
Zentrum für Technomathematik
Fachbereich 3 – Mathematik und Informatik

Image Sequence Interpolation based on
Optical Flow, Segmentation, and

Optimal Control

Kanglin Chen Dirk A. Lorenz

Report 11–11

Berichte aus der Technomathematik

Report 11–11 December 2011





SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Image Sequence Interpolation based on Optical
Flow, Segmentation, and Optimal Control

Kanglin Chen, and Dirk A. Lorenz

Abstract—When using motion fields to interpolate between two
consecutive images in an image sequence, a major problem is
to handle occlusions and disclusions properly. However, in most
cases one of both images contains the information which is either
discluded or occluded; if the first image contains the information
(i.e. the region will be occluded), forward interpolation shall be
employed, while for information which is contained in the second
image (i.e. the region will be discluded), one should use backward
interpolation. Hence, we propose to improve an existing approach
for image sequence interpolation by incorporating an automatic
segmentation in the process which decides in which region of the
image forward resp. backward interpolation shall be used.

Our approach is a combination of the optimal transport
approach to image sequence interpolation and the segmentation
by the Chan-Vese approach. We propose to solve the resulting
optimality condition by a segregation loop, combined with a
level set approach. We provide examples which illustrate the
performance both by RMSE and human perception.

Index Terms—Active contours, image sequence interpolation,
optimal control, optical flow, segmentation, transport equation.

I. INTRODUCTION

IMAGE sequence interpolation is the generation of inter-
mediate images between two given consecutive images,

a process which is, for example, relevant if image acqui-
sition is slow or expensive and has broad applications in
the fields of video compression, medical imaging and so on.
In video compression, the knowledge of motions helps to
remove the non-moving parts of images and compress video
sequences with high compression rates. For example in the
MPEG format, motion estimation is the most computationally
expensive portion of the video encoder and normally solved by
mesh-based matching techniques [1]. While decompressing a
video, intermediate images are generated by warping the image
sequence with motion vectors. In the field of medical imaging
image sequence interpolation is also desired. For example, the
diagnostic requires a point by point correspondence between
the same tissue from the image sequence taken at difference
time [2]. Moreover, image sequence interpolation is also
able to improve the quality of historic movies by increasing
the frame-rate to the modern standard. Similarly, in disease
diagnostics an image of a patient’s tissue may need to compare
with a healthy tissue [3]. This is an example of how image
sequence interpolation in some cases can be used to solve the
application normally classified as image registration. However,
in this article we focus on movie-like image sequences; these
sequences are notably different from registration problems in
that we may have different objects which move in different
directions resulting in disclusions and occlusions.

Considering the problem of image sequence interpolation,
the optical flow (the measurable 2D motion field between
two images) plays a decisive role. Since Horn and Schunck
proposed the variational method to estimate optical flow in
their celebrated work [4], this field has been widely developed.
To preserve the flow edges non-linear isotropic constraint was
applied instead of the linear constraint of the Horn & Schunck
method [5], [6], an anisotropic diffusion constraint improved
the preservation of edges by an oriented smoothness constraint
in which smoothness is not imposed across edges [7], [8], and
the TV-L1 method is not only able to preserve the flow edges
but also able to work robustly against the outliers [9].

There are several existing variational methods based on
optical flow to interpolate missing intermediate images. In [10]
the variational method penalized by the elastic regularization
is considered:

Jrigid(u, b) =

∫
[0,T ]×Ω

(ut + b · ∇u)
2

+ λ |∇b′ +∇b|2 dxdt,

where b denotes the optical flow and ∇b′ denotes the transpose
of the Jacobi matrix of b. Hence, they do not exactly enforce
the brightness constancy constraint ut + b · ∇u = 0 but
penalize its violation as in the classical Horn & Schunck
approach. Minimizing this functional gives the interpolated
images with maximal rigidity, and has applications in the field
of medical image registration, e.g. registration of magnetic
resonance images. In [11] the authors keep the assumption of
brightness constancy without differentiating it and update the
flow field with the help of robust estimators. There the authors
also incorporated object based motion segmentation. In [12]
the authors also keep the assumption of brightness constancy
without differentiating it and apply the time dependent Horn
& Schunck functional:

Jcons(b) =
λ

2

T∫
0

‖u(t)− uT ‖2L2(Ω) dt+
1

2

T∫
0

∫
Ω

|∇b|2 dxdt,

where u(0) = u0 and uT are the given two images. After
calculating the time-dependent optical flow one can warp the
initial image u0 to a certain time. In [13] the authors do enforce
the brightness constancy constraint again and minimize a
functional with the equation ut + b · ∇u = 0 as a constraint.

Different from the global variational methods are the so-
called pixel-wise methods. In [14] the path-based interpolation
sequence method is considered. There one searches where
every pixel comes from and traces out the path of every pixel
from the given two images. To stabilize the interpolation and
to handle occlusion, a post-processing is used by means of
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verification of the displacement flow. In [15], [16] another
pixel-wise method is introduced, namely the perception-based
interpolation. They simulate human visual perception in the
following way: To begin with, they detect the edges and
homogeneous regions, and then they estimate the translets
by matching edges; finally they use the forward warping and
feather the interpolated images.

Besides the above mentioned image sequence interpolation
methods, the image warping technique was introduced in [17]
to generate the intermediate image based on a priori known
optical flow field, e.g. estimated by the Horn & Schunck
method. However, this kind of optical flow may not be suitable
for image sequence interpolation, see [12], [15]. In [18] we
introduced a more natural way to utilize optical flow into
image sequence interpolation under the framework of optimal
control similar to [13]. This method can be applied to the cases
that image sequence obeys rigid and non-rigid movements, and
also works robustly against noise.

In this paper we aim to eliminate a common drawback of all
flow-based methods for image image sequence interpolation:
While using forward interpolation it is impossible to obtain
good results for regions which are disclosed, since any method
has to guess the appearing pixels. Similarly, backward inter-
polation will fail in regions which are occluded. To solve this
problem we propose an extension of our method proposed
in [18] which incorporates a segmentation process for the
image domain to automatically detect regions in which forward
resp. backward interpolation shall be employed.

The paper is organized as follows: In Section II we review
the segmentation model by Chan and Vese [19] while in
Section III we recall the basics of our proposed optimal control
approach to image sequence interpolation. Section IV presents
the combination of both approaches and Section V presents
details on the numerics.

II. SEGMENTATION WITH ACTIVE CONTOURS

The classical active contours models or snakes [20], [21]
are widely used in image segmentation. However, in these
models an edge detector related to the image gradient is
required to stop the evolving curve on the boundaries of
objects. In [19] Chan and Vese introduced a model based
on active contours and the Mumford-Shah segmentation [22],
which does not require an edge detector. Consequently, this
model can detect contours both with or without gradient, for
example for the objects with very smooth boundaries or even
with discontinuous boundaries. We review the model of active
contours without edges for the sake of completeness.

Let us define a curve C as the boundary of an open subset
ω of a bounded domain Ω ⊂ R2. Assume that C segments Ω
into ω and Ω \ ω, and the constants c1, c2 depending on C,
are the average of the image u inside of C and respectively
outside of C. Denoting with |C| the length of C and with |ω|
the area of ω, the segmentation will be achieved by minimizing
the following energy

F (c1, c2, C) = λ1

∫
ω

|u− c1|2 dx+ λ2

∫
Ω\ω

|u− c2|2 dx

+ µ|C|+ ν|ω|,

(1)

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are the regularization
parameters. To minimize (1) one uses a level set formulation.
Suppose C is represented by the zero level set of a Lipschitz
function φ : Ω→ R, such that

C = ∂ω = {x ∈ Ω : φ(x) = 0} ,

ω = {x ∈ Ω : φ(x) > 0} ,

Ω \ ω = {x ∈ Ω : φ(x) < 0} .

Using the Heaviside function H and one-dimensional Dirac
measure δ0 defined as

H(z) =

{
1 if z ≥ 0,

0 if z < 0,
, δ0(z) =

d

dz
H(z),

one can reformulate (1) in the following way:

F (c1, c2, φ) = λ1

∫
Ω

|u− c1|2H (φ(x)) dx

+ λ2

∫
Ω

|u− c2|2 (1−H (φ(x))) dx

+ µ

∫
Ω

δ0 (φ(x)) |∇φ(x)| dx

+ ν

∫
Ω

H (φ(x)) dx.

In order to compute the associated Euler-Lagrange equations
with respect to φ, one chooses a smooth approximation Hs

and δs = H ′s, e.g.

Hs(z) =
1

2

(
1 +

2

π
arctan

(z
s

))
,

δs(z) =
1

sπ
cos2

(
arctan

(z
s

))
,

which converge to H (pointwise a.e.) and δ (in the sense
of distributions) as s → 0. Let us define for s, ε > 0 the
functional Fs,ε by

Fs,ε(c1, c2, φ) = λ1

∫
Ω

|u− c1|2Hs (φ(x)) dx

+ λ2

∫
Ω

|u− c2|2 (1−Hs (φ(x))) dx

+ µ

∫
Ω

δs (φ(x)) |∇φ(x)|ε dx

+ ν

∫
Ω

Hs (φ(x)) dx,

where | · |ε denotes the ε-smoothed total variation functional
defined by

|∇φ|ε =

√
|∇φ|2 + ε.

To minimize Fs,ε with respect to φ, one deduces the associated
Euler-Lagrange equations for φ and parameterizes the descent
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direction by an artificial time t ≥ 0. The equation in φ(t, x)
with the initial contour φ(0, x) = φ0(x) is

∂φ

∂t
= δs(φ)

(
µ∇ ·

(
∇φ
|∇φ|ε

)
− ν − λ1 (u− c1)

2

+ λ2 (u− c2)
2

)
in (0,∞)× Ω,

φ(0) = φ0 in Ω,

δs(φ)

|∇φ|ε
∂φ

∂n
= 0 on ∂Ω.

(2)

where ∂φ/∂n denotes the normal derivative of φ on the
boundary.

III. OPTICAL FLOW BASED OPTIMAL CONTROL FOR
IMAGE SEQUENCE INTERPOLATION

Given two consecutive images u0 and uT , we desire to find a
flow field such that the field drives the transport equation with
the initial value u0 to fit uT at time T as well as possible. This
process has been accomplished in [18] under the framework of
optimal control, and we briefly review this method: Consider
the Cauchy problem for the transport equation in [0, T ] × Ω,
Ω ⊂ R2:

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0 in ]0, T ]× Ω,

u(0, x) = u0(x) in Ω,

un(t, x) = 0 in ]0, T ]× ∂Ω.

(3)

Here the (time dependent) flow field is denoted by b :
[0, T ] × Ω −→ R2, the image function depending on t and
x is denoted by u and un denotes its normal derivative. The
Neumann boundary condition un = 0 is not essential in this
case, since we assume that b vanishes on ∂Ω for a.e. t ∈]0, T ]
in the following context.

Our intention is to find a flow field b such that the “trans-
ported” image u(T ) at time T matches the image uT as
well as possible. This motivates us to minimize the functional
1
2 ‖u(T )− uT ‖2L2(Ω). However, this problem is ill-posed, and
hence we add an additional regularization term in the cost
functional. In addition, we add the divergence-free constraint
of b and obtain an optimal control problem as follows for a
given λ > 0: Minimize

J(b) =
1

2
‖u(T )− uT ‖2L2(Ω) +

λ

2

T∫
0

‖∇b(t, ·)‖2L2(Ω)4 dt.

subject to divb = 0 and (3).

The associated Karush-Kuhn-Tucker system for the optimal
control problem uses a dual variable p for the constraint (3)
and a dual variable q for divergence-free constraint and is

given by

ut + b · ∇u = 0 in ]0, T ]× Ω, with u(0) = u0 in Ω,

pt + b · ∇p = 0 in [0, T [×Ω, with p(T ) = −(u(T )− uT ) in Ω,

λ∆b+∇q = p∇u in [0, T ]× Ω,

divb = 0 in [0, T ]× Ω,
, with b = 0 on ∂Ω.

(4)
According to the conservation law [23] and the divergence
theorem [24], the divergence-free constraint of b makes the
flow volume conserving, smooth and varying not too much
inside of a moving object. At least the last two properties are
desirable for computation of the optical flow. Moreover, the
divergence-free constraint is a somehow technical assumption
as it implies that the equation for the dual variable p of u is
also a transport equation, and hence simplifies the numerical
implementation.

To solve (4) numerically we apply a modified segregation
loop. We suppose n = 1, · · · , Nloop and Nloop is the iteration
number. Given u0, uT , bn−1(t), λ. The iteration process at
iteration n proceeds as follows:

1) Compute un−1(t),∇un−1(t) and un−1(T ) by the for-
ward transport equation using u0 and bn−1(t).

2) Compute pn−1(t) by the backward transport equation
using −(un−1(T )− uT ) and bn−1(t).

3) Compute the solution of the Stokes equations with right-
hand side pn−1(t)∇un−1(t) and λ. Then, denote it by
δbn−1(t) .

4) Update bn(t) = bn−1(t) + δbn−1(t).
Although the segregation loop does not solve (4) directly, in
[18] is shown that the modification with the update δbn−1 ac-
tually solves the necessary conditions of another optimization
problem, namely: Minimize

1

2
‖u(T )− uT ‖2L2(Ω)

subject to{
ut + b · ∇u = 0 in ]0, T ]× Ω, with u(0) = u0 in Ω,

divb = 0 in [0, T ]× Ω, with b = 0 on ∂Ω.

From the point of view of regularization theory, one may
see this segregation loop as a kind of a Landweber method
for minimizing ‖u(T ) − uT ‖2L2(Ω) which is inspired by a
Tikhonov-functional.

IV. OPTICAL FLOW AND SEGMENTATION BASED OPTIMAL
CONTROL FOR IMAGE SEQUENCE INTERPOLATION

A. Modeling

Observing the movement of objects in an image sequence
we may divide the domain into the “covered” domain and
the “disclosed” domain. The “covered” domain refers to the
regions in which the characteristics of two different pixels
starting at time 0 end up at time T in a same place. Obviously,
the “covered” domain is suitable for the forward interpolation
from 0 to T . In the contrast, the “disclosed” domain refers
to the regions in which no characteristic of a pixel starting at
time 0 ends up at time T in a place. Since our interpolation
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method under the framework of optimal control will produce
a continuous optical flow, in the “disclosed” domain will be
filled-in with the neighbors, and hence we get a dense optical
flow. But using the filled-in optical flow is still impossible to
recover the objects in the “disclosed” domain, if we only take
information from u0. To overcome this drawback, which is
inherent in all flow-based methods, we can apply a backward
interpolation from T to 0 in the “disclosed” domain, i.e. the
“disclosed” domain is turned to the “covered” domain in this
case. An illustrative example of this phenomenon is the dataset
MiniCooper1 which is shown in Fig. 2. In the zoomed-in sub-
images one easily observes that in the upper part of the head
region and the rear part of the car, some new objects (pixels)
appear.

Motivated by this explanation we propose to apply active
contours to achieve an automatic selection process of the
regions for forward or backward interpolation. To that end we
incorporate the Chan-Vese segmentation process described in
Section II into our optimal control framework from Section III.
Moreover, we modify our optimal control framework in that
we use a smoothed TV penalty for the flow field b to obtain
sharper edges for flow. We assume that b vanishes on ∂Ω and
model the evolving curve C in Ω as the boundary of an open
subset ω of Ω. The forward interpolation, denoted by û, shall
take place in the set ω and backward interpolation ũ shall be
used in Ω \ ω. Hence, our cost functional is defined as

L(b, C, ω) =
1

2
‖û(T )− uT ‖2L2(ω) +

1

2
‖ũ(0)− u0‖2L2(Ω\ω)

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt+ µ |C|+ ν |ω| .

(5)

governed by the forward transport equation{
ût + b · ∇û = 0 in ]0, T ]× Ω,

û(0) = u0 in Ω,

the backward transport equation{
ũt + b · ∇ũ = 0 in [0, T [×Ω,

ũ(T ) = uT in Ω,

and the divergence-free equation

divb = 0 in [0, T ]× Ω.

The desired interpolation u at time t is estimated by

u(t, x) =

{
û (t, x) , x ∈ ω,

ũ (t, x) , x ∈ Ω \ ω,
(6)

Actually, minimizing (5) we obtain the optical flow and the
active contours for interpolation. Although we do not compute
u(t) directly from (5), in Section V we shall see that it is
necessary to compute û(t) and ũ(t) by computing the optical
flow and active contours. Thus, interpolating u(t) from (6)
requires almost no additional computation.

1 http://vision.middlebury.edu/flow/data/

To turn the cost functional (5) into a functional which is
computationally feasible we follow the lines of Chan and Vese
described in Section II: We assume that φ is the zero level set
of C introduced in Section II and use a smoothed Heaviside
function to reformulate (5) in terms of level set as

Js,ε(b, φ) =
1

2

∫
Ω

|û(T )− uT |2Hs(φ) dx

+
1

2

∫
Ω

|ũ(0)− u0|2 (1−Hs(φ)) dx

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt

+ µ

∫
Ω

δs(φ) |∇φ|ε dx+ ν

∫
Ω

Hs(φ) dx.

(7)

B. First-order Necessary Optimality Conditions

We obtain the first-order necessary optimality conditions by
defining the Lagrangian (with Lagrange multipliers p̂, p̃ and
q) as

L(û, ũ, b, φ, p̂, p̃, q)

=
1

2

∫
Ω

|û(T )− uT |2Hs(φ) dx

+
1

2

∫
Ω

|ũ(0)− u0|2 (1−Hs(φ)) dx

+ λ

T∫
0

∫
Ω

√
|∇b|2 + ε dxdt+

T∫
0

∫
Ω

(ût + b · ∇û) p̂ dxdt

+

T∫
0

∫
Ω

(ũt + b · ∇ũ) p̃ dxdt+

T∫
0

∫
Ω

qdivb dxdt

+ µ

∫
Ω

δs(φ) |∇φ|ε dx+ ν

∫
Ω

Hs(φ) dx.

Finally, the necessary optimality conditions system consists of

1) The forward transport equation and its adjoint equation

ût + b · ∇û = 0 in ]0, T ]× Ω,

û(0) = u0 in Ω,

p̂t + b · ∇p̂ = 0 in [0, T [×Ω,

p̂(T ) = − (û(T )− uT )Hs(φ) in Ω.

(8)

2) The backward transport equation and its adjoint equation

ũt + b · ∇ũ = 0 in [0, T [×Ω,

ũ(T ) = uT in Ω,

p̃t + b · ∇p̃ = 0 in ]0, T ]× Ω,

p̃(0) = (ũ(0)− u0) (1−Hs(φ)) in Ω.

(9)

http://vision.middlebury.edu/flow/data/
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3) The TVε-Stokes equations (cf. [25])


λ∇ ·

(
∇b
|∇b|ε

)
+∇q = p̂∇û+ p̃∇ũ in [0, T ]× Ω,

divb = 0 in [0, T ]× Ω,

b = 0 on ∂Ω.
(10)

4) The equation for segmentation

δs(φ)
(
µ∇ ·

(
∇φ
|∇φ|ε

)
− ν − 1

2
|û(T )− uT |2

+
1

2
|ũ(0)− u0|2

)
= 0 in Ω,

δs(φ)

|∇φ|ε
∂φ

∂n
= 0 on ∂Ω.

(11)

V. NUMERICAL ASPECTS

To solve the forward and backward transport equations (8)
and (9) we utilize the method of characteristics by solving the
associated ODE using Runge-Kutta 4th order [26]. To solve
the TVε-Stokes equations (10) at time t we apply the following
iterative procedure to update b and q with time step ∆t

bn+1(t) = bn(t) + ∆t

(
∇ ·
(
∇bn(t)

|∇bn(t)|ε

)
+

1

λ
∇qn(t)

− 1

λ
p̂(t)∇û(t)− 1

λ
p̃(t)∇ũ(t)

)
,

qn+1(t) = qn(t) + ∆t∇ · bn(t).

(12)

In [27] is shown that this explicit (forward Euler) time
marching scheme is conditionally stable, i.e. the time step
∆t should be selected in a manner which gives sufficient
decrease in the functional. However, the forward scheme has
rather undesirable asymptotic convergence properties which
can make it inefficient. To get ride of that Vogel and Oman
introduced the lagged diffusivity fixed point iteration, denoted
by FP-iteration, in [27]. The FP-iteration linearizes the non-
linear diffusion part in (12) at iteration n + 1, i.e. we apply
the diffusion operator

DF (bn)v = ∇ ·
(
∇v
|∇bn|ε

)
at the active iteration n+ 1. Hence, we can formulate it into
an implicit scheme

(1−∆tDF (bn)) bn+1 = z,

where z denotes the rest terms not involving bn+1. In [28] it
was shown that this algorithm is robust and globally linearly
convergent. The details of underlying scheme according to v

read as follows (using the notation b = (v, w)):

∂x

(
vn+1
x

|∇bn|ε

)
= ∂x

(
|∇bn|−1

ε

)
vn+1
x +

vn+1
xx

|∇bn|ε
= − |∇bn|−3

ε

(
vnxv

n
xx + vny v

n
xy

+ wn
xw

n
xx + wn

yw
n
xy

)
vn+1
x +

vn+1
xx

|∇bn|ε
,

∂y

(
vn+1
y

|∇bn|ε

)
= ∂y

(
|∇bn|−1

ε

)
vn+1
y +

vn+1
yy

|∇bn|ε

= − |∇bn|−3
ε

(
vnxv

n
xy + vny v

n
yy

+ wn
xw

n
xy + wn

yw
n
yy

)
vn+1
y +

vn+1
yy

|∇bn|ε
.

Altogether the discretization of (12) with respect to v yields

vn+1 + ∆t |∇bn|−3
ε

(
vnxv

n
xx + vny v

n
xy + wn

xw
n
xx + wn

yw
n
xy

)
vn+1
x

−∆t
vn+1
xx

|∇bn|ε
+ ∆t |∇bn|−3

ε

(
vnxv

n
xy + vny v

n
yy + wn

xw
n
xy

+ wn
yw

n
yy

)
vn+1
y −∆t

vn+1
yy

|∇bn|ε
= vn +

∆t

λ
qnx −

∆t

λ
(p̂ûx + p̃ũx) .

Similarly, solving (11) we also use a time-marching scheme
and apply the FP-iteration.

A. Segregation Loop
As explained in Section III we apply a modified segregation

loop to solve the equation system (8)–(11). We suppose
n = 1, · · · , Nloop and Nloop is the iteration number. Given
u0, uT , b

n−1(t), φn−1, λ, µ, ν. The iteration process at itera-
tion n proceeds as follows:

1) Compute ûn−1(t),∇ûn−1(t) and ûn−1(T ) using u0 and
bn−1(t).

2) Compute p̂n−1(t) using ûn−1(T ), uT and Hs(φ
n−1).

3) Compute ũn−1(t),∇ũn−1(t) and ũn−1(0) using uT and
bn−1(t).

4) Compute p̃n−1(t) using ũn−1(0), u0 and Hs(φ
n−1).

5) Compute the solution of the TVε-Stokes equations with
right-hand side p̂n−1(t)∇ûn−1(t) + p̃n−1(t)∇ũn−1(t).
Then, denote it by δbn−1(t) .

6) Compute solution φn of (11) using û(T ), uT , ũ(0), u0

and φn−1 as the initial value of the time-marching
scheme.

7) Update bn(t) = bn−1(t) + δbn−1(t).
Similar to the segregation loop in Section III, this segrega-
tion loop does not solve the original problem, but actually
approximates a solution of the necessary conditions of another
minimizing problem, namely: Minimize

1

2
‖û(T )− uT ‖2L2(ω) +

1

2
‖ũ(0)− u0‖2L2(Ω\ω)

subject to
ût + b · ∇û = 0 in ]0, T ]× Ω with û(0) = u0 in Ω,

ũt + b · ∇ũ = 0 in [0, T [×Ω with ũ(T ) = uT in Ω

divb = 0 in [0, T ]× Ω with b = 0 on ∂Ω.
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Again, we may see the segregation loop as a kind of a
Landweber method for minimizing 1

2‖û(T ) − uT ‖2L2(ω) +
1
2‖ũ(0)−u0‖2L2(Ω\ω) which is inspired by a special Tikhonov-
functional.

B. Implementation

In optical flow estimation it is common to use the hierarchi-
cal processing (cf. [29], [30]) to handle large displacements,
and we apply this technique to get a start value b0 for the
optimality system. We execute the following procedure

1) Down-sample the images into level l.
2) Carry out the segregation loop in level l out and get bl.
3) Up-sample the optical flow into level l− 1 and get bl−1

The estimated optical flow bl−1 is a start value of the hierar-
chical method in level l − 1 and we repeat it until level 0. In
the coarsest level we assume the start value to be zero.

The essential parameters of the quality of image sequence
interpolation are the regularization parameters λ, µ, ν. The
parameter λ depends strongly on the intensities of the optical
flow (velocities). For larger velocities we have to penalize it
with larger λ. In the praxis, if the velocities are smaller than
25 pixels between two image then we can set λ ∈ [104.4, 105].
The parameters µ, ν, which involves the segmentation we
set both equal to 1. Regarding the time step in the time-
marching scheme of the parabolic equations for optical flow
and segmentation we set ∆t = 103, since the implicit method
is stable with arbitrary time step. Then in few steps we can
achieve the convergence. The smoothing parameter ε we set
equal to 1 and s equal to 10−2.

All datasets we considering are 8 bit RGB color images.
Dealing with the RGB color images we convert them into 8 bit
grayscale first, calculate the optical flow and active contours,
and at the end warp every color channel with that flow field.

C. Experiments and Evaluation

To visualize the flow field both in angles and intensities we
utilize the color coding map in Fig. 1 (cf. [17]). The direction
of the flow is coded by hue and the intensity is coded by
saturation, i.e. the brighter the color the larger the velocity.

Fig. 1. Color coding map of optical flow.

We compare the new introduced method, denoted by the
TVε-segment method, with the smooth method introduced
in [18]. To illustrate the ability to handle disclusions and
occlusions we apply them on the dataset MiniCooper. Firstly,
Fig. 3 shows that the TVε-segment method preserves the
flow edges better than the smooth method. Consequently,

the interpolation by the TVε-segment keeps the boundary of
objects (shapes) better than the smooth method. Additionally,
the associated active contours for segmentation are also shown
in Fig. 3. In Fig. 4 we present the interpolated image of
dataset in Fig. 2 at time T/2 by the smooth method and
TVε-segment method. The associated zoomed-in sub-images
in Fig. 5 show that the TVε-segment method interpolated the
disclosed regions (the upper part of head and the rear of the
car) better than the smooth method. Comparing the zoomed-
in sub-contours we can easily establish that the segmentation
process has successfully identified the “covered” regions (the
bottom part of the head) and the “disclosed’ ’regions (the top
part of the head and the rear of the car).

To evaluate our image sequence interpolation method we
performed an experiment based on human visual percep-
tion. We choose 4 artificial datasets Face, Earth, Bunny and
Dragon from ftp://graphics.tu-bs.de/pub/public/people/lipski/
stimuli/ (see Fig. 6). The dataset Face is composed of 60
images and other each dataset is composed of around 120
images. We compare our methods with other 7 existing
methods from [15] for which interpolation results have been
available, and we designed the experiment in the following
way: Among every four images two middle images are taken
out and using the first and last one the missing images will be
interpolated (i.e. we performed a subsampling with respect
to time by the factor of 3). Now, each participant in our
experiment is shown two interpolation results side by side
and is asked which one looks better. For each of the scenes
we compare all 7 interpolation methods and the ground-truth
against each other (only comparing method A and method B,
excluding self-comparison and the reverse comparison method
B to method A). This yields a total of 4 · (8 ·7/2) = 112 trials
per participant. We denote N the number of participants and
in each trial the perceptually better image gets 1 point. After
all trials we divide the score of every algorithm of each dataset
by 7N and all datasets by 35N to get the normalized score for
every dataset and all datasets. The range of the score is in [0, 1]
and a higher score stands for better human visual perception.

Face Earth Bunny Dragon average

original 0.90 0.86 0.88 0.96 0.90
blend 0.24 0.14 0.32 0.26 0.24
opticalflow 0.01 0.02 0.02 0.02 0.02
nofeathering 0.49 0.50 0.35 0.50 0.46
nooptim 0.26 0.32 0.39 0.21 0.29
full 0.50 0.53 0.42 0.51 0.49
multiscale 0.82 0.82 0.84 0.82 0.82
TVε-segment 0.77 0.82 0.78 0.73 0.78

TABLE I
THE FIRST FOUR COLUMNS GIVE THE NORMALIZED SCORES OF THE

ALGORITHMS FROM [15] AND TVε-SEGMENT APPLIED ON EVERY
DATASET. THE NEXT COLUMN GIVES THEIR AVERAGE SCORES OF THESE

DATASETS.

In total 17 participants took part in this experiment, and in
Table I we can observe that the so called “multi-scale” and
TVε-segment methods visual perceptually perform better than
the other methods.

ftp://graphics.tu-bs.de/pub/public/people/lipski/stimuli/
ftp://graphics.tu-bs.de/pub/public/people/lipski/stimuli/
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In Table II we also evaluate the RMSE [17], that is the root-
mean-square error between the ground-truth image uGT and
the interpolated image u:

RSME =

 1

MN

N∑
i=1

M∑
j=1

(u(xi, yj)− uGT(xi, yj))
2

 1
2

,

where M×N is the image size. Observe that the TVε-segment
method does not outperform the “nooptim” and “full” methods
with respect to the RSME, which is in contrast to the results
from the visual perception. The RMSE does not reveal human
visual perception due to two reasons. Firstly, the human eyes
are sensitive for the shocks which are the common drawbacks
of the opticalflow, nofeathering, full methods (see e.g. Fig.
10), and also sensitive for the ghosting effects, which are
characterized by the blend method (cf. Figs. 8 (a) and 10 (a)).
Secondly, there are indeed many ways to interpolate, but this
does not mean that all results are possible ground-truth data.
In addition to the experimental results we present examples

Face Earth Bunny Dragon average Plant

blend 3.73 4.18 2.41 3.49 3.45 8.09
opticalflow 3.11 4.25 2.36 3.38 3.28 10.26
nofeathering 1.72 1.52 1.40 2.02 1.67 6.79
nooptim 2.29 2.15 1.95 2.58 2.24 7.34
full 1.72 1.52 1.40 2.02 1.67 6.80
multiscale 1.31 0.75 1.16 1.97 1.31 6.73
TVε-segment 2.08 1.91 1.65 2.40 1.99 6.69

TABLE II
THE FIRST FOUR COLUMNS GIVE THE RMSE OF THE ALGORITHMS FROM

[15] AND TVε-SEGMENT APPLIED ON EVERY DATASET. THE FIFTH
COLUMN GIVES THE AVERAGE RMSE OF EVERY ALGORITHM APPLIED TO

THESE DATASETS. THE LAST COLUMN GIVES THE RMSE OF EVERY
ALGORITHM APPLIED ON THE REAL DATASET PLANT.

of interpolated images in Figs. 7, 8, 9 and 10. Again, our
method correctly identifies the regions (the white in the
associated contours images) in which occlusions occur (in
dataset Earth/Bunny on the left/right hand side of the objects
where parts of the objects “disappear”, respectively).

In the last example we consider the real video sequence
“Plant”2 (Fig. 11) consisting of 124 images. Again, we per-
formed a temporal downsampling by a factor of three and
interpolated the missing frames. Comparing our interpolated
images to the ground-truth images (difference coded in the red
color) in Figure 11 and the RMSE in Table II, we can conclude
that our interpolation method works also well with real video
sequences. Although the difference of the interpolated frames
to the ground truth is quite large, the interpolated movie looks
natural.

All these routines in the segregation loop were implemented
in Matlab on a Windows 7 with Intel Core i7 Q720 CPU.
The computational time is strongly related to image size and
iteration number Nloop, e.g. using a 641×480 image in finest
resolution level 0 applying 5 iterations the elapsed time is
780 seconds and in one level coarser resolution with the same

2Also available at ftp://graphics.tu-bs.de/pub/public/people/lipski/stimuli/.

iteration number the elapsed time is always approximately 4
times less. In all experiments we used the iteration numbers
[20, 20, 20, 20, 5] from coarsest level to finest level in the
hierarchical processing.

VI. CONCLUSION AND OUTLOOK

The approach to image sequence interpolation based on
the optical flow in the framework of optimal control avoids
shocks and ghosting effects. The improvement by TVε-flow
and segmentation showed that it is able to produce more
natural interpolation for human visual perception. However, as
already explained in [18], this method has a limited application
if the illumination of object varies in time, since we only
consider the transport equation with right-hand side 0. This
means that the external illumination variation, e.g. light or
flash, does not come to consideration.

In further work it might be interesting to introduce another
control f in the right-hand side of the transport equation to
simulate the external illumination variation. However, since
the movement of an object can also be generated as a drastical
change “illumination”, it might be difficult to obtain meaning-
ful results for both b and f .
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(a) (b) (c) (d)

(e) (f)

Fig. 2. (a) Frame 10. (b) Frame 11. (c) The zoomed-in region of the head area in (a). (d) The zoomed-in region of the head area in (b). (e) The zoomed-in
region of the rear of the car in (a). (f) The zoomed-in region of the rear of the car in (b).

(a) (b) (c)

Fig. 3. Experiment on frame 10 and 11 of Fig. 2. (a) The optical flow calculated by the smooth method. (b) The optical flow calculated by the TVε-segment
method. (c) The active contours calculated by the TVε-segment method. The black refers to the backward interpolation region and the white refers to the
forward interpolation region.

(a) (b)

Fig. 4. Experiment on frame 10 and 11 of Fig. 2. (a) The interpolated frame by the smooth method at time T/2. (b) The interpolated frame by the
TVε-segment method at time T/2.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) The zoomed-in region of the head area in (a) of Fig. 4. (b) The zoomed-in region of the head area in (b) of Fig. 4. (c) The zoomed-in region
of the contours of the head area generated by the TVε-segment method. (d) The zoomed-in region of the rear of the car in (a) of Fig. 4. (e) The zoomed-in
region of the rear area of the car in (b) of Fig. 4. (f) The zoomed-in region of the contours of the rear of the car generated by the TVε-segment method.

(a) (b) (c) (d)

Fig. 6. Datasets of Stich. (a) Face. (b) Earth. (c) Bunny. (d) Dragon.
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(a) (b) (c)

(d) (e)

Fig. 7. (a) Frame 9 of Earth. (b) Frame 12 of Earth. (c) The absolute difference of (a) and (b). (d) The optical flow calculated by the TVε-segment method.
(e) The active contours of segmentation calculated by the TVε-segment method.

(a) (b) (c)

(d) (e)

Fig. 8. Frame 11 calculated by (a) the blend method (b) the opticalflow method (c) the full method (d) the multiscale method (e) the TVε-segment method.
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(a) (b) (c)

(d) (e)

Fig. 9. (a) Frame 15 of Bunny. (b) Frame 18 of Bunny. (c) The absolute difference of (a) and (b). (d) The optical flow calculated by the TVε-segment
method. (e) The active contours of segmentation calculated by the TVε-segment method.

(a) (b) (c)

(d) (e)

Fig. 10. Frame 16 calculated by (a) the blend method (b) the opticalflow method (c) the full method (d) the multiscale method (e) the TVε-segment method.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 11. (a) Frame 54. (b) Ground truth frame 55. (c) Ground truth frame 56 (d) Frame 57. (e) Interpolated frame 55 calculated by the TVε-segment
method. (f) Interpolated frame 56 calculated by the TVε-segment method. (g) Frame 55 calculated by the TVε-segment method plus the colored difference
compared to the ground-truth. (h) Frame 56 calculated by the TVε-segment method plus the colored difference compared to the ground-truth. (i) The optical
flow calculated by the TVε-segment method. (j) The active contours calculated by the TVε-segment method.
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