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In this paper we present the new nonlinear optimization solver WORHP
which is capable of solving large-scale, sparse problems. A short introduction
in nonlinear optimization and a discussion of details of the new solver is
o�ered. At the end of this paper we state numerical results and present two
applications to demonstrate the capabilities of the proposed method.

1 Introduction

Nonlinear optimization has grown to a key technology in many areas of aerospace indus-
try, especially for solving discretized optimal control problems with ODEs, DAEs and
PDEs. Examples for this applications are satellite control, shape-optimization, aero-
dynamamics, trajectory planning, reentry problems and interplanetary �ights. One of
the most extensive areas is the optimization of trajectories for aerospace applications.
Nonlinear optimization problems arising from these applications typically are large and
sparse. Previous methods for solving nonlinear optimization methods were developed
for small to medium sized and dense problems. Using these kind of solvers for large-
scale sparse problems leads to very high computational e�orts and a higher risk of an
unsuccessful termination.
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To solve these problems one has to exploit as much information of the problem as possi-
ble. This includes an e�cient storing of the occurring matrices and vectors, special linear
algebra for solving sparse, large-scale linear equations, an appropriate approximation of
the Hessian, etc. Most of the available optimization methods are using update tech-
niques, introduced by Broyden-Fletcher-Goldfarb-Shanno (BFGS). These update tech-
niques have several advantages, for example they guarantee that the positive de�niteness
of the Hessian approximation such that further computations can be performed much
easier. The biggest advantage is the e�ciency of the calculation for small and medium
sized problems. In case of large sparse optimization problems the sparsity can not be
exploited and the approximation of the Hessian is getting dense.
These limitations motivates the idea of developing a new solver which is able to e�-

ciently solve large sparse nonlinear optimization problems, by using the exact Hessian.
In this paper we �rst give a brief overview about nonlinear optimization and some back-

ground about methods for solving such problems. Then we introduce the general method-
ology of the new solver WORHP (We Optimize Really Huge Problems) and present its
advantages and techniques in more detail. Numerical results from di�erent applications
demonstrates the capabilities of the new proposed method.

2 Nonlinear Optimization

We state the following nonlinear optimization problem (NLP)

min
x∈RN

F (x),

subject to Gi(x) = 0, i = 1, . . . ,Me,

Gj(x) ≤ 0, j = Me + 1, . . . ,M.

(NLP)

Therein x ∈ RN denotes the vector of optimization variables with objective function
F : RN → R and constraints G : RN → RM , G(x) = (G1(x), . . . , GM (x))T . All functions
are assumed to be su�ciently smooth.
Special cases of (NLP) are linear optimization problems (linear programming), quadratic

optimization problems (quadratic programming, QP), discrete optimal control problems,
trajectory optimization problems or constrained nonlinear least-squares problems.
The aim is to �nd the vector x ∈ RN , which satis�es the constraints G and uses the

remaining degrees of freedom to minimize the given objective function F . The sets

I(x) := {i ∈ {Me + 1, ...,M} |Gi(x) = 0} ,
J(x) := I(x) ∪ {1, ...,Me} ,

are called set of active indices. To �nd x it is necessary to introduce the Lagrangian

L(x, λ) := F (x) + λTG(x),

whereas λ ∈ RM is the vector of the Lagrange multipliers. The necessary �rst order
optimality conditions, also called KKT-conditions, guarantee that if x is a local minimum
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of (NLP) and moreover x is regular (cf. Mangasarian-Fromowitz[1]), then there exists
λ ∈ RM such that hold:

∇xL(x, λ) = ∇xF (x) + λ
T∇xG(x) = 0

λi ≥ 0, i ∈ I(x)
λj = 0, j 6∈ J(x)

λTG(x) = 0

(1)

If actually ∇xGi(x), i ∈ J(x) are linearly independent then also (1) holds but also λ is
unique. This criterion is used to search for optimal solutions of (NLP).

3 Methods for solving NLP problems

WORHP is a mixed SQP (Sequential Quadratic Programming) and IP (Interior-Point)
method, which aim is to solve sparse large-scale NLP problems with more than 1,000,000
variables and constraints. The general idea of SQP methods was introduced by Han in
1977 (and earlier by Wilson in 1963). Since then they belong to the most frequently used
algorithms for the solution of practical optimization problems due to their robustness and
their good convergence properties (global convergence and locally superlinear convergence
rate). The basic idea of interior-point methods is to handle inequality constraints by
adding them with a weighted logarithmic barrier term to the objective function. Then,
a sequence of equality constrained nonlinear programs is solved while simultaneously the
weight parameter in the objective function tends to zero. Since WORHP is an iterative

method. It generates a sequence of points
{
x[k]
}
k=0,1,2,...

with x[k] k→∞−→ x by:

x[k+1] = x[k] + α[k]d[k], (2)

whereas d[k] ∈ RN is an appropriate search direction and α[k] ∈ (0, 1] a suitable step
size. In each step of the method the search direction is determined by solving a quadratic
optimization problem. Often, the Hessian of the Lagrangian used inside the quadratic
subproblem is replaced by update formulas of BFGS type which have the additional
bene�t that only strictly convex quadratic programs have to be solved. This strategy
works well for small to medium sized problems but it turns out to be crucial for large-
scale problems as the update formulas lead to a fast �ll-in of elements in the update
matrices which in turn leads to dense matrices. Therefore, in the context of large-scale
problems one is often forced to use the exact Hessian, which may be inde�nite and leads
to non-convex quadratic programs.
Alternative attempts use limited memory BFGS updates or sparse update formulas,

compare Fletcher [2]. Both approaches are crucial in view of their convergence properties
and their computational complexity, respectively. A handicap of these methods are their
locally restricted properties, hence special globalization techniques have to be introduced
to enlarge the radius of convergence.
One classical approach to promote global convergence for remote starting points is to

perform a line-search for a merit function which is usually given by an exact penalty
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(a) Traditional calling convention (�Fire and For-
get�).

(b) Reverse Communication.

Figure 1: Di�erent ways of calling an NLP solver.

function such as the L1-penalty function or the augmented Lagrangian function. For
more details compare the work of Schittkowski [3], Gill, Murray and Wright [4] and Gill
et al. [5].
The determination of derivatives is a crucial element in nonlinear optimization. Ba-

sically �rst derivatives as the gradient of the objective function or the Jacobian of the
constraints are necessary in order to �nd a descent direction to the point where the next
local minimum is expected. Second derivatives (Hessian of the Lagrangian) are used to
guarantee a quadratic convergence behavior and to decide how far to follow the descent
direction. There are di�erent ways to calculate these derivative information. WORHP
provides several of them: The solver includes for example a method using �nite dif-
ferences (FD) and WORHP can use special sparse BFGS update techniques. The FD
module uses the so-called �group strategy� based on the graph coloring theory which
speeds up the calculations extremely for sparse problems.

4 WORHP

As mentioned before WORHP is an iterative solver and produces a sequence of points{
x[k]
}
k=0,1,2,...

. The basic scheme of the algorithm is the following:

i. Terminate if x[k] satis�es a termination criterion.

ii. Approximate the nonlinear problem by a quadratic subproblem in x[k] and use its
solution d[k] as the search direction.

iii. Determine a step size α[k] by applying a line search method to a merit function.

iv. Update the iterate by (2), increment k and go to i.

Instead of using the restrictive formulation used in (NLP) the more general description

min
x∈RN

F (x),

subject to l ≤ G(x) ≤ u,
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Figure 2: Data �ow in WORHP

can be applied, whereas G(x) = (G1(x), . . . , GM (x))T and l, u ∈ RM .
In the next sections we will describe these basic steps of WORHP in more detail.

4.1 Architecture

WORHP is based on a reverse communication architecture that o�ers unique �exibility
and control over the optimization process, see Figure 1.
The solver is aimed at the highest degree of control and possibilities of intervention.

One central architectural principle is the complete disuse of internal (program �ow) loops
or jumps.
Each call of the solver carries out a de�ned minor iteration. They are grouped together

to major NLP iterations. Among others these are (cf. Figure 2):

• Get objective function value, constraints, gradient, Jacobian or Hessian from user

• Update Hessian

• Check KKT conditions

• Create subproblem (QP or primal-dual system)

• Find step size d[k]

These stages together form the SQP method. However, the general work�ow of
WORHP looks similar to other SQP methods, see Figure 3.
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Figure 3: WORHP

4.2 Checking for optimality

For testing an iterate x[k] the �rst order necessary optimality conditions (1) have to
be evaluated. For this it is necessary to calculate the �rst order derivatives. These
derivatives can be provided by the user or WORHP calculates them by itself as mentioned
before. The iterate x[k] is said to be optimal if the following holds

∇xL(x[k], λ[k]) = ∇xF (x[k]) + λ[k]T∇xG(x[k]) ≤ εopti, (3)

λ
[k]
i ≥ −εcomp, i ∈ I(x[k]), (4)

λ
[k]
j ≤ εcomp, j 6∈ J(x[k]). (5)

and

|Gi(x[k])| ≤ εfeas, i = 1, . . . ,Me,

Gj(x[k]) ≤ εfeas, j = Me + 1, . . . ,M.
(6)

WORHP also supports a scaled version of the original KKT-conditions. These conditions
are motivated by the idea that the user hardly can interpret the numerical optimality by
(3) but is interested in

|F (x)− F (x[k])| ≤ εtol.

This leads to

||∇xL(x[k], λ[k])||∞ ≤
εopt max (1, |F (x[k])|) + ||λ1G1(x[k]), . . . , λMGM (x[k])||∞

||d[k]||∞
. (7)

In order to prevent WORHP from iterating too long without bee able to ful�ll (7),
e.g. due to numerical reasons of inexact derivative approximations, a low pass �lter is
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implemented. Among others this �lter calculates two thresholds

Filter
[k]
obj = αf_objF (x[k]) + (1− αf_obj)Filter

[k−1]
obj

and
Filter[k]

con = αf_con||G(x[k])||∞ + (1− αf_con)Filter[k−1]
con .

If an iterate is not satisfying the conditions (3)-(6) then for a given εfilter > 0 the condi-
tions

|Filter[k]
obj − Filter

[k−1]
obj |

max(1, |Filter[k]
obj|)

< εfilter and
|Filter[k]

con − Filter
[k−1]
con |

max(1, |Filter[k]
con|)

< εfilter

are checked. If both conditions are ful�lled and the current iterate x[k] is feasible, this
point is assumed to be optimal. If the point is not feasible a feasibility mode is activated,
cf. 4.6

4.3 Solving the QP-subproblem

Let x[k] be the approximation of the optimal solution in the k-th iteration and B[k] a
suitable approximation of the Hessian of the Lagrangian, then the associated QP problem
is:

min
d[k]∈RN

∇xF (x[k])d[k] +
1
2
d[k]TB[k]d[k],

subject to Gi(x[k]) +∇xGi(x[k])d[k] = 0, i = 1, . . . ,Me

Gj(x[k]) +∇xGj(x[k])d[k] ≤ 0, j = Me + 1, . . . ,M

(8)

Therefore the second order information, e.g. the exact Hessian or an approximation by
BFGS update formulas is needed. Again, the user can provide this information or it is
approximated by WORHP.
This QP subproblem is motivated by the fact that the KKT conditions for (8) can be

written for i ∈ J(x[k]) as

B[k]d+∇xF (x[k]) +∇xGi(x[k])Tλ[k]
QP = 0 (9)

Gi(x[k]) +∇xGi(x[k])d = 0, (10)

therein λ
[k]
QP is the corresponding vector of the Lagrange multipliers of (8). (9) can

be reformulated in the following way, with ∇xGa(x[k]) as the Jacobian of the active
constraints (

B[k] ∇xGTa (x[k])
∇xGa(x[k]) 0

)(
d[k]

λ
[k]
QP

)
= −

(
∇xF (x[k])
Gi(x[k])

)
.

Applying the Newton method yields the same system.
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The method implemented in WORHP for solving quadratic subproblems is a primal-
dual interior-point method, cf. Gertz and Wright[6]. In most of the cases the solution

d
[k]

of the QP subproblem is an appropriate search direction while λ
[k]

approximates the
Lagrange multipliers.If the QP subproblem is non-convex regularization techniques of
Levenberg-Marquardt type are used to convexify the problem, see Section 4.5.
Further problems which might occur are inconsistencies in the linearized constraints,hence

for the practical realization the original QP problem (8) is solved but a relaxed formula-
tion:

min
d[k]∈RN ,δ[k]∈R

∇xF (x[k])d[k] + 1
2d

[k]TB[k]d[k] + ηr

2 δ
[k],

subject to Gi(x[k])(1− δ[k]) +∇xGi(x[k])d[k] = 0, i = 1, . . . ,Me

Gj(x[k])(1− σiδ[k]) +∇xGj(x[k])d[k] ≤ 0, j = Me + 1, . . . ,M

where δ[k] denotes the relaxation variable,

σi =

{
0, if Gi(x[k]) < 0,
1, otherwise,

, i = Me + 1, . . . ,M.

and ηr ∈ R+ is a penalty weight.

4.4 Merit Function

In order to achieve global convergence, we have to �nd an appropriate step size α[k] to
the solution d[k] of the QP subproblem. Therefore we use merit functions.
For determining a suitable step size one has to measure the progress of the optimization

process, which consists of both, a quanti�cation of the objective and the constraints. For
this purpose a merit function is used. Merit functions supported by WORHP are e.g.
the L1-penalty function

L1(x; η) := F (x) +
Me∑
i=1

ηi|Gi(x)|

+
M∑

i=Me+1

ηi max{0, Gi(x)},

or the augmented Lagrangian

La(x, λ; η) := f(x) +
Me∑
i=1

λiGi(x) +
1
2

Me∑
i=1

ηiG
2
i (x)

+
1

2ηi

M∑
i=Me+1

((
max {0, λi + ηiGi(x)}

)2 − λ2
i

)
,

whereas η ∈ RM , with ηi ≥ 0, i = 1, . . . ,M , is a penalty vector.
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4.5 Hessian Regularization

To ensure that the solution of the QP subproblem is unique and reasonable one has to
assure that the Hessian HL = (hij)i,j ∈ RN×N is positive de�nite. To achieve this we
use the modi�ed Hessian

H = HL + τ(|σ|+ 1)I, (11)

cf Betts[7]. The parameter τ ∈ R holds 0 ≤ τ ≤ 1, while σ is the Gerschgorin bound for
the most negative of HL, i.e.

σ = min
1≤i≤n

hii −
n∑
i 6=j
|hij |

 .

The original idea was suggested by Levenberg [8]. He used the matrix τI as an approxi-
mation of the Hessian for least squares problems.
The choice of τ is crucial for the rate of convergence of the overall algorithm. The

setting τ = 1 guarantees a positive de�nite Hessian but leads to a slower convergence
since it causes a large deviation to the original Hessian. On the other hand, τ = 0 leads
to the described problems, since in this case the original Hessian without regularization
is used. The idea of Betts [7] is to reduce τ when the predicted reduction in the merit
function coincides with the actual one, and increase the parameter otherwise. In the
following we denote withM [k](x[k], λ[k]) the value of one of the merit functions introduced
in section 4.4 in the k-th iteration. The following three quantities have to be computed.
The actual reduction:

ρ1 = M [k−1](x[k], λ[k])−M [k](x[k], λ[k]), (12)

whereMk is the value of the merit function in the k-th iteration. The predicted reduction:

ρ2 = M [k−1](x[k], λ[k])− M̃ [k](x[k], λ[k]) = −M ′0(x[k], λ[k])− 1
2
d[k]THd[k], (13)

with the predicted value of the merit function M̃ [k](x[k], λ[k]) and the derivative of the
merit function M ′0(x[k], λ[k]) with respect to the step size α[k] evaluated at α[k] = 0. At
last, we need to compute the rate of change in the norm of the gradient of the Lagrangian

ρ3 =
||ϑk||∞
||ϑk−1||∞

(14)

where the error in the gradient of the Lagrangian is

ϑ = ∇F + (∇G)Tµ+ λ.

4.6 Line Search

After determining the search direction d[k] from the QP subproblem, it is crucial to �nd
a suitable step size α[k]. For this we use a line search method together with the Armijo
Rule. We de�ne

φ(α) := M(x[k] + αd[k], λ[k+1](α), η),
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whereas λ(α) is the new multiplier depending on α, e.g. λ[k+1](α) = (1− α)λ[k] + αλQP
and the function M is one of the merit functions introduced in Section 4.4. In general
a good choice would be the α which minimizes φ(α), unfortunately this de�nes another
nonlinear optimization problem. Although it is one dimensional, it is too time consuming,
especially for large-scale problems. So our goal is to �nd the largest step size α which
ful�lls the Armijo condition

φ(α) < φ(0) = M(x[k], λ[k], η).

As we do not want to invoke another optimization, although it is one-dimensional, we do
not apply an exact line search.
Starting with a maximum step size αmax ∈ (0, 1] and a factor βarmijo ∈ (0, 1), candidates
for the step size are {

αj = βjαmax|j = 0, 1, 2, . . . , lmax

}
,

whereas lmax = max{l ∈ N|βlαmax ≥ αmin} and αmin is the smallest step size allowed.
As the �rst step size we choose α0 = αmax. If the Armijo condition

φ(αj) ≤ φ(0) + σαjφ
′(0), (15)

whereas σ ∈ R+ is a suitable factor and φ′(0) the derivative of φ with respect to α is
not ful�lled, α1 = β1α0 is calculated and again (15) is checked. This is done as long as
a suitable α is found or the line search has failed, i.e. i > lmax. If the line search has
failed, WORHP uses recovery strategies to prevent the algorithm from failing. Several
recovery strategies are implemented, e.g.

SLP This strategy is motivated by gradient methods. Instead of using a second-order
approximation of the Hessian in (8), the identity matrix is used.

Feasible mode If the line search has failed at a point which is not feasible, this mode is
a good choice for saving the algorithm. In this mode the QP-problem is modi�ed in
an extensive way. The new QP-problem is focused on the feasibility of the problem.
The mode will be stopped after a feasible point is found. Afterwards the normal
optimization is restarted at the new, now feasible, iterate.

4.7 The algorithm of WORHP

Next we state the algorithm in detail:
Algorithm: Given are a starting point (x0) and a set of constants including e.g.
εopti, εfeas > 0, εcomp > 0, ε > 0, βarmijo ∈ (0, 1) , αmax ∈ (0, 1] .

A-1: Initialize. Set iteration counter k = 0.

A-2: Check-KKT. Check optimality conditions.

A-3: Create-QP. Set matrix B[k]. If B[k] = IN go to A-5 else go to A-4.

A-4: Hessian-Regularization. Update of the Hessian according to section 4.5.
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A-5: Solve-QP.

A-5.1: If the QP-subproblem was not solved successfully, check if τP < 1. If this
is the case go to A-4.

A-5.2: If k = 0 and M > 0 then set λ0 = λQP and µ0 = µQP and got to A-3.

A-5.3: If QP-subproblem was solved successfully go to A-6.

A-6: Post-QP.

A-6.1: If δ ≥ min (1, δmax) increase ηr by ηr = ρrelaxηr and go to A-5.

A-6.2: If ||d[k]||2 <
√
ε try to activate feasibility mode and go to A-7, if this is not

possible terminate with error.

A-6.4: Go to A-9.

A-7: Solve Feasibility QP.

A-7.1: Determine the set of current active constraints.

A-7.2: Determine new d[k] by solving an equality constraint quadratic subproblem
and go to A-9.

A-8: Find step size.

A-8.1: Set α[k] = αmax and go to A-9.

A-8.2: Check if the Armijo condition (15) is ful�lled, if yes go to A-11

A-8.3: Else set α[k] = α[k] · βarmijo, if α
[k] ≤ αmin go to A-10 else go to A-9.

A-9: Update Point.

A-9.1: Compute new iterate x[k+1] = x[k] + αd[k].

A-9.2: Update multipliers λ[k] and µ[k].

A-9.3: Go to A-8.2.

A-10: Recovery Strategies. Start selected recovery strategy and go to A-8.

A-11: Finalize.

A-11.1: Compute ρ1 by (12).

A-11.2: Set k = k + 1.
A-11.3: Go to A-2.

4.8 Interfaces

WORHP o�ers a wide spread of di�erent interfaces, starting from the �Full-Feature-
Interface� with reverse communication allowing close monitoring of, and control over
all quantities involved in the optimization process for skilled users, down to others and
�nally ends with the conventional interface which is very similar to classical interfaces
used by other solvers.
WORHP currently o�ers eight interfaces, divided into three classes for use in di�erent

environments.

11



The AMPL interface Executable for use with the AMPL modeling language.

The MATLAB interface Mex-object with a function interface to use inside the MAT-
LAB and Simulink programming environment.

The Library interfaces WORHP has three interfaces, each for C/C++ and Fortran, to
allow it to be included as optimization library into user code. They di�er in their
function signatures and the communication convention. All three are available as
equivalent C/C++ and Fortran versions:

• Full Feature Interface: Reverse Communication, Uni�ed Solver Interface.

• Basic Feature Interface: Direct Communication, Uni�ed Solver Interface.

• Legacy Interface (also called Simple or Traditional Interface): Direct Commu-
nication, traditional interface.

Within the solver di�erent linear algebra solvers can be used to solve the quadratic
subproblem. WORHP o�ers the possibility to use these linear algebra packages

• MA48

• MA57

• PARDISO

• SuperLU

• MUMPS

• LAPACK

• WSMP

5 Results

The robustness of WORHP is proved by several test sets. We present numerical results
for the CUTEr test set, which consists of a collection of 920 large-scale sparse and small
dense problems. As reference solvers we use IPOPT 3.8.1 with MA57 [9] as well as
KNITRO 6.0.0 and SNOPT 7.2.8 [10]. The test set is implemented in AMPL. Table 1
shows the results of the solvers.
The standard settings of the solvers were used while the scaling of the constraints

was turned o� for every solver, since it causes improper terminations for some of the
solvers. The computational time for a single problem of the test set was limited to 5
hours and the precision for the constraints and the optimality conditions is set to 10−6.
The calculations were done on a Linux system with an Intel(R) Core(TM)2 Quad CPU
Q6600 @ 2.40GHz with 4GB RAM.
WORHP is capable of solving more than 99.5% of the problems of the CUTEr test

set. The 5 problems which WORHP was not able to solve were also not solved by any
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Table 1: Comparison of the four solvers on the CUTEr test set.

WORHP 1.0 IPOPT 3.8.1 KNITRO 6.0.0 SNOPT 7.2.8

Problems solved 915 883 885 825

Optimal solution found 910 866 879 809

Acceptable solution found 5 17 6 16

Not solved 5 37 35 95

Percentage 99.46 95.98 96.2 89.67

Time 7450s 7146s 142200s 362823s

of the other solvers. We think these problems are somehow formulated wrong or are not
solvable. IPOPT was able to solve about 96% of all the problems while KNITRO solves
96.2% and SNOPT 89.7%. The overall computational time for all the 920 test cases is
similar for WORHP and IPOPT. WORHP seems to be faster for large-scale problems
while IPOPT leads for small and medium sized problems. The relatively large overall
computational times for KNITRO and SNOPT are a result of no termination within
the given time limit for some of the problems. Figure 4 gives a more detailed overview
about the e�ciency of the solvers. The percentage of solved problems, sorted by the

Figure 4: Percentage of optimally solved problems within given time frame.

computational time, is plotted against the accumulated time frame in seconds. Within
the �rst second KNITRO is the fastest solver, the other three are very close. After ten
seconds WORHP, KNITRO and IPOPT are close while SNOPT falls back. One should
keep in mind, that within the �rst ten seconds only small and medium sized problems
are calculated while the remaining larger problems are solved afterwards.
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6 Two examples

The following two examples are full discretized optimal control problems. The calcula-
tions were also done on a Linux system with an Intel(R) Core(TM)2 Quad CPU Q6600
@ 2.40GHz and 4GB RAM.

6.1 Time optimal low-thrust planar transfer to a geosynchronous orbit

The aim of this task is to �nd a thrust direction control u(t), 0 ≤ t ≤ tf , that minimizes
the �nal time F (x, u) = tf , subject to

ẋ1 = x2, x1(0) = 6.0, x1(tf ) = 6.6

ẋ2 =
x2

3

x1
− rµ
x2

1

+ 0.01 sin(u), x2(0) = 0.0, x2(tf ) = 0.0

ẋ3 = −x2x3

x1
+ 0.01 cos(u), x3(0) =

√
rµ

x1(0)
, x3(tf ) =

√
rµ

x1(tf )

ẋ4 =
x3

x1
, x4(0) = 0.0,

where x1(t) represents the radial position, x2(t) the radial velocity, x3(t) the circum-
ferential velocity and x4(t) the polar angle. The gravitational parameter for the earth is
represented by rµ = 62.5. This problem is taken from Kluever[11].
This optimal control problem is fully discretized using Eulers method and hence lead

to a sparse nonlinear optimization problem, cf. Büskens and Maurer[12]. The size of
the problem is determined by the number of points used for the discretization of the
problem. Using 101 discrete points the resulting nonlinear optimization problem consists
of 506 = 5 · 101 + 1 optimization variables and 407 = 4 · 100 + 7 nonlinear constraints.
The computational time for this problem was limited to 2 hours and the precision for
the constraints was set to 10−6 and the optimality conditions ito 10−5.
WORHP is able to solve this problem in 0.77 seconds to the �nal objective value of

17.153705844. The initial guess for the states was 1.0 and for the control 0.0. The
optimal control and the optimal states are shown in �gure 5. The results of all solvers
are summarized in table 2.

Table 2: Comparison of the four solvers.

WORHP 1.0 IPOPT 3.8.1 KNITRO 6.0.0 SNOPT 7.2.8

Objective function 17.153706 17.153706 MaxIter 17.153711

Time 0.77s 0.91s 39.26s 0.63s

6.2 Emergency landing of a hypersonic �ight system

In this example the emergency landing of a two stage space transport vehicle is treated.
After the separation of the �rst stage the engine of the upper stage can't be ignited.
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(a) Optimal control u(t). (b) Optimal states xi(t).i = 1 . . . 4.

Figure 5: Optimal control and optimal states of the low-thrust planar transfer problem.

Because of this propulsion damage the upper stage can't reach a safe orbit. For more
details see Mayrhofer and Sachs [13] or Büskens and Gerdts [14][15].
For the description of the dynamic of the �ight system a mass point model with six

states and two control function is used. If one assumes a rotating, spherical earth, as the
reference system, the equations of motion can be formulated as follows

v̇ = −D(v, h;CL)
1
m
− g(h) sin γ+

ω2 cos Λ(sin γ cos Λ− cos γ sinχ sin Λ + cos γ cos Λ)
r(h)
v
,

γ̇ = L(v, h;CL)
cosµ
mv

−
(
g(h)
v
− v

r(h)

)
cos γ+

2ω cosχ cos Λ + ω2 cos Λ(sin γ sinχ sin Λ + cos γ cos Λ)
r(h)
v
,

χ̇ = L(v, h;CL)
sinµ

mv cos γ
− cos γ cosχ tan Λ

v

r(h)
+

2ω(sinχ cos Λ tan γ − sin Λ)− ω2 cos Λ sin Λ cosχ
r(h)
v cos γ

ḣ = v sin γ

Λ̇ = cos γ sinχ
v

r(h)

Θ̇ = cos γ cosχ
v

r(h) cos Λ
.

15



The appeared functions are de�ned by

r(H) = r0 + h, g(h) = g0

(
r0

r(h)

)2

,

D(v, h;Cl) = q(c, h)FcD(CL), ρ(h) = ρ0e
−βh,

cD(CL) = cD0 + kC2
L, q(v, h) =

1
c
ρ(h)v2,

L(v, h;CL) = q(v, h)FCL.

The constants are chosen

c = 2.0, cD0 = 0.017, r0 = 6.371 · 106

F = 305.0, g0 = 9.80665, k = 2.0,

ω = 7.270 · 10−5, β =
1

6900.0
, ρ0 = 1.249512.

The state variables consists of the velocity v, the �ight path angle γ, the course angle
χ, the altitude h, the longitude Λ and the latitude Θ. The control functions CL (lift
coe�cient) and µ (angle of bank) are restricted by

0 ≤ CL ≤ 1, 0 ≤ µ ≤ 1.

The mass is supposed to be constant m = 115000. The initial values are given by

v(0)
γ(0)
χ(0)
h(0)
Λ(0)
Θ(0)

 =



2150.5452900
0.1520181770
2.2689279889
33900.000000
0.9268828079
0.1544927057


which corresponds to a reentry point over Bremen. The initial values are also used as
starting point for the optimization.
For safety reasons it is necessary to �nd a trajectory with maximum distance to the

starting point over the rotating earth:

F (µ,CL, tf ) =
(

Λ(tf )− Λ(t0)
Λ(t0)

)2

+
(

Θ(tf )−Θ(t0)
Θ(t0)

)2

As a �nal constraint a �nal altitude of 500 meters is required:

h(tf ) = 500.0

Figure 6 shows an example for an emergency trajectory.
This optimal control problem is again fully discretized using Eulers method and hence

lead to sparse large-scale nonlinear optimization problem. The size of the problem is
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Figure 6: An emergency trajectory.

Table 3: List of di�erent cases

n = 201 2001 5001 10001 20001 40001

N = 1609 16009 40009 80009 160009 320009

M = 2011 20011 50011 100011 200011 400011

WORHP 1.0 4.88s 45.47s 281.3s 424.25s 2261.35s 4898.53s

IPOPT 3.8.1 5.68s Timeout Timeout 382.57s Timeout 5853.17s

KNITRO 6.0.0 MaxIter MaxIter Timeout Timeout Timeout Timeout

SNOPT 7.2.8 28.73s Error Error Timeout Timeout Timeout

determined by the number of points n used for the discretization of the problem. For the
number of optimization variables N we get N = 8·n+1 and for the number of constraints
M = 6 · (n−1) + 4 ·n+ 7.We tried di�erent settings, the results are summarized in table
3. The computational time for this problem was limited to 2 hours and the precision for
the constraints was set to 10−6 and the optimality conditions ito 10−5.
WORHP is the only solver which is able to solve all variations of the problem. While

IPOPT is slightly faster in the case of 10001 points WORHP is able to calculate a better
objective function value and has also the best objective function value of all three solvers
for 201 points.
These results can summarized in the following �gure 7.

7 Conclusion

In this paper we presented the new nonlinear optimization solver WORHP. We described
in a detailed way the main functionalities and advantages of WORHP. At the end of the
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Figure 7: Number of points (x-axis) plotted against time in seconds (y-axis).

paper we have shown numerical test results and two applications, which demonstrated
the capabilities of the new solver WORHP in comparison with the most used solvers for
nonlinear optimization, showing that WORHP is not only able to solve academic test
sets but also is very good in solving problems coming from applications.
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