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Abstract—Model Parameter values of machine tools change 

during machining. An optimal process control needs precise 

knowledge of the actual parameter values. Three different 

algorithms are introduced to estimate the modal parameter values 

of system in a short time window with high resolution: least 

squares estimation (LSE), estimation of signal parameters via 

rotational invariance (ESPRIT) and orthogonal matching pursuits 

(OMP) algorithm. 

These algorithms are augmented with a sliding-window 

operation to reveal the actual system dynamic behavior at every 

time instance. This paper focuses on comparing the performance 

and the identification accuracy of the proposed methods and the 

influence of the applied window size and noise content using 

numerical examinations. The results show that the sliding-window 

LSE can estimate transient parameters accurately and suits 

realtime control processes. 
 

Keywords—modal parameter identification; short time analysis; 

sliding window operation; least squares estimation; ESPRIT; 

matching pursuits. 

I.  INTRODUCTION 

Natural frequencies and damping ratios are relevant modal 

parameters in analyzing mechanical structures and machining 

processes. In engineering practice, these parameters are often 

obtained by experimental impact testing. The modal 

parameters are identified by determining the frequency 

response function, which is the input-output (excitation-

response) ratio in frequency domain, obtained by Fast Fourier 

Transform (FFT) under the assumption of a linear and steady 

state vibration system [1]. 
However, during machining processes, the modal 

parameters that characterise the dynamic behaviour may vary 

rapidly in a short time due to variations in the cutting 

parameters and changes in boundary conditions [2]. In 

rotating machinery, the dynamic modal parameters shift 

between the 0 rpm state and the machining operation state 

[3,4]. In the area of high-speed machining, time- and 

frequency-varying events and transient and complex 

harmonic interactions arise from complicated machining 

processes [5]. The dynamic modal parameters also shift due 

to changing geometric configuration, such as in robotic 
devices [6], flexible mechanisms [7], cranes [8] and so on. 

These time-varying characterise cannot be discovered with 

FFT. 

Recently, many different approaches have been developed 

and applied in practice, especially output-only identification 

methods (OOIM). The OOIM are classified as non-

parametric or parametric [2].  

Operational modal analysis (OMA) [9,10] is one kind of 

non-parametric OOIM. This method is applied to big civil 

structures, where it is extremely difficult to measure the 
excitation forces. The identification procedure is based on 

experimental modal analysis with the assumption of a 

stationary white-noise excitation. However, the OMA could 

not provide transient information of the measured signal. 

Other non-parametric OOIM are time-frequency analyses like 

short time Fourier transform (STFT) [11], the Wigner-Ville 

distribution of Cohen class [12] and the wavelet transform 

(WT) [13]. These methods are bound to the Heisenberg’s 

uncertainty principle and thus, the resolution in time-

frequency domain is restricted. Hilbert-Huang transform 

(HHT) [14] is an improved time-frequency analysis method 
for non-stationary signals. However, the identification 

accuracy is limited by some shortcomings [15] and side 

effects of empirical mode decomposition (EMD) which is the 

core of HHT.  

Parametric OOIM is based on time-dependent 

autoregressive moving average (TARMA) representations 

[16]. The major parametric method consists in the least 

squares estimation (LSE), which is proposed by Yang et al. 

[17] and has been successfully applied to low-frequency 

oscillation parameters estimation for power systems [18]. The 

modal parameters can be obtained by fitting the time window 

data with a damped oscillating function using a least squares 
estimation (LSE). The second one is an estimation of signal 

parameters via rotational invariance techniques (ESPRIT) 

[19,20] which is based on the short time subspace method. 

The original signal can be transferred to the two signal 

subspaces. The signal parameters are obtained by computing 

the eigenvector of two sets of linearly independent vectors in 

the signal subspaces. One of the advantages of the ESPRIT 

algorithm, compared to the LSE is the applicability to 

multiple degree of freedom systems (MDOF). Both methods 

can estimate the dynamic modal parameters with an 

analyzing short time window. If the window is shifted in time, 
modal parameters of time-varying systems can be obtained in 

each analyzing window [21,22]. 

Moreover, the orthogonal matching pursuit (OMP) is a 

method for adaptive signal reconstruction and was firstly 

proposed in the field of signal processing [23,24]. Assuming 

that the signal represents a biased discretization of 



superposed sinoids, a basis consisting of sinoids with 

different frequencies and damping ratios is defined. The 

OMP greedily chooses atoms from a predefined basis, which 

are mostly correlated with the measured signal. This method 

is also applicable to MDOF systems. 

This paper does not discuss the improved parametric 
algorithms or novel approaches, but emphasizes the 

performance or applicability of the proposed algorithms to 

identify the transient or time-varying modal parameters with 

high resolution, so that it can be applied in real-time control 

systems. The methods LSE, ESPRIT and OMP are compared 

in this paper, their performances are examined with various 

analyzing window sizes, signal-to-noise ratios and so on using 

simulations. 

II. THEORETICAL BACKGROUND 

A. LSE 

Consider a monocomponent signal, transformed by Euler’s 

theorem, whose evolution is described by:  
2 2( ) (1 2) ( )k t j fk t j fk tx k e Xe e Xe e           (1) 

where Χ is the amplitude, β is the decay constant, f is the 

oscillation frequency, φ is the phase and ∆t is the time 
interval. 

Using the following definition: 
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(1) can be rewritten as ( ) ( ) k k kx k b Aa Aa . After some 

algebraic manipulations, we obtain 
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where L is the data window size and 
2

1 1 p b  and 

2 1 12p z b . 

(4) can be simplified as AP B . Using the LSE P can be 

obtained as: 
1( ) T TP A A A B  (5) 

Then b1 and z1 are calculated by 
1 1 b p  and 

1 2 12z p b . The parameters bi and zi can be obtained by 

shifting the window  through the whole signal. 

According to the definitions, the frequency fi and damping 

ratio ζi of an oscillation can be obtained by the following 

equations: 
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where ln( )ib t   . 

B. ESPRIT 

Consider a damped sinusoid with additive white noise, 

defined as follows: 
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here, s(n) is the sinusoidal signal part and w(n) is the zero-

mean white noise, ( 2) kj

k kA a e


 is the complex amplitude, 

βk is the decay constant, φk is the initial phase, ωk=2πfk is the 

angular frequency, K is the number of sinusoids and n is the 

number of samples. 

Suppose M to be the length of the signal, then define the 
signal subspaces X (from 1st to M-1) and Y (2nd to M) as the 

arrays: 
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By computing the auto-correlation matrix Rxx and cross-

correlation Rxy, it follows: 
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where E denotes the expectation, 2

w  is the standard deviation 

of the noise, I is the identity and Z is defined as: 
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According to the eigenvalue decomposition of (11) and 

(12), we obtain the new matrices: 
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here the singular value decomposition (SVD) of R1 can be 
expressed as: 
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then by computing the eigenvalue decomposition of the 

matrices 1 1 2 1

HU R V , the eigenvalues   for 1 2R R   can 

be obtained: 
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The frequency and damping ratio are obtained by: 

2 2Im(ln( )) / 2 ,k k k k k kf          (18) 



where Re(ln( ))k k    , 1,2,k K  , Re and Im denote 

the real and imaginary part respectively. 

C. OMP 

Let the measured signal be g . The method starts with 

generating a basis of sinusoids, from (7) for different 

frequencies and damping ratios, defined as { }i i N 
. Then, the 

k-th iteration of the approximation f is computed by: 

arg min{|| ||: },k kf f g f G    (19) 
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and :k kr f g  . After a stopping criterion, e.g. r  is 

fulfilled, the modal parameters can be identified from the 

choice of basic elements, used to approximate the 

measurement. 

III. NUMERICAL SIMULATIONS  

In this section, we present numerical simulations to 

illustrate the performance of the different algorithms 
described in the previous sections.  

In practice the measured signal, a multi frequency 

vibration response with noise, is pre-filtered first, in order to 

obtain a narrowband signal containing one significant 

frequency. Because of the nonlinear or time-varying system 

the modal parameters of this signal change in time. The 

dynamic characteristics can be captured by using the 

proposed algorithms with a sliding analyzing window. 

Therefore, the simulation analysis is performed on the 

following single degree damped sinusoid with narrowband 

nosie: 
2( ) sin(2 )    f tnx t A e f t ysignal n noise   (21) 

where Asignal=1, 0<t<1, fn is the natural frequency of the 

simulated signal, ξ  is the damping ratio and ynosie is a 

narrowband white Gaussian noise. Here we use an ideal 

digital frequency filter with a Hanning window as a pre-filter. 

The noise level is expressed by the signal-to-noise ratio (SNR). 

The SNR is defined as 2 210log ( / )10 SNR AdB noisesignal
 with 

2noise
being the standard deviation of the noise. To ensure the 

noise has the same effect on the different amplitudes of the 

simulated signal, it is multiplied by an exponential function, 

which is the upper envelope of the simulation signal, before 

added to the signal. 

 
Figure 1. Symbolic representation of numerical results 

The simulated signal is analyzed using the proposed 

algorithms augmented with a sliding window operation. The 

analyzing window contains short time data and is shifted 

through the whole simulated signal x(t). The estimated 

frequencies and damping ratios are computed for each 

window using the proposed identification algorithms. The 
experiment is repeated 5 times. The mean, standard deviation, 

maximum and minimum values are calculated and displayed 

as shown in Fig.1. The results are compared with each other 

to examine the performance of the proposed algorithms. 

Tab.1 lists the preset modal parameters and other optional 

parameters, relevant for computation. 

Table 1. Preset values and computing parameters 

Parameter Value 

preset frequency 260 Hz 

preset damping ratio 0.2 % 

filter pass band 210 Hz-310 Hz 

shifting step of window 4 ms 

sampling rate 5120 Hz 

 
The identification accuracy of the proposed algorithms will 

be demonstrated through a number of following numerical 

examples (A-F). 

IV. RESULTS AND DISCUSSION 

A. Variation of the window length 

In this case, the modal parameters are estimated under 

different window length. The SNR is set to 5 dB. 

 
Figure 2. Frequency estimation with varying window length 

 
Figure 3. Frequency estimation with varying window length for OMP 



Due to a great difference of identification results between 

LSE, ESPRIT and OMP method, the results of LSE, ESPRIT 

and the results of OMP are plotted in Fig.2 and 3 respectively. 

It can be seen that the frequency estimation of the LSE and 

ESPRIT has a high accuracy (less than 0.5 % error). The 

increasing window size improves the identification accuracy. 
In comparison with the LSE and ESPRIT, the identification 

accuracy of the OMP is obviously too low. Therefore, we will 

not show the results of OMP in next sections. 

The estimation for damping ratio under various window 

sizes is shown in Fig.4. The estimation accuracy for LSE and 

ESPRIT is very low. (about 100 % error). The accuracy 

increases with increasing window size. It is worth noting that 

the estimated damping ratio attains negative values for a 

window length shorter than 60 ms. It is well known that real 

mechanical structures do not have negative damping ratios. 

This effect is a pure numerical problem arising from the 

choose algorithms and limits the smallest reasonable window 
size. Moreover, the accuracy of the LSE is a little bit higher 

than of the ESPRIT method. 

 
Figure 4. Damping ratio estimation with varying window length 

B. Variation of the noise level 

The modal parameters are estimated for different noise 
levels. The window size is set to 20 ms. 

The identification results at different noise levels are given 

in Fig.5 and 6. It can be seen that the accuracy is obviously 

improved, if the SNR is reduced from 5 dB to 20 dB. The 

estimation accuracy of both methods sensitively depends on 

the noise level. 

 
Figure 5. Frequency estimation with varying noise levels 

 
Figure 6. Damping ratio estimation with varying noise levels 

C. Variation of the pass band value W 

Due to time varying systems, in which the natural 

frequency shifts, the influence on the identification accuracy 

of the pass band filter value W, will be investigated in this 

example. The value W is defined as the distance between the 

natural frequency fn of the simulated signal and the center 

frequency of the pass band, while the total width of the 

applied frequency filter remains constant at 100 Hz. The 
window size is set to 20 ms and the SNR is set to 20 dB. 

 
Figure 7. Frequency estimation with varying pass band value W 

 
Figure 8. Damping ratio estimation with varying pass band value W 

As shown in Fig.7 and 8, shifting the pass band does not 

have a large influence on the estimated values. In machining 

processes or engineering structures, the range in which modal 

parameters change was proved to be relatively small, as in a 

parallel kinematic machine the change in frequency stays 
within 2.1 Hz [7]. Therefore, the setting of the pass band has 



little influence on the accuracy of modal parameter estimation, 

even for time-varying systems. 

D. Test at low frequency 

In this example, a single degree damped sinusoid with 

fn=5Hz, ξ =0.2% is simulated. The identification accuracy 

will be examined, while the window length is set to less than 

a quarter of the frequency’s period. The analyzing window 

size is set to 40 ms. The pass band is set from 1 Hz to 9 Hz. 

As shown in Fig.9 and 10, the frequency identification 

accuracy for low-frequent signals is also high and decreases 

with decreasing SNR. The damping ratio estimates exhibit 

large errors, but approach the preset value with reducing the 

noise. 

 

Figure 9. Frequency estimation for low frequency signal with varying noise 

level 

 
Figure 10. Damping ratio estimation for low frequency signal with varying 

noise level 

E. Computation effort 

Because the purpose of this work is to find an optimal 
algorithm for real-time control systems or online monitoring, 

the computational cost is also a very important parameter. 

The time, used for the required computations of each 

proposed algorithm is investigated for the simulated signal 

with preset values as seen in Tab.1 and a window size of 

40 ms. It should be noted that the time of computation 

depends on the optimization of the programs and the CPU. 

The algorithms were implemented in MatLab 7.11.0 and run 

on an Intel Pentium Dual processor with a 2.20 GHz CPU 

and 2 GB RAM. 

The computing time, used for one analyzing window is 

presented in Tab.2 for each method. With 0.2 ms, the LSE 

has fastest computing time for one analyzing window. The 

ESPRIT algorithm requires more computational load than the 

LSE algorithm, since it requires computing eigenvectors and 

SVD. The computing time of the OMP algorithm depends 
mostly on the definition of the basis. By reducing the 

accuracy, the OMP algorithm converges faster to the preset 

value. 

Table 2 Time required in proposed algorithms 

Algorithm Used time 

LSE 0.2   ms 

ESPRIT 32    ms 

OMP 30    ms 

F. Simulation signal to test 

To test the applicability of the proposed algorithms in 
engineering practice, a time-varying signal was simulated. 

The natural frequency increases linearly from 255 Hz to 

265 Hz with time. Similarly, the damping ratio changes 

linearly from 0.2 % to 0.3 %. The instantaneous frequency 

and damping ratio are obtained using a sliding window LSE 

method. As a result, the identification error is illustrated. The 

window size is set to 40 ms and the SNR is set to 10 dB. 

 
Figure 11. Frequency estimation using sliding-window LSE 

 
Figure 12. Damping ratio estimation using sliding-window LSE 

The instantaneous frequency and damping ratio are 

obtained and plotted in Fig. 11 and 12, respectively. The 

shifting of the natural frequency and damping ratio are 



recovered effectively. The estimation error for the frequency 

is bounded by 1 % and by 50 % for the damping ratio. 

V. CONCLUSION 

To review the dynamic behaviour of time varying systems 

precisely, three algorithms (LSE, ESPRIT and OMP) are 

introduced and their identification accuracy is investigated 
using a number of numerical examples. The LSE and 

ESPRIT can estimate the modal parameters for very short 

time windowed data with high resolution. Unlike the time-

frequency analysis, the accuracy of both methods does not 

depend on the time- or frequency-resolution. The parameter 

estimation errors become smaller with increasing the 

analyzing window length and with reducing the noise level of 

the original signal. Moreover, the identification accuracy 

does not depend strongly on the centre frequency of the pass 

band filter. The algorithms can be applied for short windowed 

data of low frequency signal. The identification accuracy of 

the LSE algorithm is higher than the ESPRIT algorithm. Both 
methods have higher identification accuracy for the natural 

frequency compared to the OMP. 

However, the damping ratio identification has larger error 

than the frequency identification, because the small values 

pose serious estimation accuracy problems [25]. The damping 

ratio estimation is also very sensitive to the SNR. The 

identification accuracy can be improved by increasing the 

window size and reducing the noise. Besides, the analyzing 

window can be divided into several blocks in which the 

damping ratio is estimated iteratively. By averaging the 

estimated values of the blocks, the identification accuracy 
might be further improved. 

The multi frequency vibration response case is much more 

important in engineering practice. The ESPRIT algorithm can 

also be applied for these signals. In future work, the 

applicability of the LSE algorithm for this case will be 

studied. 
The computing time of the LSE is shorter than the other 

proposed methods. Consequently, it is more applicable to the 
online monitoring of machining processes and real-time 
control systems. The OMP algorithm may be applied in 
offline modal analyses. 
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