obtain the new residual vector $r_{k+1}$

end while

$k$-step restarted symplectic Lanczos method

A different possibility of choosing the shifts is to keep those eigenvalues that are good approximations to eigenvalues of $M$. That is, eigenvalues for which (3.11) is small. Again we have to make sure that our set of shifts is complete in the sense described above.

Choosing eigenvalues of $B_P^{2(k+p),2(k+p)}$ as shifts has an important consequence for the next iterate. Assume for simplicity that $B_P^{2(k+p),2(k+p)}$ is diagonalizable. Let $\lambda(B_P^{2(k+p),2(k+p)}) = \{\theta_1, \ldots, \theta_{2k}\} \cup \{\mu_1, \ldots, \mu_{2p}\}$ be a disjoint partition of the spectrum of $B_P^{2(k+p),2(k+p)}$. Selecting the exact shifts $\mu_1, \ldots, \mu_{2p}$ in the implicit restart, following the rules mentioned above yields a matrix

$$B_P^{2(k+p),2(k+p)} = \begin{bmatrix} B_P^{2k,2k} & X \\ 0 & Y \end{bmatrix}$$

where $\lambda(B_P^{2k,2k}) = \{\theta_1, \ldots, \theta_{2k}\}$ and $\lambda(Y) = \{\mu_1, \ldots, \mu_{2p}\}$. This follows from (2.6).

Moreover, the new starting vector has been implicitly replaced by the sum of $2k$ approximate eigenvectors:

$$\varphi_1 = S_P^{2n,2(k+p)}S_Pc_1 = \frac{1}{\rho}S_P^{2n,2(k+p)}q(B_P^{2(k+p),2(k+p)})c_1 = \frac{1}{\rho}S_P^{2n,2(k+p)}\sum_{j=1}^{2k}\zeta_j y_j$$

where $\rho = c_1^T R c_1$, $B_P^{2(k+p),2(k+p)}y_j = \theta_j y_j$, and $\zeta_j$ is properly chosen. The last equation follows since $q(B_P^{2(k+p),2(k+p)})c_1$ has no component along an eigenvector of $B_P^{2(k+p),2(k+p)}$ associated with $\mu_j$, $1 \leq j \leq 2p$. Hence

$$\varphi_1 = \rho \sum_{j=1}^{2k} \zeta_j x_j \quad \text{where} \quad S_P^{2n,2(k+p)}y_j = x_j.$$

It should be mentioned that the $k$-step restarted symplectic Lanczos method as in Table 4.1 with exact shifts builds a $J$-orthogonal basis for a number of generalized Krylov subspaces simultaneously. The subspace of length $2(k+p)$ generated during a restart using exact shifts contains all the Krylov subspaces of dimension $2k$ generated from each of the desired Ritz vectors, for a detailed discussion see [13]. A similar
observation for Sorensen’s restarted Arnoldi method with exact shifts was made by Morgan in [30]. For a discussion of this observation see [30] or [23]. Morgan infers “the method works on approximations to all of the desired eigenpairs at the same time, without favoring one over the other” [30, p. 1220, l. 7–8 from the bottom]. This remark can also be applied to the method presented here.

In the above discussion we have assumed that the permuted SR decomposition \( q(\tilde{B}_P^{2(k+p)}, \tilde{B}_P^{2(k+p)}) = \tilde{S}_P \tilde{R}_P \) exists. Unfortunately, this is not always true. During the bulge-chase in the implicit SR step, it may happen that a diagonal element \( a_{ij} \) of \( B_1 \) \((2,2)\) is zero (or almost zero). In that case no reduction to symplectic butterfly form with the corresponding first column \( b_1 \) does exist. In the next section we will prove that a serious breakdown in the symplectic Lanczos algorithm is equivalent to such a breakdown of the SR decomposition. Moreover, it may happen that a subdiagonal element \( a_{ij} \) of the \((2,2)\)-block of \( \tilde{B}_P^{-1} \) \((2,3)\) is zero (or almost zero) such that

\[
\tilde{B}_P^{2(k+p), \tilde{B}_P^{2(k+p)}} = \begin{bmatrix}
\tilde{B}_P^{2j} & \tilde{B}_P^{2j+2j} \\
\tilde{B}_P & \tilde{B}_P
\end{bmatrix}.
\]

The matrix \( \tilde{B}_P^{2(k+p), \tilde{B}_P^{2(k+p)}} \) is split, an invariant subspace of dimension \( j \) is found. If \( j \geq k \) and all shifts have been applied, then the iteration is halted. Otherwise we continue similar to the procedure described by Sorensen in [35, Remark 3].

As the iteration progresses, some of the Ritz values may converge to eigenvalues of \( M \) long before the entire set of wanted eigenvalues have. These converged Ritz values may be part of the wanted or unwanted portion of the spectrum. In either case it is desirable to deflate the converged Ritz values and corresponding Ritz vectors from the unconverged portion of the factorization. If the converged Ritz value is wanted then it is necessary to keep it in the subsequent factorizations; if it is unwanted then it must be removed from the current and the subsequent factorizations. Lehoucq and Sorensen develop in [23, 36] locking and purging techniques to accomplish this in the context of unsymmetric matrices and the restarted Arnoldi method. These ideas can be carried over to the situation here.


5.1. Stability Issues. It is well known that for general Lanczos-like methods the stability of the overall process is improved when the norm of the Lanczos vectors is chosen to be equal to 1 [32, 37]. Thus, Bane proposes in [2] to modify the prerequisite \( \tilde{S}_P^T \tilde{J}_P \tilde{S}_P = \tilde{J}_P \) of our symplectic Lanczos method to

\[
\tilde{S}_P^T \tilde{J}_P \tilde{S}_P = \begin{bmatrix}
0 & \sigma_1 & 0 & \cdots & 0 \\
-\sigma_1 & 0 & \sigma_2 & \cdots & 0 \\
0 & -\sigma_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & -\sigma_n & \sigma_n \\
-\sigma_n & \cdots & 0 & \sigma_n & 0
\end{bmatrix} =: \Sigma
\]

and

\[
\|v_j\|_2 = \|w_j\|_2 = 1, \quad j = 1, \ldots, n.
\]
An implicitly restarted symplectic Lanczos method

For the resulting algorithm and a discussion of it we refer to [2]. It is easy to see that
$S_p^{-1} B_p S_p$ is no longer a permuted symplectic matrix, but it still has the desired form
of a butterfly matrix. Unfortunately, an SR step does not preserve the structure of
$S_p^{-1} B_p S_p$ and thus, this modified version of the symplectic Lanczos method can not
be used in connection with our restart approaches.

Without some form of reorthogonalization any Lanczos algorithm is numerically
unstable. Hence we re-\textit{Jp}-orthogonalize each Lanczos vector as soon as it is computed
against the previous ones via

$$w_m \leftarrow w_m + \sum_{j=1}^{m-1} (c w_j, w_m)_{J_p} = \sum_{j=1}^{m-1} (c w_j, w_m)_{J_p}$$

$$v_{m+1} \leftarrow v_{m+1} + \sum_{j=1}^{m} (c_1 v_j, v_{m+1})_{J_p} = \sum_{j=1}^{m} (c_1 v_j, v_{m+1})_{J_p}$$

where for $x, y \in \mathbb{R}^{2n}$, $<x, y>_{J_p} := x^T J_p y$ defines the indefinite inner product implied
by $J_p$.

This re-\textit{Jp}-orthogonalization is costly, it requires $16m(m-1)$ flops for the vector
$w_m$ and $16m$ flops for $v_{m+1}$. Thus, if $2k$ Lanczos vectors $v_1, v_2, \ldots, v_{2k}$ are
computed, the re-\textit{Jp}-orthogonalization adds a computational cost of the order of
$16nk^2$ flops to the overall cost of the symplectic Lanczos method.

For standard Lanczos algorithms, different reorthogonalization techniques have been
studied (for references see, e.g., [17]). Those ideas can be used to design analogous
re-\textit{Jp}-orthogonalizations for the symplectic Lanczos method. It should be noted
that if $k$ is small, the cost for re-\textit{Jp}-orthogonalization is not too expensive.

Another important issue is the numerical stability of the SR step employed in the
restart. During the SR step on the $2k \times 2k$ symplectic butterfly matrix, all but
$k-1$ transformations are orthogonal. These are known to be numerically stable. For
the $k-1$ nonorthogonal symplectic transformations that have to be used, we choose
among all possible transformations the ones with optimal (smallest possible) condition
number (see [8]).

5.2. Breakdowns in the SR Factorization. If there is a starting vector $v_1 = \rho q(M) v_1$ for which the explicitly restarted symplectic Lanczos method breaks down,
then it is impossible to reduce the symplectic matrix $M$ to symplectic butterfly
form with a transformation matrix whose first column is $v_1$. Thus, in this situation the SR
decomposition of $q(B)$ can not exist.

As will be shown in this section, this is the only way that breakdowns in the
SR decomposition can occur. In the SR step, most of the transformations used are
orthogonal symplectic transformations; their computation can not break down. The
only source of breakdown can be one of the symplectic Gaussian eliminations $L_j$.
For simplicity, we will discuss the double shift case. Only the following elementary
elimination matrices are used in the implicit SR step; elementary symplectic Givens
matrices [31]

$$G_k = \begin{bmatrix} C_k & -S_k \\
S_k & C_k \end{bmatrix},$$

where

$$C_k = I + (c_k - 1)e_k e_k^T, \quad S_k = s_k e_k e_k^T, \quad c_k^2 + s_k^2 = 1,$$
elementary symplectic Householder transformation

\[
H(k, v) = \begin{bmatrix}
I_{k-1} & P \\
-2v^T_{k} & I_{k-1}
\end{bmatrix}
\]

where \( P = I_{n-k+1} - 2w_{n}v^T_{n} \).

and elementary symplectic Gaussian elimination matrices \([8]\)

\[
L_k = \begin{bmatrix}
W_k & V_k \\
0 & W_k^{-1}
\end{bmatrix}
\]

where

\[
W_k = I + (w_{k} - 1)(e_{k-1}e_{k-1}^T + e_{k}e_{k}^T), \quad V_k = v_{k}(e_{k-1}e_{k}^T + e_{k}e_{k-1}^T).
\]

Assume that \( k \) steps of the symplectic Lanczos algorithm are performed, then from (3.5)

\[
M_P S_{P}^{2n, 2k} = S_{P}^{2n, 2k}B_{P}^{2k, 2k} + r_{k+1}e_{2k}^T.
\]

Now an implicit restart is to be performed using an implicit double shift \( SR \) step. In the first step of the implicit \( SR \) step, a symplectic Householder matrix \( H_1 \) is computed such that

\[
H_1^TB_{2k, 2k}e_1 = \lambda e_1.
\]

\( H_1 \) is applied to \( B_{2k, 2k} \)

\[
H_1^TB_{2k, 2k}H_1
\]

introducing a small bulge in the butterfly form: additional elements are found in the positions \((2, 1), (1, 2), (n + 2, n + 1), (n + 1, n + 2), (1, n + 3), (3, n + 1), (n + 1, n + 3)\) and \((n + 3, n + 1)\). The remaining implicit transformations perform a bulge-chasing sweep down the subdiagonal to restore the butterfly form. An algorithm for this is given in [2] or [4]; it can be summarized for the situation here as in Table 5.1, where \( G_{j} \) and \( G_{j}^T \) both denote symplectic Givens transformation matrices acting in the same planes but with different rotation angles.

<table>
<thead>
<tr>
<th>for ( \ell = 1 : n - 1 )</th>
</tr>
</thead>
</table>
| compute \( G_{\ell+1} \) such that \((G_{\ell+1}B_{2k, 2k})_{n+\ell+1, \ell} = 0\)
| \( B_{2k, 2k} = G_{\ell+1}B_{2k, 2k}G_{\ell+1}^T \)
| compute \( L_{\ell+1} \) such that \((L_{\ell+1}B_{2k, 2k})_{\ell+1, \ell} = 0\)
| \( B_{2k, 2k} = L_{\ell+1}B_{2k, 2k}L_{\ell+1}^T \)
| compute \( G_{\ell+1} \) such that \((B_{2k, 2k}G_{\ell+1})_{\ell+1, \ell} = 0\)
| \( B_{2k, 2k} = G_{\ell+1}B_{2k, 2k}G_{\ell+1}^T \)
| compute \( H_{\ell+1} \) such that \((B_{2k, 2k}H_{\ell+1})_{\ell+1, \ell+2} = 0\)
| \( B_{2k, 2k} = H_{\ell+1}^TB_{2k, 2k}H_{\ell+1} \)
| end |

Table 5.1

Reduction to butterfly form - double shift case.
Suppose that the first \( j - 1 \) Gaussian transformations, \( j < k \), exist and that we have computed

\[
\hat{S} = H_j C_j^T L_j^{-1} C_j \cdots H_{j-2} C_{j-1}^T L_{j-1}^{-1} C_{j-1} \cdots H_1 C_1^T
\]

In order to simplify the notation, we switch to the permuted version and rewrite the permuted symplectic matrix \( \hat{S}_P \) as

\[
\hat{S}_P = \begin{bmatrix}
S_P & 0 \\
0 & I_{2n-2j-2}
\end{bmatrix}
\]

where \( S_P \in \mathbb{R}^{(2j+2)\times(2j+2)} \) making use of the fact that the accumulated transformations affect only the rows 1 to \( j \) and \( n + 1 \) to \( n + j \). The leading \( (2j + 2) \times (2j + 2) \) principal submatrix of

\[
\hat{S}_P^{-1} B_P^{2k,2k} \hat{S}_P
\]

is given by

(5.2) \[
\begin{bmatrix}
\tilde{B}_P^{2j+2,2j+2} & \\
0 & \hat{B}_P^{2j+2,2j+2}
\end{bmatrix}
\]

where the hatted quantities denote unspecified entries that would change if the SR update could be continued. Next, the \((2j+1,2j-1)\) entry should be annihilated by a permuted symplectic Gaussian elimination. This elimination will fail to exist if \( \hat{a}_j = 0 \); the SR decomposition of \( q(B_P^{2k,2k}) \) does not exist.

As will be needed later, \( \hat{a}_j = 0 \) implies that \( \hat{y}_2 = 0 \). This follows as \( \tilde{B}_P^{2j+2,2j+2} \) is \( J_P \)-orthogonal: From

\[
e^{T}_{2j-2} \tilde{B}_P^{2j+2,2j+2} J_P (\tilde{B}_P^{2j+2,2j+2})^{T} e_{2j} = e^{T}_{2j-2} J_P e_{2j} = 0
\]

we obtain

\[
0 = [0 \ldots 0 \hat{a}_{j-1} \hat{a}_{j-1} \cdots 0 \hat{a}_{j-1} \hat{a}_{j-1} 0 \hat{x} 0 0] J_P \begin{bmatrix}
\hat{y}_2 \\
\hat{a}_j \\
\hat{x}
\end{bmatrix} = -\hat{a}_{j-1} \hat{y}_2 - \hat{a} \hat{a}_j.
\]

If \( \hat{a}_j = 0 \) we have \( \hat{y}_2 = 0 \) as \( \hat{a}_{j-1} \neq 0 \) (otherwise the last Gaussian transformation \( L_{j-1} \) did not exist).

Next we show that this breakdown in the SR decomposition implies a breakdown in the Lanczos process started with the starting vector \( \hat{v}_1 = \rho_1(M_P) v_1 \).
For this we have to consider (5.1) multiplied from the right by $\tilde{S}_P$. From the derivations in the last section we know that the starting vector of that recursion is given by $v_1 = \rho_1(M_P)v_1$. As the trailing $(2n - 2j - 2) \times (2n - 2j - 2)$ principal submatrix of $\tilde{S}_P$ is the identity, we can just as well consider

$$M_P\tilde{S}_P^{2n+2j+2} = \tilde{S}_P^{2n+2j+2}B_P^{2n+2j+2} + \tau_{j+2}\tilde{e}_j^{T} \tilde{e}_j,$$

multiplied from the right by $SP$

$$(5.3)\quad M_P S_P^{2n+2j+2} = S_P^{2n+2j+2}B_P^{2n+2j+2} + \tau_{j+2}\tilde{e}_j^{T} \tilde{e}_jS_P,$$

where $B_P^{2n+2j+2} = S_P^{-1}B_P^{2n+2j+2}S_P$ corresponds to the matrix in (5.2) (no butterfly form!) and $S_P^{2n+2j+2} = S_P^{2n+2j+2}S_P = \{\tilde{v}_1, \tilde{v}_2, \ldots, \tilde{v}_{j-1}, \tilde{v}_j, \tilde{v}_{j+1}, \tilde{v}_{j+1}, \tilde{v}_{j+2}\}$. The columns of $S_P^{2n+2j+2}$ are $J_P$-orthogonal

$$(5.4)\quad (S_P^{2n+2j+2})^{T}(J_P)_{P}S_P^{2n+2j+2} = (J_{j+1})_{P}.$$

The starting vector of the recursion (5.3) is given by $v_1 = \rho_1(M_P)v_1$. Deleting the last four columns of $S_P^{2n+2j+2}$ in the same way as in the implicit restart we obtain a valid symmetric Lanczos factorization of length $2j - 2$.

In order to show that the breakdown in the SR decomposition of $q(B)$ implies a breakdown in the above symmetric Lanczos recursion, we need to show

$$a_j = 0 \quad \implies \quad a_j = \tilde{v}_j^{T}(J_P)_{P}M_P\tilde{v}_j = 0.$$

From (5.2) and (5.3) we obtain

$$(5.5)\quad M_P\tilde{v}_{j-1} = \tilde{b}_j - 2\tilde{c}_j - 1\tilde{v}_{j-2} + \tilde{a}_j - 2\tilde{d}_j - 1\tilde{v}_{j-2} + (\tilde{b}_j - 1\tilde{c}_j - 1 - \tilde{a}_j^{-1})\tilde{v}_{j-1}$$

$$+ \tilde{a}_j - 1\tilde{c}_j - 1\tilde{v}_{j-1} + \tilde{b}_j\tilde{v}_{j-1} + \tilde{a}_j\tilde{v}_{j-1} + \tilde{b}_j\tilde{v}_{j-1} + \tilde{a}_j\tilde{v}_{j-1},$$

and

$$(5.6)\quad M_P\tilde{v}_k = \tilde{b}_k\tilde{v}_k + \tilde{a}_k\tilde{v}_k, \quad k \leq j - 1.$$

Further we do know from the symmetric Lanczos algorithm

$$\tilde{v}_j = -\tilde{d}_j - 1\tilde{v}_{j-2} - \tilde{c}_j - 1\tilde{v}_{j-1} + \tilde{b}_j - 1M_P^{-1}\tilde{v}_j - 1,$$

all of these quantities are already known. Now consider

$$\tilde{a}_j = \tilde{v}_j^{T}J_PM_P\tilde{v}_j = -\tilde{a}_j^{-1}\tilde{v}_j^{T}J_PM_P\tilde{v}_{j-2} - \tilde{c}_j - 1\tilde{v}_j^{T}J_PM_P\tilde{v}_{j-1}$$

$$+ \tilde{b}_j\tilde{v}_j^{T}J_PM_P\tilde{v}_{j-1} + \tilde{a}_j^{-1}\tilde{v}_j^{T}J_P\tilde{v}_{j-1}.$$
As \( \theta_j = 0, \theta_2 = 0 \) and therefore \( z_2 = 0 \). With (5.7) we get

\[
z_1 = -\theta_1 \theta_{j-1} J_P \theta_j
\]

\[
= \theta_1 (\theta_{j-1} \theta_j J_P \theta_{j-2} - \theta_{j-1} \theta_j J_P \theta_{j-1} - \theta_{j-1} \theta_j J_P \theta_{j-1} - \theta_{j-1} \theta_j J_P \theta_{j-1})
\]

\[
= -\theta_1 \theta_{j-1} \theta_j J_P \theta_{j-1} + \theta_1 \theta_{j-1} \theta_j M_P \theta_{j-1}.
\]

From (5.3) we obtain

\[
M_P \theta_j = \theta_j \theta_j + \theta_j \theta_{j+1} + \theta_{j+1} \theta_{j+2}.
\]

Hence using (5.4) yields

\[
z_1 = -\theta_1 \theta_{j-1} (\theta_j \theta_{j-1} J_P \theta_{j-1} + \theta_j \theta_{j-1} J_P \theta_{j-1} + \theta_{j+1} \theta_{j+1} J_P \theta_{j-1}) = 0.
\]

Similar, it follows that \( z_3 = 0 \). Hence \( x_3 = 0 \), and therefore \( \theta_{j} J_P M_P \theta_{j} = 0 \).

This argumentation has shown that an SR breakdown implies a serious Lanczos breakdown. The opposite implication follows from the uniqueness of the Lanczos factorization. The result is summarized in the following theorem.

**THEOREM 5.1.** Suppose the symplectic butterfly matrix \( B_{2k}^{2k} \) corresponding to (3.5) is irreducible and let \( \mu \in \mathbb{R} \). Let \( L_j \) be the \( j \)th symplectic Gauss transformation required in the SR step on \( (B_{2k}^{2k} - \mu I)((B_{2k}^{2k} - \mu^{-1} I)(B_{2k}^{2k})^{-1} \). If the first \( j-1 \) symplectic Gauss transformations of this SR step exist, then \( L_j \) fails to exist if and only if \( \theta_{j} J_P M_P \theta_{j} = 0 \) with \( \theta_{j} \) as in (4.3).

6. **Numerical Experiments.** Some examples to demonstrate the properties of the (implicitly restarted) symplectic Lanczos method are presented. The computational results are quite promising but certainly preliminary. All computations were done using MATLAB Version 5.1 on a Sun Ultra 1 with IEEE double-precision arithmetic and machine precision \( \epsilon = 2.2204 \times 10^{-16} \).

Our code implements exactly the algorithm as given in Table 4.1. In order to detect convergence in the restart process, the rather crude criterion

\[
\| r_{k+1} \| \leq \| M \| \times 10^{-6}
\]

was used. This ad hoc stopping rule allowed the iteration to halt quite early. Usually, the eigenvalues largest in modulus (and their reciprocals) of the wanted part of the spectrum are much better approximated than the ones of smaller modulus. In a blackbox implementation of the algorithm this stopping criterion has to be replaced with a more rigorous one to ensure that all eigenvalues are approximated to the desired accuracy (see the discussion in Section 3.3). Benign breakdown in the symplectic Lanczos process was detected by the criterion

\[
\| u_{m+1} \| \leq \epsilon \| M \| \text{ or } \| v_{m+1} \| \leq \epsilon \| M \|,
\]

while a serious breakdown was detected by

\[
u_{m+1} \neq 0, \quad w_{m+1} \neq 0, \quad |v_{m+1}| \leq \epsilon \| M \|.
\]

Our implementation intends to compute the \( k \) eigenvalues of \( M \) largest in modulus and their reciprocals. In the implicit restart, we used exact shifts where we chose the shifts to be the 2p eigenvalues of \( B_{2k+p}^{2k+p} \) closest to the unit circle.

Our observations have been the following.
• Re-J-orthogonalization is necessary; otherwise J-orthogonality of the computed Lanczos vectors is lost after a few steps, and ghost eigenvalues (see, e.g., [17]) appear. That is, multiple eigenvalues of $B^{2k,2k}$ correspond to simple eigenvalues of $M$.

• The implicit restart is more accurate than the explicit one.

• The leading end of the 'wanted' Ritz values (that is, the eigenvalues largest in modulus and their reciprocals) converge faster than the tail end (closest to cut off of the sort). The same behavior was observed in [35] for the implicitly restarted Arnoldi method. In order to obtain faster convergence, it seems advisable (similar to the implementation of Sorensen's implicitly restarted Arnoldi method in MATLAB's eigs) to increase the dimension of the computed Lanczos factorization. That is, instead of computing $S^{2(k+2)}_P$ and $B^{2(k+2)}_P$ as a basis for the restart, one should compute a slightly larger factorization, e.g., dimension $2(k + 3)$ instead of dimension $2k$. When $2\ell$ eigenvalues have converged, a subspace of dimension $2(k + 3 + \ell)$ is computed as a basis for the restart, followed by $p$ additional Lanczos steps to obtain a factorization of length $k + 3 + \ell + p$. Using implicit $SR$ steps this factorization is reduced to one of length $k + 3 + \ell$. If the symplectic Lanczos method would be implemented following this approach, the convergence check could be done using only the $k$ Ritz values of largest modulus (and their reciprocals) or those that yield the smallest Ritz residual

$$||a_{k+1}||_{2} ||e_{2k}^T y_j|| \cdot ||a_{k+1} \tilde{v}_{k+1} + a_{k+1} \tilde{v}_{k+1}||$$

where the $y_j$ are the eigenvectors of $B^{2k,2k}$.

• It is fairly difficult to find a good choice for $k$ and $p$. Not for every possible choice of $k$, there exists an invariant subspace of dimension $2k$ associated to the $k$ eigenvalues $\lambda_1$ largest in modulus and their reciprocals. If $\lambda_k$ is complex and $\overline{\lambda_{k+1}} = \lambda_k$ then we can not choose the $2p$ eigenvalues with modulus closest to the unit circle as shifts as this would tear a quadruple of eigenvalues apart resulting in a shift polynomial $q$ such that $q(B^{2(k+p),2(k+p)}_P) \notin \mathbb{R}$. All we can do is to choose the $2p - 2$ eigenvalues with modulus closest to 1 as shifts. In order to get a full set of $2p$ shifts we add as the last shift the real eigenvalue pair with largest Ritz residual. Depending on how good that real eigenvalue approximates an eigenvalue of $M$, this strategy worked, but the resulting subspace is no longer the subspace corresponding to the $k$ eigenvalues largest in modulus and their reciprocals. If the real eigenvalue has converged to an eigenvalue of $M$, it is unlikely to remove that eigenvalue just by restarting, it will keep coming back. Only a purging technique like the one discussed by Lehoucq and Sorensen [23, 30] will be able to remove this eigenvalue. Moreover, there is no guarantee that there is a real eigenvalue of $B^{2(k+p),2(k+p)}_P$ that can be used here. Hence, in a black-box implementation one should either try to compute an invariant subspace of dimension $2(k-1)$ or of dimension $2(k+1)$. As this is not known a priori, the algorithm should adapt $k$ during the iteration process appropriately. This is no problem, if as suggested above, one always computes a slightly larger Lanczos factorization than requested.

Example 6.1. The first test performed concerned the loss of $J$-orthogonality of the computed Lanczos vectors during the symplectic Lanczos method and the ghost
eigenvalue problem (see, e.g., [17]). To demonstrate the effects of re-J-orthogonalization, a 100 × 100 symplectic matrix with eigenvalues

200, 100, 50, 47, ..., 4, 3, 2 ± i, 1/3, 1/4, ..., 1/47, 1/50, 1/100, 1/200

was used. A symplectic block-diagonal matrix with these eigenvalues on the block-diagonal was constructed and a similarity transformation with a randomly generated orthogonal symplectic matrix was performed to obtain a symplectic matrix M.

As expected, when using a random starting vector M's eigenvalues largest in modulus (and the corresponding reciprocals) tend to emerge right from the start, e.g., the eigenvalues of $B^{10,10}$ are

199.99997, 100.00771, 48.71752, 26.85063, 8.32399

and their reciprocals. Without any form of re-J-orthogonalization, the J-orthogonality of the Lanczos vectors is lost after a few iterations as indicated in Figure 6.1.

![Figure 6.1. loss of J-orthogonality after k symplectic Lanczos steps](image)

The loss of J-orthogonality in the Lanczos vectors results, as in the standard Lanczos algorithm, in ghost eigenvalues. That is, multiple eigenvalues of $B^{2k2k}$ correspond to simple eigenvalues of M. For example, using no re-J-orthogonalization, after 17 iterations the 6 eigenvalues largest in modulus of $B^{3434}$ are

207.63389, 200, 100, 49.99992, 47.04542, 45.85367.

Using complete re-J-orthogonalization, this effect is avoided:

200, 100, 49.99992, 47.02461, 45.93018, 42.31199.

The second test performed concerned the question whether an implicit restart is more accurate than an explicit one. After nine steps of the symplectic Lanczos method (with a random starting vector) the resulting 18 × 18 symplectic butterfly matrix $B^{1818}$ had the eigenvalues (using the MATLAB function eig)

200.000000000000 99.999999841718
50.070648930465 41.87326494053
35.891491504806 23.654512659868
13.344815062428 3.679215125563 ±5.750883779240i
and their reciprocals. Removing the 4 complex eigenvalues from $B_{\text{impl}}^{18,18}$ using an implicit restart as described in Section 4, we obtain a symplectic butterfly matrix $B_{\text{impl}}^{24,14}$ whose eigenvalues are

$$
\begin{align*}
200.000000000000 & \quad 99.999999941712 \\
50.070648930464 & \quad 41.873264094053 \\
35.891491504806 & \quad 23.654512559368 \\
13.344815062428 &
\end{align*}
$$

and their reciprocals. From (2.6) it follows that these have to be the 14 real eigenvalues of $B_{\text{impl}}^{18,18}$ which have not been removed. As can be seen, we lost one digit during the implicit restart (indicated by the 'underbar' under the 'lost' digits in the above table). Performing an explicit restart with the explicitly computed new starting vector $v_1 = (M_p - \mu I)(M_p - \mu^{-1} I)(M_p - \mu^{-1} I)(M_p - \mu^{-1} I)M_p^{-2} v_1$ yields a symplectic butterfly matrix $B_{\text{exp}}^{14,14}$ whose eigenvalues are

$$
\begin{align*}
200.000000000000 & \quad 99.999999941712 \\
50.070648930530 & \quad 41.873247045627 \\
35.891422701991 & \quad 23.654503165541 \\
13.344810382061 &
\end{align*}
$$

and their reciprocals. This time we lost up to nine digits.

The last set of tests performed on this matrix concerned the $k$-step restarted symplectic Lanczos method as given in Table 4.1. As $M$ has only one quadruple of complex eigenvalues, and these eigenvalues are smallest in magnitude there is no problem in choosing $k \ll n$. For every such choice there exists an invariant symplectic subspace corresponding to the $k$ eigenvalues largest in magnitude and their reciprocals. In the tests reported here, a random starting vector was used. Figure 6.2 shows a plot of $\|r_{k+1}\|$ versus the number of iterations performed. Iteration Step 1 refers to the norm of the residual after the first $k$ Lanczos steps, no restart is performed. The three lines in Figure 6.2 present three different choice for $k$ and $p$; $k = p = 8, k = 8, p = 16$ and $k = 5, p = 10$. Convergence was achieved for all three examples (and many more, not shown here). Obviously, the choice $k = 8, p = 2k$ results in faster convergence than the choice $k = p = 8$. Convergence is by no means monotonic, during the major part of the iteration the norm of the residual is changing quite dramatically. But once a certain stage is achieved, the norm of the residual converges. Although convergence for $k = 8, p = k$ or $p = 2k$ was quite fast, this does not imply that convergence is as fast for other choices of $k$ and $p$. The third line in Figure 6.2 demonstrates that the convergence for $k = 5, p = 10$ does need twice as many iteration steps as for $k = 8, p = 16$.

**Example 6.2.** Symplectic matrix pencils that appear in discrete-time linear-quadratic optimal control problems are typically of the form

$$
L - \lambda N = \begin{bmatrix}
F & 0 \\
C^T & I
\end{bmatrix} - \lambda \begin{bmatrix}
I & -BB^T \\
0 & F^T
\end{bmatrix}, \quad F \in \mathbb{R}^{n \times n}, \ C \in \mathbb{R}^{p \times n}, \ B \in \mathbb{R}^{n \times n}.
$$

(Note: For $F \neq I$, $L$ and $N$ are not symplectic, but $L - \lambda N$ is a symplectic matrix pencil.) Assuming that $L$ and $N$ are nonsingular (that is, $F$ is nonsingular), solving this generalized eigenproblem is equivalent to solving the eigenproblem for the symplectic matrix

$$
N^{-1}L = \begin{bmatrix}
I & -BB^T \\
0 & F^T
\end{bmatrix}^{-1} \begin{bmatrix}
F & 0 \\
C^T & I
\end{bmatrix}.
$$

If one is interested in computing a few of the eigenvalues of $L - \lambda N$, one can use the
restarted symplectic Lanczos algorithm on $M = N^{-1}L$. In each step of the symplectic Lanczos algorithm, one has to compute matrix-vector products of the form $Mx$ and $M^T x$. Making use of the special form of $L$ and $N$ this can be done without explicitly inverting $N$. Let us consider the computation of $y = Mx$. First compute

$$Lx = \begin{bmatrix} F & 0 \\ C^T C & I \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} Fx_1 \\ C^T C x_1 + x_2 \end{bmatrix} =: \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z$$

where $x \in \mathbb{R}^{2n}$ is written as $x = [x_1 \; x_2]^T, x_1, x_2 \in \mathbb{R}^n$. Next one has to solve the linear system $Ny = z$. Partition $y \in \mathbb{R}^{2n}$ analogous to $x$ and $z$, then from $Ny = z$ we obtain

$$y_2 = F^{-T} z_2, \quad y_1 = z_1 + BB^T y_2.$$ 

In order to solve $y_2 = F^{-T} z_2$ we compute the LU decomposition of $F$ and solve the linear system $F^T y_2 = z_2$ using backward and forward substitution. Hence, the explicit inversion of $N$ or $F$ is avoided. In case $F$ is a sparse matrix, sparse solvers can be employed. In particular, if the control system comes from some sort of discretization scheme, $F$ is often banded which can be used here by computing an initial band LU factorization of $F$ in order to minimize the cost for the computation of $y_2$. Note that in most applications, $p, m \ll n$ such that the computational cost for $C^T C x_1$ and $BB^T y_2$ is significantly cheaper than a matrix-vector product with an $n \times n$ matrix.

In case of single-input ($m = 1$) or single-output ($p = 1$) the corresponding operations come down to two dot products of length $n$ each.

Using MATLAB's sparse matrix routine sprandn, sparse normally distributed random matrices $F, B, C$ (here, $p = m = n$) of different dimensions and with different densities of the nonzero entries were generated. Here an example of dimension $2n = 1000$ is presented, where the density of the different matrices was chosen to be

<table>
<thead>
<tr>
<th>matrix</th>
<th>\approx nonzero entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F$</td>
<td>(0.5n^2)</td>
</tr>
<tr>
<td>$B$</td>
<td>(0.2n^2)</td>
</tr>
<tr>
<td>$C$</td>
<td>(0.3n^2)</td>
</tr>
</tbody>
</table>
MATLAB computed the norm of the corresponding matrix \( M = N^{-1}L \) to be \( \approx 5.3 \times 10^9 \).

In the first set of tests \( k \) was chosen to be 5, and we tested \( p = k \) and \( p = 2k \). As can be seen in Figure 6.3, for the first 3 iterations, the norm of the residual decreases for both choice of \( p \), but then increases quite a bit. During the first step, the eigenvalues of \( B^{(10,10)} \) are approximating the 5 eigenvalues of \( L - \lambda N \) largest in modulus and their reciprocals. In step 4, a 'wrong' choice of the shifts is done in both cases. The extended matrices \( B^{(10,20)} \) and \( B^{(30,30)} \) both still approximate the 5 eigenvalues of \( L - \lambda N \) largest in modulus, but there is a new real eigenvalue coming in, which is not a good approximation to an eigenvalue of \( L - \lambda N \). But, due to the way the shifts are chosen here, this new eigenvalue is kept, while an already good approximated eigenvalue — a little smaller in magnitude — is shifted away, resulting in a dramatic increase of \( ||r_{k+1}|| \). Modifying the choice of the shifts such that the good approximation is kept, while the new real eigenvalue is shifted away, the problem is resolved, the 'good' eigenvalues are kept and convergence occurs in a few steps (the 'c'-line in Figure 6.3).

Using a slightly larger Lanczos factorization as a basis for the restart, e.g., a factorization of length \( k + 3 \) instead of length \( k \) and using a locking technique to decouple converged approximate eigenvalues and associated invariant subspaces from the active part of the iteration, this problem is avoided.

![Graph](image)

**Fig. 6.3.** \( k \)-step restarted symplectic Lanczos method, different choices of the shifts

Figure 6.4 displays the behavior of the \( k \)-step restarted symplectic Lanczos method for different choices of \( k \) and \( p \), where \( k \) is quite small. Convergence is achieved in any case.

So far, in the tests presented, \( k \) was always chosen such that there exists a deflating subspace of \( L - \lambda N \) corresponding to the \( k \) eigenvalues largest in modulus and their reciprocals. For \( k = 20 \), there is no such deflating subspace (there is one for \( k = 19 \) and one for \( k = 21 \)). See Figure 6.5 for a convergence plot. The eigenvalues of \( B^{(k+1)^{j+p}} \) in the first iteration steps approximate the \( k + j \) eigenvalues of largest modulus and their reciprocals (where \( 5 \leq j \leq p \)) quite well. Our choice of shifts is to select the \( 2p \) eigenvalues with modulus closest to 1, but as \( \lambda_{k+1} \) is complex with \( |\lambda_{k+1}| = |\lambda_k| \neq 1 \), we can only choose \( 2(p-1) \) shifts that way. The last shift is chosen...
according to the strategy explained above. This eigenvalue keeps coming back before it is annihilated. A better idea to resolve the problem is to adapt $k$ appropriately.

7. **Concluding Remarks.** We have investigated a symplectic Lanczos method for symplectic matrices. Employing the technique of implicitly restarting the method using double or quadruple shifts as zeros of the driving Laurent polynomials, this results in an efficient method to compute a few extremal eigenvalues of symplectic matrices and the associated eigenvectors or invariant subspaces. The residual of the Lanczos recursion can be made to zero by choosing proper shifts. It is an open problem how these shifts should be chosen in an optimal way. The preliminary numerical tests reported here show that for exact shifts, good performance is already achieved.

Before implementing the symplectic Lanczos process in a black-box algorithm, some more details need consideration: in particular, techniques for locking of con-
verged Ritz values as well as purging of converged, but unwanted Ritz values, needs to be derived in a similar way as it has been done for the implicitly restarted Arnoldi method.

REFERENCES


Berichte aus der Technomathematik

http://www.math.uni-bremen.de/zetem/berichte

— Vertrieb durch den Autor —

Reports

Stand: 2. September 1998

98–01. Peter Benner, Heike Faßbender:

98–02. Heike Faßbender:

98–03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Ortí:

98–04. Peter Benner:

98–05. Peter Benner, Ralph Byers, Enrique S. Quintana-Ortí, Gregorio Quintana-Ortí: