
Zentrum für Technomathematik
Fachbereich 3 – Mathematik und Informatik

Nonlinear Optimization in Space
Applications with WORHP

Tim Nikolayzik
Christof Büskens Dennis Wassel

Report 11–10

Berichte aus der Technomathematik

Report 11–10 December 2011

NONLINEAR OPTIMIZATION IN SPACE APPLICATIONS WITH WORHP

Tim Nikolayzik
Universität Bremen, Germany, timn@math.uni-bremen.de

Dennis Wassel∗, Christof Büskens†

Abstract
Nonlinear optimization has grown to a key technology in many areas of aerospace industry, e.g. satellite control, shape-
optimization, aerodynamics, trajectory planning, reentry problems and interplanetary flights. These problems typically
are discretized optimal control problems that give rise to large sparse nonlinear optimization problems. In the end
all these different problems from various areas can be described in the general formulation as nonlinear optimization
problems. The success of the optimization process depends on a multitude of factors, beginning at the modeling phase
with the choice of the modeling approach and ending in the final interpretation and application of the outcomes, one the
most crucial choices being the choice of a suitable optimization method. Despite the increase of computational power
in recent years, methods not exploiting the special structure of these problems are likely to fail.

WORHP is designed to solve nonlinear optimization problems with more then hundred of millions variables and
constraints. The algorithm is an SQP method and is exploiting the sparsity of the problem on every possible level: It
includes efficient routines for computing sparse derivatives, e.g. graph-coloring methods for finite differences, sparse
BFGS update techniques for Hessian approximations and sparse linear algebra. Furthermore WORHP uses reverse
communication which allows the user to have full control of the optimization process.

In this paper we are going to introduce WORHP and the features described. Afterwards the results from the test
campaign are going to be presented. In this test campaign WORHP has proven to be the most robust of all tested state-
of-the-art nonlinear optimization solvers. Furthermore we will present a time optimal low-thrust planar transfer to a
geosynchronous orbit and an emergency landing of a hypersonic flight system, both computed with WORHP.

I. INTRODUCTION

Nonlinear optimization has grown to a key technology in
many areas of aerospace industry, especially for solving
discretized optimal control problems with ODEs, DAEs
and PDEs. Applications are satellite control, shape-
optimization, aerodynamamics, trajectory planning, reen-
try problems and interplanetary flights. One of the most
extensive areas is the optimization of trajectories for
aerospace applications. Nonlinear optimization problems
arising from these applications typically are large and
sparse. Previous methods for solving nonlinear optimiza-
tion methods were developed for small to medium sized
and dense problems. Using these kinds of solvers for
large-scale sparse problems leads to unacceptably high
computational effort and a higher probability of unsuc-
cessful terminations.

To solve large-scale sparse problems one has to exploit
as much information of the problem as possible. This in-
cludes an efficient storage of the problem matrices and
vectors, special linear algebra for solving sparse, large-
scale linear equations, an appropriate approximation of
the Hessian, etc. Most of the available optimization meth-
ods are using update techniques, introduced by Broyden,
Fletcher, Goldfarb and Shanno (BFGS). These update
techniques have several advantages, such as guaranteeing
the positive definiteness of the Hessian approximation, so

∗Universität Bremen, Germany, dwassel@worhp.de
†Universität Bremen, Germany, bueskens@worhp.de

that further computations can be performed much easier.
The biggest advantage is the efficiency of the calculation
for small and medium sized problems. However, no spar-
sity can be exploited because the approximation of the
Hessian is generally dense.

These limitations motivate the idea of developing a new
solver which is able to efficiently solve large sparse non-
linear optimization problems, by using the exact Hessian.

In this paper we first give a brief overview about non-
linear optimization and some background about methods
for solving such problems. Then we introduce the gen-
eral methodology of the new solver WORHP (We Opti-
mize Really Huge Problems) and present its advantages
and techniques in more detail. Numerical results from
different applications demonstrate the capabilities of the
new proposed method.

II. NONLINEAR OPTIMIZATION

We consider nonlinear optimization problems of the form

min
x∈RN

F (x),

subject to Gi(x) = 0, i = 1, . . . ,Me,

Gj(x) ≤ 0, j = Me + 1, . . . ,M.

[NLP]

Here x ∈ RN denotes the vector of optimization vari-
ables with objective function F : RN → R and con-
straints G : RN → RM , G(x) =

(
G1(x), . . . , GM (x)

)T
.

All functions are assumed to be sufficiently smooth.

Page 1 of 11

Special cases of [NLP] are linear optimization prob-
lems (linear programming), quadratic optimization prob-
lems (quadratic programming, QP), discrete optimal con-
trol problems, trajectory optimization problems or con-
strained nonlinear least-squares problems.

The aim is to find the vector x ∈ RN , which satisfies
the constraints G and uses the remaining degrees of free-
dom to minimize the given objective function F . The sets

I(x) :=
{
i ∈ {Me + 1, . . . ,M} | Gi(x) = 0

}
,

J(x) := I(x) ∪ {1, . . . ,Me} ,

are called set of active indices. To find x it is necessary to
introduce the Lagrangian

L(x, λ) := F (x) + λTG(x),

where λ ∈ RM is the vector of the Lagrange multi-
pliers. The necessary first order optimality conditions,
also called KKT-conditions, guarantee that if x is a lo-
cal minimum of [NLP] and moreover x is regular (cf.
Mangasarian-Fromowitz(12)), then there exists λ ∈ RM
such that the following holds:

∇xL(x, λ) = ∇xF (x) + λ
T∇xG(x) = 0

λi ≥ 0, i ∈ I(x)
λj = 0, j 6∈ J(x)

λTG(x) = 0.

[1]

If additionally ∇xGi(x), i ∈ J(x) are linearly indepen-
dent then λ is unique. This criterion is called Linear Inde-
pendence Constraint Qualification (LICQ) and is used to
search for optimal solutions of [NLP].

III. METHODS FOR SOLVING NLP PROBLEMS

WORHP is a mixed SQP (Sequential Quadratic Program-
ming) and IP (Interior-Point) method, that has been de-
signed to solve sparse large-scale NLP problems with
more than 1,000,000 variables and constraints.

The general idea of SQP methods was introduced by
Han in 1977 (and earlier by Wilson in 1963). Since then
they belong to the most frequently used algorithms for the
solution of practical optimization problems due to their
robustness and their good convergence properties (global
convergence and locally superlinear convergence rate).
SQP methods are producing a series of iterates by solving
quadratic subproblems with linearized constraints. These
subproblems are solved by using an interior-point method.
The basic idea of interior-point methods is to handle in-
equality constraints by adding them with a weighted log-
arithmic barrier term to the objective function. Then
a sequence of equality constrained nonlinear programs
is solved while simultaneously the weight parameter in
the objective function tends to zero. Since WORHP is

(a) Traditional calling convention
(“Fire and Forget”).

(b) Reverse Communication.

Figure 1: Different ways of calling an NLP solver.

an iterative method. It generates a sequence of points{
x[k]
}
k=0,1,2,...

with x[k] k→∞−→ x by:

x[k+1] = x[k] + α[k]d[k], [2]

where d[k] ∈ RN is an appropriate search direction and
α[k] ∈ (0, 1] a suitable step size. In each step of the
method the search direction is determined by solving a
quadratic optimization problem. Often, the Hessian of the
Lagrangian used inside the quadratic subproblem is re-
placed by update formulas of BFGS type, which have the
additional benefit that only strictly convex quadratic pro-
grams have to be solved. This strategy works well for
small to medium sized problems, but it turns out to be in-
feasible for large-scale problems since the update formula
generally yields dense update matrices, which in turn lead
to dense Hessian approximations. Therefore, in the con-
text of large-scale problems one is often forced to use the
exact Hessian, which may be indefinite and leads to non-
convex quadratic programs.

Alternative attempts use limited memory BFGS up-
dates or sparse update formulas, cf. Fletcher (5). Both
methods are handicapped by their local character, hence
globalization techniques have to be introduced to enlarge
the radius of convergence.

One classical approach to promote global convergence
for remote starting points is to perform a line-search
on a merit function, which is usually given by an ex-
act penalty function such as the L1-penalty function or
the augmented Lagrangian function. For more details
cf. Schittkowski (14), Gill, Murray and Wright (7) and
Gill et al. (8).
Computation of derivatives is a crucial element in nonlin-
ear optimization. Basically first derivatives, i.e. the gradi-
ent of the objective function and the Jacobian of the con-
straints are necessary in order to find a descent direction
towards the point where the closest local minimum is ex-
pected. Second derivatives (Hessian of the Lagrangian)
are used to enable quadratic convergence behavior, and to
determine a stepsize. There are different ways to calculate
these derivative information; WORHP provides several of
them: The solver includes finite differences (FD) meth-
ods and WORHP can use truly sparse BFGS update tech-
niques. The FD-module uses a so-called “group strategy”
based on the graph-coloring theory to drastically speed up

Page 2 of 11

Figure 2: Data flow in WORHP

the calculations for sparse problems by requiring fewer (in
many cases far fewer) function evaluations than naïve ap-
proaches.

IV. WORHP

Since WORHP is an iterative solver, it produces a se-
quence of points

{
x[k]
}
k=0,1,2,...

by the following basic
algorithmic scheme:

i. Terminate if x[k] satisfies a termination criterion.

ii. Approximate the nonlinear problem by a quadratic
subproblem in x[k] and use its solution d[k] as the
search direction.

iii. Determine a step size α[k] by applying a line search
method to a merit function.

iv. Update the iterate according to [2], increment k and
go to i.

In the next sections we will describe these basic steps of
WORHP in more detail.

Instead of assuming the restrictive formulation used in
[NLP], WORHP accepts the more flexible (but equiva-
lent) problem formulation

min
x∈RN

F (x),

subject to l ≤ G(x) ≤ u,

where G(x) =
(
G1(x), . . . , GM (x)

)T
and l, u ∈ RM .

IV.I Architecture

WORHP is based on a reverse communication architec-
ture that offers unique flexibility and control over the op-
timization process, see Figure 1.

The solver is aimed at the highest degree of control
and possibilities of intervention. One central architectural
principle is the complete disuse of internal (program flow)
loops or jumps.

Figure 3: WORHP

Each call of the solver carries out part of a major NLP
iteration, called stage. Forming a superset of the algorith-
mic steps outlined above, some central stages of WORHP
are (cf. Figure 2):

• Get objective function value, constraints, gradient,
Jacobian or Hessian from user,

• Update Hessian,

• Check KKT conditions,

• Create subproblem (QP or primal-dual system),

• Find step size d[k].

All stages together form the SQP method. The general
workflow of WORHP resembles that of other SQP meth-
ods, see Figure 3.

IV.II Checking for optimality

For testing an iterate x[k], the first order necessary opti-
mality conditions [1] have to be evaluated. First order
derivatives are required for this test. These derivatives can
be provided by the user, or the user can have WORHP ap-
proximate them by finite differences. In the following we
denote with F [k] andG[k] evaluations of the objective fun-
tion F and the constraints G at the point x[k]. The iterate
x[k] is said to be optimal if the following holds

∇xF [k] + λ[k]T∇xG[k] ≤ εopti, [3]

−λ[k]
i ≤ εcomp, i ∈ I(x[k]), [4]

λ
[k]
j ≤ εcomp, j 6∈ J(x[k]). [5]

and

|G[k]
i | ≤ εfeas, i = 1, . . . ,Me,

G
[k]
j ≤ εfeas, j = Me + 1, . . . ,M.

[6]

Page 3 of 11

WORHP also supports a scaled version of the original
KKT-conditions. These conditions are motivated by the
idea that the numerical optimality by [3] is difficult to in-
terpret for the user, who is actually interested in

|F (x)− F [k]| ≤ εtol.

This leads to

||∇xL[k]||∞ ≤
εopt max (1, |F [k]|) + ||λ[k]G[k]||∞

||d[k]||∞
. [7]

In order to prevent WORHP from iterating too long with-
out satisfying [7], e.g. due to inexact derivative approxi-
mations, a low pass filter is implemented. Among others,
this filter calculates two thresholds

Filter[k]
obj = αf_objF

[k] + (1− αf_obj)Filter[k−1]
obj

and

Filter[k]
con = αf_con||G[k]||∞ + (1− αf_con)Filter[k−1]

con .

If an iterate is not satisfying the conditions [3]-[6] for a
given εfilter > 0 the conditions

|Filter[k]
obj − Filter[k−1]

obj |

max(1, |Filter[k]
obj|)

< εfilter

and
|Filter[k]

con − Filter[k−1]
con |

max(1, |Filter[k]
con|)

< εfilter

are checked. If both conditions are fulfilled and the cur-
rent iterate x[k] is feasible, this point is assumed to be op-
timal, since no more progress has been achieved with the
given inputs. If the current iterate x[k] is not feasible, a
feasibility mode is activated, cf. VI.

IV.III Solving the QP-subproblem

Let x[k] be the approximation of the optimal solution in
the k-th iteration and B[k] a suitable approximation of the
Hessian of the Lagrangian. Then the associated quadratic
problem (QP) is

min
d[k]∈RN

∇xF [k]d[k] +
1
2
d[k]TB[k]d[k],

s.t. G[k]
i +∇xG[k]

i d
[k] = 0, i = 1, . . . ,Me

G
[k]
j +∇xG[k]

j d
[k] ≤ 0, j = Me + 1, . . . ,M

[8]

To formulate the QP as subproblem for solving [NLP],
the exact Hessian or an approximation by BFGS update
formulas is needed. Again, the user can provide this in-
formation or have WORHP approximate it.

The formulation of [8] is motivated by the fact that its
KKT conditions can be written for i ∈ J(x[k]) as

B[k]d+∇xF [k] +∇xG[k]T
i λ

[k]
QP = 0 [9]

G
[k]
i +∇xG[k]

i d = 0, [10]

where λ[k]
QP is the corresponding vector of the Lagrange

multipliers of [8]. Using ∇xGa(x[k]) as the Jacobian of
the active constraints, [9] can be reformulated as(

B[k] ∇xG[k]T
a (x[k])

∇xG[k]
a 0

)(
d[k]

λ
[k]
QP

)
= −

(
∇xF [k]

G
[k]
i

)
.

The method implemented in WORHP for solving
quadratic subproblems is a primal-dual interior-point
method, cf. Gertz and Wright (6). In most of the cases
the solution d

[k]
of the QP is an appropriate search di-

rection and λ
[k]

approximates the Lagrange multipliers of
[NLP]. If the QP is non-convex, regularization techniques
of Levenberg-Marquardt type are used to convexify the
problem, cf. section V.

Further problems which might occur are inconsisten-
cies in the linearized constraints, hence for the practical
implementation a relaxed formulation of [8] is solved with
respect to z = (d[k], δ[k]) ∈ RN+1:

min
z

∇xF [k]d[k] + 1
2d

[k]TB[k]d[k] + ηr

2 δ
[k],

s.t. G
[k]
i (1− δ[k]) +∇xG[k]

i d
[k] = 0, i ∈ I,

G
[k]
j (1− σiδ[k]) +∇xG[k]

j d
[k] ≤ 0, j ∈ J ,

where δ[k] denotes the relaxation variable,

σj =

{
0, if G[k]

j < 0,
1, otherwise,

, j ∈ J ,

ηr ∈ R+ is a penalty weight and

I := {1, . . . ,Me} ,
J := {Me + 1, . . . ,M} .

IV.IV Merit Function

In order to achieve global convergence, we have to find an
appropriate step size α[k] for the solution d[k] of the QP.
To this end, one has to measure the progress of the opti-
mization process, which consists of a scalar quantification
of both the objective and the constraints. For this purpose
a merit function is used. Merit functions supported by
WORHP are the L1-penalty function

L1(x; η) := F (x) +
Me∑
i=1

ηi|Gi(x)|

+
M∑

i=Me+1

ηi max{0, Gi(x)},

Page 4 of 11

and the augmented Lagrangian

La(x, λ; η) := f(x) +
Me∑
i=1

λiGi(x) + 1
2

Me∑
i=1

ηiG
2
i (x)

+ 1
2ηi

M∑
i=Me+1

((
max {0, λi + ηiGi(x)}

)2 − λ2
i

)
,

where η ∈ RM , with ηi ≥ 0, i = 1, . . . ,M , is a penalty
vector.

IV.V Hessian Regularization

To guarantee that the solution of the QP is unique and
reasonable one has to ensure that the Hessian HL =
(hij)i,j ∈ RN×N is positive definite. To achieve this we
use the modified Hessian

H = HL + τ(|σ|+ 1)I. [11]

The parameter τ ∈ [0, 1] is used to dampen the Hessian
update, and σ is the Gerschgorin bound for the most neg-
ative eigenvalue of HL, i.e.

σ = min
1≤i≤n

hii −
n∑
i 6=j

|hij |

 .

The original idea was suggested by Levenberg (11). He
used the matrix τI as an approximation of the Hessian for
least squares problems.

The choice of τ is crucial for the rate of convergence of
the overall algorithm. The setting τ = 1 guarantees pos-
itive definiteness of the Hessian but impairs convergence,
since it may cause a large perturbation of the original Hes-
sian. On the other hand, τ = 0 may cause problems in the
QP solver, since in this case the original Hessian without
regularization is used. The idea of Betts (1) is to reduce
τ when the predicted reduction in the merit function co-
incides with the actual one, and increase the parameter
otherwise.

In the following we denote with M [k] = M(x[k], λ[k])
the value of one of the merit functions introduced in sec-
tion IV in the k-th iteration. Three quantities have to be
computed.

The actual reduction:

ρ1 = M [k−1] −M [k]. [12]

The predicted reduction:

ρ2 = M [k−1] − M̃ [k]

= − d
dαM

[k]
0 − 1

2d
[k]THd[k],

[13]

where M̃ [k] is the predicted value of the merit function,
computed from the first derivative of the merit function

d
dαM

[k]
0 with respect to the step size α evaluated at α = 0

and second-order information involving the Hessian ma-
trix.

Finally, we need to compute the rate of change in the
norm of the gradient of the Lagrangian

ρ3 =
||ϑk||∞
||ϑk−1||∞

[14]

where the error in the gradient of the Lagrangian is

ϑ = ∇F + (∇G)Tλ.

If ρ1 ≤ 0, 25ρ2 holds, than in the next iteration τ is in-
creased by

τ [k+1] = min(θ · τ [k], 1),

with θ > 1 a threshold which has to be chosen suitable. If
instead ρ1 ≥ 0, 75ρ2 holds, τ is decreased by

τ [k+1] = τ [k] min
(

1
θ
, ρ3

)
.

IV.VI Line Search

After determining the search direction d[k] from the QP,
we have to find a suitable step size α[k]. To this end we
use a line search method based on the Armijo Rule. We
define

φ(α) := M(x[k] + αd[k], λ[k+1](α), η),

whereas λ(α) is an update of the multipliers depending on
α, for instance λ[k+1](α) = (1− α)λ[k] + αλQP , and M
is one of the merit functions introduced in section IV.

In general, a good choice would be an α which exactly
minimizes φ(α), but unfortunately this defines another
nonlinear optimization problem. Although the original
problem is reduced to a one-dimensional line search, it is
too expensive to solve, especially with large-scale prob-
lems. Thus, a more realistic goal is to find the largest step
size α that satisfies

φ(α) < φ(0) = M(x[k], λ[k], η),

by using an inexact line search:
Starting with a maximum step size αmax ∈ (0, 1] and

a decrease factor βarmijo ∈ (0, 1), candidates for the step
size are {

αj = βjαmax | j = 0, 1, 2, . . . , lmax

}
,

where lmax = max{l ∈ N | βlαmax ≥ αmin} defines the
smallest step size allowed. As the first trial step size we
choose α0 = αmax. If the Armijo condition

φ(αj) ≤ φ(0) + σαjφ
′(0), [15]

Page 5 of 11

where σ ∈ R+ is a suitable factor and φ′(0) the derivative
of φ with respect to α, is not satisfied, α1 = β1α0 is cal-
culated and [15] is checked again. This is done iteratively
until either a suitable α is found, or the line search fails
when i > lmax. In case of failure, WORHP uses recov-
ery strategies to prevent the NLP algorithm from failing.
Several recovery strategies are implemented.

SLP: This strategy is intended to recover from QP-solver
failures and is motivated by gradient methods: In-
stead of using a second-order approximation of the
Hessian in [8], the identity matrix is used, which has
stabilizing properties.

Feasible mode: If the line search has failed at an infea-
sible point, this mode is a good choice for recover-
ing. In this mode the QP is modified extensively to
provide a search direction that focusses on the fea-
sibility of the problem. The mode will be stopped
after a feasible point has been found. Afterwards the
normal optimization is resumed at the new, now fea-
sible, iterate.

IV.VII The algorithm of WORHP

Next we state the algorithm in detail:
Algorithm: Given an initial guess x[0] and a set of con-
stants including εopti, εfeas > 0, εcomp > 0, ε > 0,
βarmijo ∈ (0, 1), αmax ∈ (0, 1], ρr > 1 and others,

A-1: Initialize. Set iteration counter k = 0.

A-2: Check-KKT. Check optimality conditions.

A-3: Create-QP. Set matrix B[k]. If B[k] = IN go to A-5
else go to A-4.

A-4: Hessian-Regularization. Update of the Hessian ac-
cording to section V.

A-5: Solve-QP.

A-5.1: If the QP was not solved successfully, check
if τ < 1. If this is the case go to A-4.

A-5.2: If k = 0 and M > 0 set λ[0] = λQP go to
A-3.

A-5.3: If QP was solved successfully go to A-6.

A-6: Post-QP.

A-6.1: If δ ≥ min (1, δmax) increase ηr by ηr =
ρrηr and go to A-5.

A-6.2: If ||d[k]||2 <
√
ε try to activate feasibility

mode and go to A-7, if this is not possible ter-
minate with error.

A-6.4: Go to A-9.

A-7: Solve Feasibility QP.

A-7.1: Determine the set of currently active con-
straints.

A-7.2: Determine new d[k] by solving an equality
constraint quadratic subproblem and go to A-9.

A-8: Find step size.

A-8.1: Set α[k] = αmax and go to A-9.

A-8.2: Check if the Armijo condition (15) is ful-
filled; if so go to A-11

A-8.3: Else set α[k] = α[k] · βarmijo, if α[k] ≤ αmin

go to A-10 else go to A-9.

A-9: Update Point.

A-9.1: Compute new iterate x[k+1] = x[k] + αd[k].

A-9.2: Update multipliers λ[k].

A-9.3: Go to A-8.2.

A-10: Recovery Strategies. Start selected recovery strat-
egy and go to A-8.

A-11: Finalize.

A-11.1: Compute ρ1 by [12].

A-11.2: Set k = k + 1.

A-11.3: Go to A-2.

IV.VIII Interfaces

WORHP currently offers eight interfaces, starting from
the Full-Feature-Interface with reverse communication
allowing close monitoring of, and control over all quanti-
ties involved in the optimization process for skilled users,
down to others and finally ends with the conventional in-
terface which is very similar to classical interfaces used
by other solvers.

Interfaces are divided into three classes for use in dif-
ferent environments:

AMPL interface: Executable for use with the AMPL
modeling language.

MATLAB interface: Mex-object with a function inter-
face to use inside the MATLAB and Simulink pro-
gramming environment.

Library interfaces: Three interfaces for inclusion of
WORHP as optimization library into user code.
They differ in their function signatures and the com-
munication convention. All three are available as
equivalent C/C++ and Fortran versions:

• Full-Feature Interface: Reverse Communica-
tion, Unified Solver Interface.

• Basic-Feature Interface: Direct Communica-
tion, Unified Solver Interface.

Page 6 of 11

• Legacy Interface (also called Simple or Tradi-
tional Interface): Direct Communication, tradi-
tional interface.

To solve the sparse large-scale linear systems in the
quadratic subproblem solver, various third-party linear al-
gebra packages can be used by WORHP; their actual us-
ability is subject to availability and licensing conditions
of the third-party software providers:

• LAPACK (public domain, dense fallback solver)
• SuperLU (BSD-style license, default solver)
• MA48
• MA57
• MA86
• PARDISO
• MUMPS
• WSMP

V. RESULTS

The robustness of WORHP is demonstrated on several test
sets. We present numerical results for the AMPL-version
of the CUTEr test set, consisting of a collection of 920
medium-scale sparse and small dense problems. As ref-
erence solvers IPOPT 3.9.2 with MA57 (15) as well as
KNITRO 7.0.0 and SNOPT 7.2-8 (9) were used. Test
were performed using the AMPL optimization environ-
ment. Tables 1 and 2 show the results of the solvers.

The standard settings of the solvers were used, while
the scaling of the constraints was turned off for every
solver, since it causes improper terminations for some
problems. The computational time for a single problem of
the test set was limited to 30 minutes, the maximum num-
ber of iterations limited by 10,000 and the tolerances for
the constraints and the optimality conditions were both set
to 10−6. Testing was performed on a Linux system with
an Intel Core2 Quad CPU Q6600 at 2.40GHz, with 4GB
RAM.

WORHP IPOPT
Version 1.0 3.9.2
Problems solved 918 877
Optimal solution found 911 869
Acceptable solution found 7 8
Not solved 2 43
Percentage 99.78 95.33
Time 5,060s 27,056s

Table 1: Summary of the results of WORHP and IPOPT.

WORHP is capable of solving more than 99.7% of the
problems of the CUTEr test set. The 3 problems which
WORHP was not able to solve were also not solved by

KNITRO SNOPT
Version 7.0.0 7.2-8
Problems solved 887 827
Optimal solution found 882 810
Acceptable solution found 5 17
Not solved 33 93
Percentage 96.41 89.89
Time 32,792s 49,569s

Table 2: Summary of the results of KNITRO and SNOPT.

10−2 10−1 100 101 102 103 104

20

40

60

80

100

Time in s

N
um

er
of

so
lv

ed
pr

ob
le

m
s

in
%

WORHP
Ipopt
KNITRO
SNOPT

Figure 4: Percentage of optimally solved problems within
given time frame.

any of the other solvers. We think that this is an issue
with the problem formulation, such as an empty feasible
set, which renders these problems unsolvable. IPOPT was
able to solve about 95.3% of all the problems while KNI-
TRO solves 96.4% and SNOPT 89.9%. WORHP is the
fastest of all solvers with respect to the overall compu-
tational time. The relatively large overall computational
times for KNITRO and SNOPT are a result of unsuc-
cessful terminations by timeout for some of the problems.
Figure 4 gives a more detailed overview about the effi-
ciency of the solvers. The percentage of solved problems,
sorted by the computational time, is plotted against the
accumulated time frame in seconds. Within the first sec-
ond KNITRO is the fastest solver, the other three are very
close. After ten seconds WORHP and KNITRO are close
while SNOPT and IPOPT are little bit behind. One should
keep in mind, that within the first ten seconds only small
and medium sized problems are solved while the remain-
ing larger problems take more time. When it comes to
the more larger problems we see that WORHP, KNITRO
and IPOPT are almost at the same level, just SNOPT is
falling behind, but this in not surprising since SNOPT is
only solver using a BFGS approximation for the second
derivative of the Hessian of the Lagrangian.

Page 7 of 11

VI. TWO EXAMPLES

The following two examples are full discretized optimal
control problems. The calculations were also done on a
Linux system with an Intel Core2 Quad CPU Q6600 at
2.40GHz with 4GB RAM.

VI.I Time-optimal low-thrust planar transfer to GEO

The aim of this task is to find a thrust direction control
u(t), 0 ≤ t ≤ tf , that minimizes the final time F (x, u) =
tf , subject to

ẋ1 = x2

ẋ2 =
x2

3

x1
− rµ
x2

1

+ 0.01 sin(u),

ẋ3 = −x2x3

x1
+ 0.01 cos(u),

ẋ4 =
x3

x1
,

with the initial and final conditions

x1(0) = 6.0, x1(tf) = 6.6
x2(0) = 0.0, x2(tf) = 0.0

x3(0) =
√

rµ
x1(0)

, x3(tf) =
√

rµ
x1(tf)

x4(0) = 0.0,

where x1(t) represents the radial position, x2(t) the radial
velocity, x3(t) the circumferential velocity and x4(t) the
polar angle. The gravitational parameter for the earth is
represented by rµ = 62.5. This problem is taken from
Kluever (10).

This optimal control problem is fully discretized using
Euler’s method, which transforms it into a sparse non-
linear optimization problem, cf. Büskens and Maurer (4).
The size of the problem is determined by the number of
points used for the discretization of the problem. Us-
ing n discrete points, the resulting nonlinear optimiza-
tion problem has 5 · n + 1 optimization variables and
4 · (n − 1) + 7 + 2 nonlinear constraints. We see in ta-
ble 3 a summary of the different nonlinear optimization
problems arising from different vlaues of n. The compu-
tational time for this problem was limited to 30 minutes
and the precision for the constraints and the optimality
conditions is set to 10−6, the maximum number of itera-
tions is again set to 10,000.

The optimal control and the optimal states of a solution
are shown in figure 5.

The results of all solvers are summarized in the tables 4
and 5.

We see that WORHP together with KNITRP is only
solver capable of solving all five problems. As also stated
in the previous chapter the speed of WORHP is compa-
rable to the speed of IPOPT and KNITRO, while SNOPT
has problems with the high-dimensional problems.

n N M
101 506 409

1,001 5,006 4,009
5,001 25,006 20,009

10,001 50,006 40,009
40,001 200,006 160,009

Table 3: Number of optimization variables and constraints

(a) Optimal control u(t). (b) Optimal states xi(t).i =
1 . . . 4.

Figure 5: Optimal control and optimal states of the low-
thrust planar transfer problem.

n WORHP IPOPT
101 0.88s 0.32s

1,001 3.83s 7.12s
5,001 145.55s 33.11s

10,001 194.73s Timeout
40,001 939.58s 741.13s

Table 4: Results of WORHP and IPOPT

n KNITRO SNOPT
101 0.28s 0.54s

1,001 3.31s 102.68s
5,001 93.41s 374.30s

10,001 252.58s 1786.85s
40,001 312.62s Timeout

Table 5: Results of KNITRO and SNOPT

Page 8 of 11

VI.II Emergency landing of a hypersonic flight system

In this example the emergency landing of a two-stage
space transport vehicle is investigated. After the separa-
tion of the first stage the engine of the upper stage suffers
an ignition failure, and due to this propulsion damage the
upper stage cannot reach a safe orbit. For more details see
Mayrhofer and Sachs (13) or Büskens and Gerdts (2, 3).

For the description of the dynamic of the flight system
a mass point model with six states and two control func-
tions is used. If one assumes a rotating, spherical earth
as the reference system, the equations of motion can be
formulated as follows

v̇ = −D(v, h;CL)
1
m
− g(h) sin γ+

ω2 cos Λ(sin γ cos Λ− cos γ sinχ sin Λ+

cos γ cos Λ)
r(h)
v
,

γ̇ = L(v, h;CL)
cosµ
mv

−
(
g(h)
v
− v

r(h)

)
cos γ+

2ω cosχ cos Λ + ω2 cos Λ(sin γ sinχ sin Λ+

cos γ cos Λ)
r(h)
v
,

χ̇ = L(v, h;CL)
sinµ

mv cos γ
− cos γ cosχ tan Λ

v

r(h)
+

2ω(sinχ cos Λ tan γ − sin Λ)−

ω2 cos Λ sin Λ cosχ
r(h)
v cos γ

ḣ = v sin γ

Λ̇ = cos γ sinχ
v

r(h)

Θ̇ = cos γ cosχ
v

r(h) cos Λ
.

The abovementioned functions are defined as

r(H) = r0 + h, g(h) = g0

(
r0

r(h)

)2

,

q(v, h) =
1
c
ρ(h)v2, ρ(h) = ρ0e

−βh,

cD(CL) = cD0 + kC2
L,

L(v, h;CL) = q(v, h)FCL,
D(v, h;Cl) = q(c, h)FcD(CL).

The constants are chosen as

c = 2.0, cD0 = 0.017, r0 = 6.371 · 106

F = 305.0, g0 = 9.80665, k = 2.0,

ω = 7.270 · 10−5, β =
1

6900.0
, ρ0 = 1.249512.

The state variables consists of the velocity v, the flight
path angle γ, the course angle χ, the altitude h, the longi-
tude Λ and the latitude Θ. The control functions CL (lift

coefficient) and µ (angle of bank) are restricted by

0 ≤ CL ≤ 1, 0 ≤ µ ≤ 1.

The mass is supposed to be constant m =115,000. The
initial values are given by

v(0)
γ(0)
χ(0)
h(0)
Λ(0)
Θ(0)

 =

2150.5452900
0.1520181770
2.2689279889
33900.000000
0.9268828079
0.1544927057

which corresponds to a reentry point roughly 33 km over
Bremen. The initial values are also used as starting point
for the optimization.

For safety reasons it is necessary to find a trajectory
with maximum distance to the starting point over the ro-
tating earth:

F (µ,CL, tf) =
(

Λ(tf)− Λ(t0)
Λ(t0)

)2

+
(

Θ(tf)−Θ(t0)
Θ(t0)

)2

As a final constraint a final altitude of 500 meters is re-
quired:

h(tf) = 500.0

Figure 6 shows an example for an emergency trajectory.

Figure 6: An emergency trajectory.

This optimal control problem is again fully discretized
using Euler’s method to transform it into a sparse large-
scale nonlinear optimization problem. The size of the
problem is determined by the number of points n used
for the discretization of the problem. For the number of
optimization variables N we have N = 8 · n + 1 and for
the number of constraints M = 6 · (n − 1) + 4 · n + 7.
We used a various number of values for n. The size of the
resulting nonlinear optimization problems can be found in
table 6.

The reuslts for the four solvers can be found in the ta-
bles 7 and 8. The computational time for this problem was
limited to 30 minutes and the precision for the constraints
and the optimality conditions is set to 10−6, the maximum
number of iterations is again set to 10, 000.

Page 9 of 11

n N M
201 1,609 2,011

2,001 16,009 20,011
5,001 40,009 50,011

10,001 80,009 100,011
20,001 160,009 200,011
40,001 320,009 400,011

Table 6: Number of optimization variables and constraints

n WORHP IPOPT
201 2.49s 8.79s

2,001 59.30s MaxIter
5,001 146.80s Timeout

10,001 184.08s Timeout
20,001 591.61s Timeout
40,001 1477.32s Timeout

Table 7: Results of WORHP and IPOPT

WORHP is the only solver which is able to solve all
variations of the problem. KNITRO is not able to solve
any of the problems, while IPOPT and SNOPT are solving
at least the smallest of the problems, but WORHP is by far
the fastest solver.

VII. CONCLUSION

In this paper we presented the new nonlinear optimization
solver WORHP. We described in a detailed way the main
functionalities and advantages of WORHP. At the end of
the paper we have shown numerical test results and two
applications, which demonstrated the capabilities of the
new solver WORHP in comparison with the most used
solvers for nonlinear optimization, showing that WORHP
is not only able to solve academic test sets but also is very
good in solving problems coming from applications.

n KNITRO SNOPT
201 MaxIter 28.73s

2,001 Error Error
5,001 Timeout Error

10,001 Timeout Timeout
20,001 Timeout Timeout
40,001 Timeout Timeout

Table 8: Results of KNITRO and SNOPT

Acknowledgments
WORHP was financially supported by the TEC-ECM
group of the European Space Agency (ESA) in the
project eNLP (contract number 21293/07/LL/ST to-
gether with Astos Solutions) and eNLPext (contract
number 4000102529 together with Astos Solutions),
the Steinbeis-Research Center (SFZ) Optimization and
Optimal Control, Bundesministerium für Bildung &
Forschung (grants 50RL0722 and 50JR0688)

References
[1] John T. Betts. Practical Methods for Optimal Con-

trol Using Nonlinear Programming. SIAM Press,
Philadelphia, Pennsylvania, 2001.

[2] Christof Büskens and Matthias Gerdts. Emer-
gency Landing of a Hypersonic Flight System: A
Corrector Iteration Method for Admissible Real–
Time Optimal Control Approximations. In Opti-
malsteuerungsprobleme in der Luft- und Raumfahrt,
Workshop in Greifswald des Sonderforschungsbere-
ichs 255: Transatmospärische Flugsysteme, pages
51–60, München, 2003.

[3] Christof Büskens and Matthias Gerdts. Numer-
ical Solution of Optimal Control Problems with
DAE Systems of Higher Index. In Optimals-
teuerungsprobleme in der Luft- und Raumfahrt,
Workshop in Greifswald des Sonderforschungsbere-
ichs 255: Transatmospärische Flugsysteme, pages
27–38, München, 2000.

[4] Christof Büskens and Helmut Maurer. SQP-methods
for solving optimal control problems with control
and state constraints: Adjoint variables, sensitivity
analysis and real-time control. Journal of Compu-
tational and Applied Mathematics, pages 85–108,
2000.

[5] Roger Fletcher. An optimal positive definite update
for sparse Hessian matrices. SIAM Journal on Opti-
mization, 5(1), 1995.

[6] E. Michael Gertz and Stephen J. Wright. Object-
oriented software for quadratic programming. ACM
Trans. Math. Softw., 29(1):58–81, 2003.

[7] Philip E. Gill, Walter Murray, and Margaret H.
Wright. Practical Optimization. Academic Press,
1981.

[8] Philip E. Gill, Walter Murray, M.A. Saunders, and
Margaret H. Wrigth. Model building and practical

Page 10 of 11

spects of nonlinear programming. In Klaus Schit-
tkowski, editor, Computational Mathematical Pro-
gramming, pages 209–47. Springer Berlin Heidel-
berg, 1985.

[9] Philip E. Gill, Walter Murray, and Michael A. Saun-
ders. SNOPT: An SQP algorithm for large-scale
constrained optimization. SIAM Journal on Opti-
mization, 12:979–1006, 1997.

[10] Craig A. Kluever. Optimal feedback guidance for
low-thrust orbit insertion. Optimal Control Applica-
tions and Methods, 16:155–173, 1995.

[11] Kenneth Levenberg. A method for the solution of
certain non-linear problems in least-squares. Quar-
terly of Applied Mathematics, 2(2):164–168, jul
1944.

[12] Olvi L. Mangasarian and S. Fromowitz. The Fritz
John necessary optimality conditions in the presence
of equality and inequality constraints. Journal of
Mathematical Analysis and Applications, pages 37–
47, 1967.

[13] M. Mayrhofer and G. Sachs. Notflugbahnen
eines zweistufigen Hyperschall-Flugsystems ausge-
hend vom Trennmanöver. In Seminar des Son-
derforschungsbereichs 255: Transatmospärische
Flugsysteme, pages 109–118, München, 1996.

[14] Klaus Schittkowski. On the convergence of a Se-
quential Quadratic Programming method with an
augmented Lagragian line search function. Math-
ematische Operationsforschung und Statistik, Series
Optimization, 14:197–216, 1983.

[15] Andreas Wächter and Lorenz T. Biegler. On the
implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming.
Mathematical Programming, 106(1):25–57, 2006.

Page 11 of 11

	titel1110
	vorlage1110.pdf

