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Abstract. In this article, the modeling and simulation of a material accu-
mulation process in micro-range based on laser-based free form heading is

discussed. The process represents the first step of a material accumulation
process which has been developed within the SFB 747 and is modeled math-

ematically by coupling the Stefan problem with the Navier-Stokes equations

including a free capillary surface. For the numerical simulation of the pro-
cess, two different approaches for handling solid-liquid phase transitions are

combined and implemented in a finite element method.

1. Introduction

In modern production engineering, the need for smaller components and more
process efficiency is of growing interest. Unfortunately, with increasing miniatur-
ization, methods used in macro-scale are sometimes no longer applicable to very
small work-pieces, making the production of micro-components a challenging task.
A characteristic example for a process in which problems arises due to miniaturiza-
tion is a forming process for metallic micro-components.

Conventionally, a multilevel cold forming approach is applied to the work-piece
in macro-scale, in order to accumulate a certain length l0 of a sample with diameter
d0 and forming it simultaneously. Unfortunately, the upset ratio s := l0

d0
achievable

by these methods is very limited and decreases if d0 does.
Therefore, the Collaborative Research Center 747 “Micro Cold Forming” devel-

oped a two-level cold forming process for metallic components in micro-range. The
first step of the process is laser-based free form heading [11,16,20] which takes ad-
vantage of size effects [18, 19]. In detail, the ratio of surface area of the melt to its
volume causes surface tension dominating gravity, forming the melt to an almost
perfect sphere. After solidification, the generated spherical material accumulation
can be formed in a secondary step of the process.

By using a laser, energy can be applied very precisely (regarding space and
time) to the work-piece making the process very efficient. Furthermore, the forming
properties of the material accumulation generated by laser-based free form heading
are very good. A visualization of a conventional cold forming process and the
two-level cold forming process is given in Figure 1.1.

The material accumulation process can be modeled mathematically by coupling
the Stefan problem for taking phase transitions into account with the Navier-Stokes
equations including a free capillary surface for describing the dynamics in the melt.
Both, the Stefan problem and the Navier-Stokes equations with a capillary surface
have a long history in pure and applied mathematics and have been discussed in
many publications, e.g. [2, 4, 8, 13, 17]. However, coupling both problems has been
discussed much less, e.g. [5–7], and is still challenging due to the interdependence
of geometry and solid-liquid-interface. In this paper, the approach for handling
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Figure 1.1. Conventional multilevel cold forming process (left)
and two-level cold forming process used by SFB 747 (right)

this interdependence bases on the combination of a enthalpy model [8] and a sharp
interface model [6] which has been first presented in [10].

2. Mathematical model

The model of the melting and solidification process includes the energy bal-
ance depending on laser heating, heat transport, radiation described by the Stefan-
Boltzmann law, forced convection and phase transitions. Additionally, the dynam-
ics in the melt and its free capillary surface are considered.

Before describing the model, we make some assumptions to simplify matters:
Firstly, we use constant material parameters for each subdomain, indicated by
the index l for liquid and s for solid. Vaporization effects are neglected and we
assume the melt to be incompressible so we can use the incompressible Navier-
Stokes equations. Furthermore, the buoyancy effects are modeled by the Boussinesq
approximation.

2.1. Continuum model. Let Ω(t) = Ωs(t) ∪ Ωl(t) ∪ ΓS(t) ⊂ R3 be the time
dependent domain for t ∈ [t0, tf ], consisting of a solid subdomain Ωs(t), a liquid
subdomain Ωl(t) and a solid-liquid interface ΓS(t). The domain boundary ∂Ω(t) =
ΓC(t) ∪ ΓR(t) ∪ ΓN (t) with disjoint sets ΓC(t), ΓR(t) and ΓN (t), is distinguished
in parts with different boundary conditions. Here, ΓC(t) denotes the free capillary
surface of the melt. A sketch of the different domains and their boundaries is given
in Figure 2.1. Initially, we have Ωl(0) = ∅, ΓS(0) = ∅ and ∂Ω(0) = ΓR(t) ∪ ΓN (t).

The process is modeled by the Stefan problem in the whole domain for the
temperature T : Ω(t) → R which is coupled with the incompressible Navier-Stokes
equations in the melt Ωl(t) with a capillary surface for the velocity field of the fluid
u : Ωl(t)→ R3 and its pressure p : Ωl(t)→ R.

In non-dimensional units, the model given by the PDE-system

∂tu+ u · ∇u−∇ ·
(

1

Re
D(u)− pId

)
= −Bo

We
e2 +

Gr

Re2
Te2 in Ωl(t),(2.1)

∇ · u = 0 in Ωl(t),(2.2)

∂tT + u · ∇T − 1

RePr
∆T = 0 in Ωl(t),(2.3)

∂tT −
1

RePr

κsρlcp,l
κlρscp,s

∆T = 0 in Ωs(t),(2.4)

with D(u) := ∇u+(∇u)
T

, Re denoting the Reynolds number, Bo the Bond number,
We the Weber number, Gr the Grashof number and Pr is the Prandtl number. The
parameters κ{l,s}, ρ{l,s} and cp{l,s} describe the heat conduction coefficient, the
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Figure 2.1. Sketch of geometry

density and the specific heat capacity in the liquid and solid phase. For the free
capillary surface, the boundary conditions

u · ν = VΓC
· ν on ΓC(t),(2.5)

σν =
1

We
Kν on ΓC(t),(2.6)

are prescribed. Thereby, VΓC
denotes the velocity of the free boundary, K is the

sum of the principle curvatures and σ := 1
ReD(u)− pId is the stress tensor. For the

temperature, we impose

1

RePr
∂νT = LaIl + Em

(
T 4
a − (Tm + T )4

)
+ α (Ta − T ) on ΓC(t),(2.7)

1

RePr

κs
κl
∂nT = LaIl + Em

(
T 4
a − (Tm + T )4

)
+ α (Ta − T ) on ΓR(t),(2.8)

1

RePr
∂νT = 0 on ΓN (t).(2.9)

to include laser heating, radiation and heat losses due to forced convection. Here,
La is the laser number, Em is the emissivity and α is the scaled convective heat
transfer coefficient. Ta denotes the ambient and Tm the melting temperature. In
our model the temperature is scaled so that melting temperature corresponds to
T = 0.

For handling the phase transitions during the process, we present shortly two
different approaches which are combined for the numerical simulation.

2.2. Enthalpy model. The enthalpy model has been published in [13] and was
further analyzed in [8]. In this paper, we adapt the model to a problem including
thermal convection. The idea of the enthalpy model is to formulate the energy
balance in the whole domain Ω(t) which is given by

(2.10) ∂tH + u∇H − 1

RePr
∆T = 0 in Ω(t),
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Figure 2.2. Temperature-enthalpy relation

with u ≡ 0 in Ωs(t) and

(2.11) T = α(H) :=


ρscps
ρlcpl

H, H < 0

0, H ∈
[
0, 1

Ste

]
H − 1

Ste , H ≥ 1
Ste

describing the temperature-enthalpy relation where Ste denotes the Stefan number.
Equation (2.11) is visualized in Figure 2.2. By solving equation (2.10), the solid-
liquid interface ΓS(t) := {x ∈ Ω(t)|T (x) = 0} is given implicitly. It is worth noting,
that the enthalpy model can handle the nucleation and the vanishing of a liquid
subdomain as well as multiple solid-liquid interfaces or a mushy region naturally.

2.3. Sharp interface model. Another model applicable for problems with phase
transitions is a sharp interface model. Thereby, the solid-liquid interface ΓS(t)
is defined as sharp boundary which is handled explicitly. On ΓS(t) the following
boundary conditions are prescribed

u · ν =

(
1− ρs

ρl

)
VΓS
· ν,(2.12)

u− u · ν ν = 0,(2.13)

T = 0,(2.14)

1

RePr

[
(∇T )l −

κsρlcp,l
κlρscp,s

(∇T )s

]
=

1

Ste
VΓS

.(2.15)

where [·] denotes the jump across the interface. The Stefan condition (2.15) reflects
the thermal energy balance in the domain and is used to obtain the velocity VΓS

of
the interface ΓS(t). A detailed description of the model can be found in [6].

3. Numerical approach

Numerical implementations of the enthalpy model and the sharp interface model
have been integrated in the finite element solver Navier [4] to handle the phase
transitions and to solve the PDE-system.

3.1. Navier. Originally, Navier has been developed for solving flow problems with
free capillary surfaces, on time-dependent domains discretized by unstructured tri-
angular grids. In Navier the Navier-Stokes equations are discretized by the Taylor-
Hood element in space, i.e. piecewise quadratics for the velocities and piecewise
linears for the pressure. For time discretization the fractional-step θ scheme in
an operator splitting variant is applied [2]. The capillary surface is handled by
using a semi-implicit, variational treatment of the curvature terms in the Navier-
Stokes equations. Furthermore, the flow problem is decoupled from the geometry
deformation in the fractional-step θ scheme.
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3.2. Enthalpy method. The enthalpy FE method (basing on the enthalpy model)
treats phase transitions implicitly. Consequently, the interface ΓS(t) is in general
not given on element edges but intersects elements. To avoid the treatment of
intersected elements in the flow problem, the following assumption is made: An
element is considered to be liquid only, if the temperature at all of its nodes is
equal or exceeds the melting temperature. Later, we will discuss the consequences
of this simplification.

With this assumption, the numerical approach to solve the PDE-system given
in Section 2 by applying the enthalpy model works the following way: Assume that
approximations un, pn of the fluid dynamics and of the temperature Tn are given
on the actual geometry Ωn for one time step n. To calculate the new domain Ωn+1

and the fluid dynamics un+1, pn+1 as well as the temperature Tn+1 and Hn+1

respectively, perform the three steps:

(1) Solve equation (2.10) in the actual domain Ωn by using un for the convection
term in the liquid subdomain to get the new temperature Tn+1 and Hn+1.

(2) Update the domain’s geometry Ωñ resulting from the new temperature
Tn+1 and define the new liquid subdomain Ωñl accordingly to the assump-
tion above.

(3) Solve the fluid dynamics un+1, pn+1 on the new domain Ωñl by using the new
temperature Tn+1 resp. the new energy Hn+1, and update the geometry
respectively to obtain Ωn+1

Obviously, the temperature is solved before the fractional-step θ scheme is used
for solving the fluid dynamics. Consequently, the new approximations un+1, pn+1

and Tn+1 are calculated directly for the next time step.

3.3. Sharp interface method. In the numerical implementation of the sharp
interface model, the domain is separated in a liquid and a solid subdomain by the
interface ΓS(t) which is represented by edges of elements. On each subdomain the
heat equation is solved independently using the interface as an internal Dirichlet
condition. The jump of the temperature gradients across ΓS(t) is then used to
derive its velocity, c.f. equation (2.15) .

At the same time, the deformation of the capillary surface is calculated by solv-
ing the Navier-Stokes equations. Finally, the whole outer geometry boundaries are
moved accordingly to the deformation of the capillary surface ΓC(t) and the move-
ment of the interface ΓS(t). By applying an ALE-approach, the interior mesh is
moved as well, using an extension operator.

In short, the procedure for solving the PDE-system by applying the sharp inter-
face method is as the following: Assuming that approximations un, pn of the fluid
dynamics and Tn of the temperature are given on the actual geometry Ωn at time
step n. To calculate the new domain Ωñ and the fluid dynamics uñ, pñ as well as
the temperature T ñ on it, perform the three steps

(1) Solve one step of the fractional-step θ scheme (Quasi-Stokes or Burger) to
get an approximation uñ, pñ of the fluid dynamics in the actual domain
Ωn.

(2) Derive the temperature T ñ on the domain Ωn by treating ΓñS as an inter-
nal Dirichlet boundary and using uñ for the convection term of the heat
equation.

(3) Obtain the boundary deformation by using the Stefan condition (2.15) and
the kinematic boundary condition (2.5).

The the fluid flow un+1, pressure pn+1 and temperature Tn+1 on the domain Ωn+1

are calculated after all steps of the fractional-step θ scheme have been performed.
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Note that in contrast to the enthalpy method, the interdependence of interface and
geometry is taken into account in every step of the fractional-step θ scheme.

Furthermore, it is important to note again that the sharp interface approach is an
ALE-approach. Consequently, the phase boundary is a non-material surface, which
means its movement is not influenced by the physical movement of material but
the mesh and the material points are moved independently. A detailed description
of the method is given in [6].

Remeshing and interpolation on new grid. Due to the evolution of the cap-
illary surface in both methods and the mesh movement in the sharp interface
approach, the mesh can degenerate during the simulation. Therefore, including
a remeshing procedure and an interpolation method is mandatory for both ap-
proaches.

Remeshing. In our implementation, the software Triangle [15] in combination
with the adaptivity algorithms provided by Navier are used for mesh generation
and remeshing. In more detail, the geometry boundary ∂Ωn and the interface
ΓnS are written as a planar straight line graph and then exported to Triangle.
Basing on given parameters describing e.g. the maximal edge length of elements,
Triangle creates a new mesh which is further adapted by Navier including a
quadratic parametrization of the capillary surface ΓC .

Interpolation. When creating a new mesh, the old data needs to be transferred
onto the new grid. For this purpose, the interpolation algorithm presented in [1] is
used. It is important to note that the interpolated velocity is no longer discretely
divergence free on the new mesh. Consequently, the old velocity has to be projected
directly onto the space of discretely divergence free functions on the new mesh via
the L2 inner product, c.f. [7].

3.4. Comparing of both approaches. Comparing the enthalpy method with the
sharp interface approach, both methods show different pros and cons.

A advantage of the enthalpy method is its simplicity. Due to the transformation
of the nonlinear effect of a moving interior boundary into the problem of treating
the nonlinear temperature-enthalpy-relation, the numerics become straight forward.
Moreover, this transformation results in a very good energy conservation in the
solution while avoiding an explicit tracking of the moving interface ΓS(t) at the
same time. An additional feature of the enthalpy method is the natural handling
of nucleation and vanishing or mushy regions and multiple solid-liquid interfaces.

Unfortunately, a model for the flow in elements intersected by the interface
ΓS(t) is needed in order to handle the fluid dynamics in the liquid subdomain. The
simplification regarding the element’s phase can lead to inaccuracy and numerical
difficulties due to the coupling of the Stefan problem with the free capillary surface,
especially, if sudden phase changes of elements at a curved capillary surface occur,
c.f. Section 4. In addition, conservation of mass and momentum in this method is
not straight forward.

The sharp interface method can simulate the melting process very exactly. The
conservation of mass and momentum can be taken into account easily by conditions
on the interior boundary. Furthermore, the method can handle the interdependence
of triple junction and capillary surface very well which results in a very precise
solution of the fluid dynamics.

A drawback of the sharp interface model is its incapability to handle topological
changes. As a consequence, the solid and liquid subdomain have to exist from
the very beginning. Moreover, the sharp interface approach is not able to handle
the solidification process at all, due to the coupling of the triple junction and the
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Figure 3.1. Generation of a new mesh including the interface ΓS [12]

mesh movement and for the reasons mentioned above. Another disadvantage of the
method is its complexity in regards to the numerical adaption.

3.5. Combining both approaches. By combining the enthalpy method and the
sharp interface approach in the following way, we benefit from the advantages of
both approaches and avoid the disadvantages at the same time:

We use the enthalpy method to simulate the nucleation of the liquid subdomain.
After a few time steps when a sufficient liquid subdomain has been created, the
method is switched and the sharp interface approach is applied. For this purpose,
a sharp solid-liquid interface is defined as described in the section below and a new
mesh including this explicit interface is generated.

Henceforth, the sharp interface method is used to simulate the melting process
until the laser is switched off. When the solidification process begins, the geometry
of the capillary surface is already evolved, we therefore can switch the method
again using the enthalpy approach to simulate the liquid subdomain solidify without
inaccuracy or numerical difficulties. This idea of coupling both approaches was first
presented in [10].

Generation of ΓS. To switch from the enthalpy method to the sharp interface
approach, we need to generate a new mesh with element edges representing the
interface ΓS . Therefore, the approach presented in [12] is used: First, the interface
ΓS which is given implicitly in the enthalpy method is approximated by a polygonal
line. This polygonal line and a planar straight line graph describing ∂Ω are then
used by Triangle for the generation of a new mesh. As before, we use the mesh
algorithms of Navier afterwards for further mesh adaption and to represent the
capillary surface ΓC by a quadratic parametrization. The new generated mesh can
now be moved accordingly to the algorithm given in Section 3.3.

4. Results

In this section, we present some results of our finite element approach. Our
application example is the laser-based free form heading process applied to a thin
metallic wire. Due to the symmetry of this example, we use a 2D rotational sym-
metric approach.

4.1. The combined finite element approach. At first, the important steps of
the combined finite element approach as described in the section above are visu-
alized in Figure 4.1. Here, the solid subdomain is colored in light gray and and
liquid subdomain is indicated in dark gray. Both domains are separated by the
solid-liquid interface ΓS .

By comparing the fluid flow simulated by using the enthalpy method with that
obtained by using the combined approach, the benefit of the coupling becomes
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(a) Nucleation of the liquid subdo-

main (enthalpy method)

(b) Switching to sharp interface

approach

(c) Sharp interface approach

for simulation of the melting

process

(d) Switching to enthalpy

method for simulation of the

solidification process

Figure 4.1. Visualization of combined finite element approach

obvious: If we use the enthalpy method for the simulation of the melting process,
high oscillations in the fluid flow are dominating the flow field, see Figure 4.2(a).
This is caused by the simplification of the liquid subdomain in the enthalpy method
because as long as the solid-liquid interface move across an element, it is still treated
as solid for the flow problem, see Figure 4.2(c).
Consequently, those elements can be considered as some kind of “barrier“ for the
flow which is suddenly removed if the melting temperature isoline has moved trough
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(a) Fluid flow for the first 50ms of the

melting process simulated by the en-
thalpy method
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(b) Fluid flow for the first 50ms of the

melting process simulated by the com-
bined approach

(c) Fluid flow in enthalpy method before
an element at the capillary surface change

its phase t = 0.02963ms

(d) Fluid flow in enthalpy method after an
element at the capillary surface change its

phase t = 0.02964ms

(e) Fluid flow in combined approach at t =

0.02963ms

(f) Fluid flow in combined approach at t =

0.02964ms

Figure 4.2. Fluid dynamics in enthalpy method and in combined
approach: (a) and (b) show the fluid flow velocity in both methods
for the first 50ms of a melting process. A visualization of the flow
in the simulation is given in Figure (c) -(f).
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the whole element resulting in a very high and non-physical fluid flow, c.f. Figure
4.2(d), which can cause numerical difficulties.

By using the sharp interface approach for simulation the melting process, we
avoid this problem and obtain realistic and very precise fluid flows 4.2(b) with no
oscillations, c.f. 4.2(e) and 4.2(f) .

4.2. Self-alignment. Experiments performed by our cooperation partner BIAS
revealed the laser-based free form heading to be self-aligning [3]. For our simulation,
we show the consistency of the model and the finite element approach by using the
same approach.

Similitude theory. In order to compare the experimental results for different rod
diameters, a common approach is using the similitude theory of thermodynamics.
By applying this theory to the given problem, the following scaling factors can be
found [14]:

st =

(
d0,new

d0,ref

)2

(4.1)

sP =

(
d0,new

d0,ref

) 2
3

(4.2)

Therefore, the irradiation time tr,new and the laser power PL,new for a sample with
rod diameter d0,new can be obtained by

tr,new = sttr,ref(4.3)

PL,new = sPPL,ref .(4.4)

By using this scaling factors in our application, we obtain the results shown in
Figure 4.3 for wires with diameter d0 = 0.3mm, d0 = 0.4mm and d0 = 0.5mm.
Thereby, we used different laser power denoted by Plow and Phigh and different
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 = 0.5mm, P
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Figure 4.3. Results of self-alignment simulations for different
rod diameters and energy pulses
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irradiation times, respectively. All in all, the results show a good self-alignment
property of the simulation and match the data presented in [3].

4.3. Micro-structure. A very important property for the forming process is the
formability of the material accumulation. The formability of a specimen is pri-
marily influenced by its micro-structure. Figure 4.4(a) shows a cross-section polish
produced by the BIAS, in which the micro-structure is observable. The process
parameters used in the experiment are given in the table 1.

Form the micro-structure we can deduce the course of the solidification process
which can be compared to the simulation results, given in Figure 4.4(b) - 4.4(d).
We notice that the simulation matches the experimental results very well. These
results have been first presented in [9].

(a) Cross-section polish of spec-

imen with rod diameter 0.5mm,
process parameters are given in

table 1

(b) Course of solidification iso-

line t = 0.074ms

(c) Course of solidification iso-
line t = 0.137ms

(d) Course of solidification iso-
line t = 0.200ms

Figure 4.4. Comparison of cross-section polish (a) with the
course of the solidification isoline in the finite element simulation
(b) - (d)
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Laser type Trumpf TruFiber 300

Power 80W

Pulse duration 50ms

Wire diameter 0.5mm

Shield gas Nitrogen

Shield gas flow 20 l
min

Table 1. Process parameter

5. Conclusions

A material accumulation process based on laser-based free form heading has
been modeled by coupling the Stefan problem with the Navier-Stokes equations
including a free capillary surface. For describing solid-liquid phase transitions,
a enthalpy model and a sharp interface model have been presented. To benefit
from their advantages, both models have been combined and were implemented in
a finite element software, which has been used for the simulation of the melting
and solidification process of a thin metallic wire. Furthermore, numerical results
regarding the self-aligning behavior of the process and the solidification process
have been presented.
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[6] E. Bänsch, J. Paul, and A. Schmidt. An ALE finite element method for a coupled Stefan

problem and Navier–Stokes equations with free capillary surface. International Journal for
Numerical Methods in Fluids, 2012.
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[11] T. Kokalj, J. Klemenčič, P. Mužič, I. Grabec, and E. Govekar. Analysis of the laser droplet

formation process. Journal of Manufacturing Science and Engineering, 128(1):307–314, 2006.
[12] A. Kumar. From Isoline to Sharp Interface - Grid Generation. Technical report, ZeTeM,

Bremen, 2010.
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