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The construction of an input-to-state stability (ISS) Lyapunov function for
networks of ISS system will be presented. First we construct ISS Lyapunov
functions for each strongly connected component, then what remains is a cas-
cade (or disconnected aggregation) of these strongly connected components.
Using known results the constructed Lyapunov functions can be aggregated
to one single ISS Lyapunov function for the whole network.

The Lyapunov function construction for the strongly connected compo-
nents basically depends on two steps: The construction of a function to
the positive orthant in Rn and the combination of the given ISS Lyapunov
functions of the subsystems to a common ISS Lyapunov function for the
composite system.

Keywords: Input-to-state stability (ISS), ISS Lyapunov function, networks, nonlinear
stability

1 Introduction

In this paper we provide a constructive method to find an ISS Lyapunov function for a
composite system, when the ISS Lyapunov functions and nonlinear gains for the subsys-
tems are all known. This result is particularly useful, since the knowledge of a Lyapunov
function directly leads to knowledge of invariant sets or allows for different controller
design methods, see, e.g., [8].

In [4] a nonlinear small gain theorem for networks of ISS systems was given, but for
a different formulation of ISS, namely the “KL−K”-formulation.

In [6] half part of the construction we are going to present was already carried out,
but an important bit was omitted. Namely, it was shown how an ISS Lyapunov function
can be constructed, if a certain function σ ∈ Kn

∞ exists.

∗{dsn,rueffer,fabian}@math.uni-bremen.de — AG Regelungssysteme — Zentrum für
Technomathematik — Universität Bremen — Germany
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Here we are going to construct this function σ ∈ Kn
∞, i.e., a function satisfying

D(Γ(σ(t))) < σ(t) for all t > 0, that is differentiable almost everywhere and strictly
increasing. Here Γ denotes the Lyapunov gain matrix of the interconnection of the sub-
systems, i.e., an adjacency matrix weighted by the ISS Lyapunov gains, and D is the
identity plus some diagonal operator.

This essentially depends on structural properties of the matrix Γ. In Proposition 9
we construct a smooth and strictly increasing function σs : [0, 1] → Rn

+ up to some pre-
specified radius, provided that Γ is irreducible. If Γ is even primitive, then this function
can easily be extended to a function σ ∈ Kn

∞. If Γ is only irreducible, this function σ
can still be defined, but under slightly stronger assumptions in another direction, see
Theorem 12.

The paper is organized as follows: In Section 1 we introduce some general notation,
especially for monotone operators. The Lyapunov formulation of input-to-state stability
(ISS) is given in Section 3. The main result in this paper is Theorem 4, that under a
small-gain condition as well as structural requirements guarantees ISS of a network of
ISS systems. This will be stated and proved in Section 4. In the last section we then
propose, how this result can be applied for the construction of ISS Lyapunov functions
in arbitrary network topologies.

2 Notation

Let K = {f : R+ → R+, f is continuous, strictly increasing and f(0) = 0} and K∞ =
{f ∈ K : f is unbounded}.

A function β : R+ ×R+ → R+ is of class KL, if it is of class K in the first component
and strictly decreasing to zero in the second component.

A matrix Γ = (γij) ∈ (K∞ ∪ {0})n×n defines a map on Rn
+ via Γ(s)i =

∑n
j=1 γij(sj),

for s ∈ Rn
+, in analogy to matrix vector multiplication in linear algebra.

The adjacency matrix AΓ = (aij) of a matrix Γ ∈ (K∞ ∪{0})n×n is defined by aij = 0
if γij ≡ 0 and aij = 1 otherwise. The matrix Γ is called primitive, irreducible or reducible
if and only if AΓ is primitive, irreducible or reducible. See also [1].

On Rn
+ we have a partial order induced by the order on R. For vectors x, y ∈ Rn

+ we
denote

x ≥ y ⇐⇒ xi ≥ yi for i = 1, . . . , n,
x > y ⇐⇒ xi > yi for i = 1, . . . , n, and

x 	 y ⇐⇒ x ≥ y and x 6= y.

A map ∆ : Rn
+ → Rn

+ is monotone if x ≤ y implies ∆(x) ≤ ∆(y). Clearly Γ ∈ (K∞ ∪
{0})n×n induces a monotone map. For Γ : Rn

+ → Rn
+, ∆ : Rn

+ → Rn
+ we write Γ ≥ ∆

if for all x ∈ Rn
+ we have Γ(x) ≥ ∆(x). Similarly, we write Γ � ∆,Γ > ∆, respectively

Γ 	 ∆, if for all x 6= 0 we have Γ(x) � ∆(x), Γ(x) > ∆(x), respectively Γ(x) 	 ∆(x).
Here � means that for at least one component i the inequality Γ(x)i < ∆(x)i holds.
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For monotone maps Γ on Rn
+ we define the following sets:

Ω(Γ) = {x ∈ Rn
+ : Γ(x) < x},

Ωi(Γ) = {x ∈ Rn
+ : Γ(x)i < xi},

Ψ(Γ) = {x ∈ Rn
+ : Γ(x) ≤ x}, and

Ψi(Γ) = {x ∈ Rn
+ : Γ(x)i ≤ xi}.

If no confusion arises we will omit the reference to Γ. Note that for general monotone
maps we have Ω ( Ψ, but for Γ ∈ (K∞ ∪ {0})n×n we have equality.

By | · | we denote the 1-norm on Rn and by Sr the induced sphere of radius r in Rn

intersected with Rn
+, which is an n-simplex. By Uε(x) we denote the open neighborhood

of radius ε around x with respect to the Euclidean norm ‖ · ‖.

3 Input-to-state stability

We consider the a finite set of interconnected systems

Σi : ẋi = f(x1, . . . , xn, u), fi : RN+M → RNi , i = 1, . . . , n, (1)

where
∑
Ni = N .

If we consider one of the systems, indexed by i, and interpret the variables xj , j 6= i,
and u as unrestricted inputs, then this system is assumed to have unique solutions defined
on [0,∞) for all L∞-inputs xj : [0,∞) → RNj , j 6= i, and u : [0,∞) → RM .

We write the interconnection of systems (1) as

Σ : ẋ = f(x, u), f : RN+M → RN , (2)

where x = (xT
1 , . . . , x

T
n )T .

We will impose ISS conditions on the subsystems given by (1) and interested in con-
ditions guaranteeing ISS of the interconnected system (2). To this end we will construct
an ISS Lyapunov function for (2).

Definition 1 (ISS Lyapunov function). A smooth function V : RN → R+ is called an
ISS Lyapunov function of (2) if there exist ψ1, ψ2 ∈ K∞, χ ∈ K∞, and a positive definite
function α such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ RN , (3)

and
V (x) ≥ χ(|u|) =⇒ ∇V (x) · f(x, u) ≤ −α(V (x)). (4)

The function χ is called Lyapunov-gain. System (2) is called input-to-state stable (ISS)
if it has a ISS Lyapunov function.
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It is well known[14] that the existence of an ISS Lyapunov function is equivalent to
the system being ISS in the following sense:

There exist β ∈ KL and γ ∈ K∞, such that for all initial conditions x0 ∈ RN and all
L∞-inputs u(·) it holds that

|x(t)| ≤ β(|x0|, t) + γ(‖u‖∞), for all t ≥ 0.

For our construction we will need the notions of proximal subgradient and non-smooth
ISS Lyapunov function, c.f. [3], [2].

Definition 2. A vector ζ ∈ RN is called a proximal subgradient of a function φ : RN →
(−∞,∞] at x ∈ RN if there exists a neighborhood U(x) of x and a number σ ≥ 0 such
that

φ(y) ≥ φ(x) + 〈ζ, y − x〉 − σ|y − x|2 ∀y ∈ U(x).

The set of all proximal sub-gradients at x is called proximal sub-differential of φ at x
and is denoted by ∂Pφ(x).

Definition 3. A continuous function V : RN → R+ is said to be a non-smooth ISS
Lyapunov function of system (2) if

1. V is proper and positive-definite, that is, there exist functions ψ1, ψ2 of class K∞
such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ Rn; (5)

2. there exists a positive-definite function α : R+ → R+ and a class K∞-function χ
such that

sup
u: V (x)≥χ(|u|)

〈f(x, u), ζ〉 ≤ −α(V (x)), (6)

for all ζ ∈ ∂PV (x), and all x 6= 0.

See also [3, p. 188 and Theorem 4.6.3].
In analogy to Definition 1 we extend the ISS notion to the subsystems: We say that the

subsystems defined by (1) are ISS, if for i = 1, . . . , n there exist smooth ISS Lyapunov
functions Vi : RNi → R+ and functions ψ1i, ψ2i ∈ K∞, χij ∈ (K∞ ∪ {0}), and χi ∈ K∞,
and positive definite functions αi such that

ψ1i(|xi|) ≤ Vi(xi) ≤ ψ2i(|xi|), ∀xi ∈ RNi , (7)

and
Vi(xi) ≥

∑
j

χij(Vj(xj)) + χi(|u|) =⇒ ∇Vi(xi) · fi(x, u) ≤ −αi(Vi(xi)). (8)

The functions χij are called ISS Lyapunov gains or simply gains, if no confusion arises.
We refer to subsystems (1) in conjunction with their ISS Lyapunov functions satisfy-

ing (7) and (8) as a network of ISS systems. The questions is, whether the composite
system (2) is ISS or not.
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Consider the network of ISS systems given by (1). The gain functions χij give rise to
an n× n-gain matrix

Γ := (χij) ∈ (K∞ ∪ {0})n×n.

Associated to such a network is a graph, whose vertices are the sytems and its directed
edges (i, j) correspond to inputs going from system j to system i. We will call the network
strongly connected if its graph is.

4 Lyapunov type small-gain theorem for strongly connected
networks

We first construct an ISS Lyapunov function under the assumption, that the network is
strongly connected, or equivalently, that Γ is irreducible.

Theorem 4 (Lyapunov-type ISS small gain theorem for networks). Consider a strongly
connected ISS network as in (1), (7), and (8). Assume there exists a class K∞-function
η such that for D = diagn(id + η) we have

D ◦ Γ(s) � s, ∀s ∈ Rn
+, s 6= 0. (9)

Then there exists an ISS Lyapunov function for system (2).

The proof will be given at the end of this section. It relies on two steps. First we
construct a function σ ∈ Kn

∞ with trace in Ω(D◦Γ)∪{0} for a suitable diagonal operator
D = diagn(id + α), α ∈ K∞. Namely, σ satisfies

σi(t) > (id + α)
( n∑

j=1

χij(σj(t))
)
, ∀t > 0, i = 1, . . . , n. (10)

Then together with the following proposition this leads to a non-smooth ISS Lyapunov
function for (2).

Proposition 5. Consider an ISS network as in (1), (7), and (8). For each subsystem
Σi, i = 1, . . . , n, let Vi be an ISS Lyapunov function satisfying (7) and (8). Assume
there exists a diagonal operator D = diagn(id + α), α ∈ K∞, and a smooth σ ∈ Kn

∞,
satisfying

σ(t) ∈ Ω(D ◦ Γ), ∀t > 0 and

(σ−1
i )′(t) > 0, ∀t > 0, i = 1, . . . , n.

Then the composite system (2) is ISS with ISS Lyapunov function

V (x) := max
i
{σ−1

i (Vi(xi))}.
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Proof. This has essentially been proved in [6, Theorem 6]. We define

Mi :=
{

(v1, . . . , vn)T ∈ Rn
+ : σ−1

i (vi) > max
j 6=i

{σ−1
j (vj)}

}
. (11)

From (10) it follows that

σi(t)−
n∑

j=1

χij(σj(t)) > η
( n∑

j=1

χij(σj(t))
)

=: ρi(t). (12)

Note that ρi ∈ K∞ , since the network is strongly connected and hence Γ has no zero
rows. Now let

ρ(t) = min
i
ρi(t),

which is again of class K∞.
Now for any x̂ = (x̂1, . . . , x̂n) ∈ RN with (V1(x̂1), . . . , Vn(x̂n)) ∈ Mi it follows that

there is a neighborhood U of x̂ such that V (x) = σ−1
i (Vi(xi)) holds for all x ∈ U, so that

V is differentiable in x ∈ U . Again we are looking for a positive definite function α̃ and
φ ∈ K such that V (x) > φ(‖u‖) implies ∇V (x)f(x, u) < −α̃(V (x)).

To derive the defining inequality of ISS Lyapunov functions consider the inequality

V (x) > ρ−1(χi(|u|)). (13)

From this inequality it follows that ρ(V (x)) > χi(|u|) or using the definition of ρ

σi(V (x))−
n∑

j=1

χij(σj(V (x))) > χi(|u|),

or equivalently

Vi(xi) = σi(V (x)) >
n∑

j=1

χij(σj(V (x))) + χi(|u|)

=
n∑

j=1

χij(σj(σ−1
i (Vi(xi)))) + χi(|u|)

>

n∑
j=1

χij(Vj(xj)) + χi(|u|) ,

where we have used (V1(x̂1), . . . , Vn(x̂n)) ∈ Mi in the last inequality. Summarizing this
shows that (13) implies

Vi(xi) >
n∑

j=1

χij(Vj(xj)) + χi(|u|),

and hence from (8) we obtain

∇V (x)f(x, u) = (σ−1
i )′(Vi(xi))∇Vi(xi)fi(x, u)

≤ −(σ−1
i )′(Vi(xi))αi(Vi(xi)) =: −α̃i(V (x)),

(14)
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where α̃i is a positive definite function by definition. Now let

α̃(t) := min
i
αi(t),

again a positive definite function, as desired.
It remains to treat the points where V may fail to be differentiable.
For this purpose we use some results from [3]. For smooth functions gi, i = 1, . . . , n

it follows that g(x, u) = max
i
{gi(x, u)} is Lipschitz continuous and Clarke’s generalized

gradient of g is given by , c.f. [3],

∂Clg(x) = co
{ ⋃

i∈M(x)

∇xgi(x, u)
}
,

M(x) = {i : gi(x, u) = g(x)},

where co denotes the convex hull. In our case

∂ClV (x) = co
{

(σ−1
i )′(Vi(xi))∇Vi(xi) : σ−1

i (Vi(xi)) = V (x)
}
.

Note, that directly from the definitions of ∂PV (x) and ∂ClV (x), see [3], e.g., it follows
that ∂ClV (x) ⊃ ∂PV (x). Now for every extremal point of ∂ClV (x) the decrease condition
(14) is satisfied. By convexity, the same is true for every element of ∂ClV (x). Now
Theorems 4.3.8 and 4.5.5 of [3] show the strong invariance and attractivity of the set
{x : V (x) ≤ γ(‖u‖)}. It follows that V is an ISS-Lyapunov function for the intercon-
nection (2).

Before we return to the proof of Theorem 4 we develop some theory for matrices in
(K∞ ∪ {0})n×n.

Lemma 6. Let Γ ∈ (K∞ ∪ {0})n×n be such that Γ has no zero rows. Then 0 < r < s
implies Γ(r) < Γ(s).

If Γ is primitive, then s � t already implies Γk(s) < Γk(t) for some k > 0 which does
only depend on Γ.

Proof. Just compare Γ(r)i with Γ(s)i. These are
∑n

j=1 γij(rj) and, respectively,∑n
j=1 γij(sj). Since Γ has no zero rows, both sums are non vanishing, and from rj < sj ,

for j = 1, . . . , n, we deduce that the first sum is strictly less than the second.
For the second assertion we consider the adjacency matrix AΓ = (aij) of Γ. Since AΓ

is primitive, there exists a k > 0 such that Ak
Γ > 0. It is easy to check, that this is

equivalent to t 7→ (Γk(t · ej))i ∈ K∞ for all i, j = 1, . . . , n. This proves the lemma.

Now we state some useful properties of the sets Ψ and Ω.

Lemma 7. Let Γ ∈ (K∞ ∪ {0})n×n such that Γ � id. Then

1. Ω ∩ Sr 6= ∅ for all r > 0.

2. Γ(Ψ) ⊂ Ψ and, if Γ has no zero rows, then Γ(Ω) ⊂ Ω.
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3. If Γ has no zero rows, then Γk+1(Ω) ⊂ Γk(Ω) ⊂ Ω for all k ≥ 0.

4. Γk+1(Ψ) ⊂ Γk(Ψ) ⊂ Ψ for all k ≥ 0. All these sets are closed. In particular,
Ψ∞ = Ψ∞(Γ) =

⋂∞
k=0 Γk(Ψ) is non-empty, connected, and has the unboundedness

property stated in 1.

5. If Γ is primitive, then there exists a k > 0 such that (Γk(Ψ) \ {0}) ⊂ Ω.

6. If Γ is irreducible and there exists a K∞-function α, such that for D = diagn(id+α)
we have Γ ◦D � id, then Γ(Ψ(Γ ◦D)) \ {0} ⊂ Ω(Γ).

Before we prove this lemma, we state a famous theorem due to Knaster, Kuratowski
and Mazurkiewicz:

Theorem 8 (Knaster-Kuratowski-Mazurkiewicz, 1929). Let ∆n denote unit n-simplex,
and for a face σ of ∆n let σ(0) denote the set of vertices of σ.

If a family {Ai|i ∈ ∆(0)
n } of subsets of ∆n is such that all the sets are closed or all

are open, and each face σ of ∆n is contained in the corresponding union
⋃
{Ai|i ∈ σ(0)},

then there is a point common to all the sets.

Proof. The original proof for closed sets was given in [9], while the formulation above is
taken from [7] and was proved in [11].

Proof. Some of this can also be found in[5].

1. Note that Sr for r > 0 is a simplex with vertices r·ei, i = 1, . . . , n. Each (nonempty)
face spanned by r · ei, i ∈ I ⊂ {1, . . . , n}, fulfills the assumptions of the Knaster-
Kuratowski-Mazurkiewicz theorem[11],[9], i.e., it is contained in the union

⋃
I(Ωi∩

Sr). Then the KKM-theorem implies that
⋂n

1 (Ωi ∩ Sr) 6= ∅.

2. Let s ∈ Γ(Ω), i.e., s = Γ(t) for some t ∈ Ω, that is, Γ(t) < t. If Γ has no zero
rows, then this implies Γ(s) = Γ2(t) < Γ(t) = s, i.e., s ∈ Ω. The other assertion is
similar.

3. If s = Γk+1(t) for some t satisfying Γ(t) < t, then writing u = Γ(t) we have
s = Γk(u) clearly Γ(u) = Γ2(t) < Γ(t) = u by 2.

4. The nesting is proved analoguously to 3. Since Ψ is nonempty and closed, so are all
Γk(Ψ) by continuity of Γ. Also, by Γk+1(Ψ) ⊂ Γk(Ψ) for all k ≥ 0, the intersection⋂

k≥0 Γk(Ψ) is nonempty and closed.

With s ∈ Ψ∞ each convex combination (1−λ)Γ(s)+λs of Γ(s) and s, for λ ∈ [0, 1]
is in Ψ∞: Clearly Γ(s) ≤ (1− λ)Γ(s) + λs ≤ s, and application of Γ gives Γ2(s) ≤
Γ((1−λ)Γ(s)+λs) ≤ Γ(s) ≤ (1−λ)Γ(s)+λs ≤ s. This implies that every point is
path-connected to the origin, hence Ψ∞ is connected. The same KKM-argument
as in 1. yields the unboundedness property.
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5. First check, that in full analogy to adjacency matrices A, where there exsits a k > 0
such that the ijth entry a

(k)
ij > 0 if Ak is positive for every i, j = 1, . . . , n, there

exists a k > 0, such that t 7→ Γk(t · ej)i is of class K∞ for all i, j = 1, . . . , n. Hence
Γ(s) � s (and hence s 6= 0) imlies Γk+1(s) < Γk(s), because the strict inequality
in one component gets propagated to every other component.

This will be an essential ingredient for the strict monotonicity of the path σ that we
want to construct.

An intermediate result is the following, that already implies a local version of Theo-
rem 4, where local means “on arbitrarily large compact sets around the origin”.

Proposition 9. Let Γ ∈ (K∞ ∪ {0})n×n, Γ � id, be such that Γ has no zero rows. For
every s ∈ Ω there exists a continuous and strictly increasing vector function σs : [0, 1] →
(Ω∪ {0})∩B1(0, |s|) with σs(0) = 0 and σs(1) = s. Moreover, each component function
is piecewise continuously differentiable.

Proof. Clearly s ∈ Ω gives 0 < Γ(s) < s and Γ(s) ∈ Ω. By Lemma 6 the inequality
implies Γk+1(s) < Γk(s) for all k ≥ 1.

From [5] we know that irreducibility and Γ � id imply limk→∞ Γk(s) = 01.
Now consider λ ∈]0, 1[ and let z = (1−λ)Γ(s) +λs. Clearly Γ(s) < z < s. Now apply

Γ to obtain Γ2(s) < Γ(z) < Γ(s) < z < s. Hence z ∈ Ω and by smoothly varying λ from
0 to 1 we get a smooth path from Γ(s) to s.

So the idea is to construct σs|] 1
k+2

, 1
k+1

] → {z = (1− λ)Γk+1(s) + λΓk(s), λ ∈]0, 1]} for
k = 0, 1, 2, . . . and to assign σs(0) = 0. For example, we can obtain

σs(t) =

{
0 if t = 0,
z(2− 1

t + b1
t − 1c, b1

t − 1c) if t ∈]0, 1],

where z(λ, k) = (1− λ)Γk+1(s) + λΓk(s) and btc is the greatest integer less or equal to
t.

For what follows, this will already suffice, but we note, that there can be gained more:

Corollary 10. Let Γ ∈ (K∞ ∪ {0})n×n, Γ � id, be such that Γ has no zero rows.
For every s ∈ Ω there exists a continuously differentiable and strictly increasing vector
function σs : [0, 1] → (Ω ∪ {0}) ∩B1(0, |s|) with σs(0) = 0 and σs(1) = s.

Proof. Just note that instead of the previously chosen interpolation, we could also use
any kind of spline interpolation in each component, to make the resulting function σs

continuously differentiable in each component. See for example [15] for spline interpola-
tion methods.

This gives one direction of the path, the other direction is given next.

1This is easy to see: We find Γk+1(s) < Γk(s) < . . . < s, a monotone sequence. Its limit point s∗ is a
fixed point for Γ, hence it must be 0.
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Theorem 11. Let Γ ∈ (K∞∪{0})n×n, Γ � id, be primitive. Then there exists a piecewise
continuously differentiable and strictly increasing vector function σ : R+ → Ω∪{0} with
σ(0) = 0 and limt→∞ σ(t) = ∞, i.e., the component functions are of class K∞.

Proof. By Lemma 7 we have Ψ∞ ⊂ Ω ∪ {0}.
Combining the results of Proposition 9 and Lemma 7 we start with σs : [0, 1] → Ψ∞,

where σs(1) = s ∈ Ψ∞ and σs is piecewise C1 in each component.
Since we may always pick a preimage in Ψ∞ we extend σs to a function σ on R+ by

defining σ|[0,1] = σs and

σ|]1,∞[(t) = (1− t+ btc)Γ1−btc(s) + (t− btc)Γ−btc(s).

It remains to prove unboundedness of the component functions. Assume σ is bounded.
Since σ is non decreasing, there must exist a limit point

s∗ := lim
k→∞

σ(k) = lim
k→∞

Γ(σ(k)) = Γ(s∗),

but since σ(1) > 0 and σ is non decreasing, and hence s∗ > 0, this contradicts Γ � id.
So there exists at least one unbounded component of σ, without loss of generality

this is the first one. From irreducibility (primitive matrices are also irreducible) we
deduce that there exists another unbounded component and inductively we obtain that
all components are unbounded.

It follows that the vector function σ constructed above fulfills σ(t) ∈ Ω for all t > 0
and by the same argument as in the proof of Proposition 9 the component functions of
σ are strictly increasing and hence of class K∞.

Note that here we used a linear interpolation, but we could also utilize spline interpo-
lation techniques to make the curve arbitrarily smooth.

This theorem gives us a Kn
∞-function σ that satisfies

Γ(σ(t)) < σ(t), for all t > 0,

for the case that Γ is primitive. Of course, primitivity is quite a restrictive assumption for
the topology of the network, that we look at, not every strongly connected (irreducibility
of Γ) network satisfies this assumption.

Now the aim is to extend this result to just strongly connected networks, then later
to cascades of those. So we have to find such a function σ for irreducible Γ. Remember,
that in Theorem 4 we are also given this diagonal operator D and the stronger assertion
Γ ◦D � id instead of Γ � id. (In [5] it was shown, that D ◦ Γ � id and Γ ◦D � id are
equivalent). This will come in handy in the next statement.

Theorem 12. Let Γ ∈ (K∞ ∪ {0})n×n be irreducible and assume there exists a function
α ∈ K∞, such that for D = diagn(id + α) we have Γ ◦ D � id. Then there exists a
continuously differentiable and strictly increasing vector function σ : R+ → Ω(Γ) with
σ(0) = 0 and limt→∞ σ(t) = ∞, i.e., the component functions are of class K∞.
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Proof. First note that ΨΓ◦D
∞ :=

⋂
k≥0(Γ ◦D)k(Ψ(Γ ◦D)) ⊂ Ω(Γ) because of Ψ(Γ ◦D) ⊂

Ω(Γ). The set ΨΓ◦D
∞ has all the same nice properties as Ψ∞ in Lemma 7. Hence for

s ∈ ΨΓ◦D
∞ ⊂ Ω(Γ) there exists an ascending sequence {zk}k≥0 ⊂ ΨΓ◦D

∞ , satisfying

z0 = s and (15)
zk = Γ ◦D(zk+1) � zk+1 for all k ≥ 0. (16)

One can easily check that this sequence is unbounded in every component (as in the
proof of Theorem 11).

Again we define σ|[0,1] = σz0 as in Proposition 9.
In the other (unbounded) direction we first construct a path in ΨΓ◦D

∞ using linear
interpolation:

σ̃(t) := (1− (t− btc))zbtc+1 + (t− btc)zbtc for t > 1.

Clearly σ̃(t) ∈ Ω for all t > 1, but σ̃ is not necessarily strictly increasing. Next we
modify σ̃ slightly, to get a strictly increasing σ|]1,∞[.

Since Ω is open, with the polygon zkzk+1 . . . zk+l for a small ε > 0 also the neigh-
borhood Uε(zkzk+1 . . . zk+l) := {x ∈ Rn

+ : ‖x − y‖ < ε for some y ∈ zkzk+1 . . . zk+l}
is in Ω. Pick a minimal l > 1 so that zk+l > zk. Hence for all x ∈ zk+lzk+l+1 and
y ∈ zkzk+1 . . . zk+l \ {zk+l} we have x > y.

Now we pick a δ > 0, δ < ε, and find a unique z̃k+l ∈ Sδ(zk+l)∩zk+lzk+l+1, z̃k+l ≥ zk+l,
and strictly ordered points zk+m ∈ zk . . . zk+l \ {zk+l}, m = 1, ldots, l − 1, satisfying

zk+m < zk+m+1, for m = 0, . . . , l − 1.

Clearly the polygon z̃k . . . z̃k+l ⊂ Ω, so we define

σ(k +m+ λ) := (1− λ)z̃k+m + λz̃k+m+1, for m = 0, . . . , l − 1, λ ∈ (0, 1].

Clearly σ(t) is strictly increasing for t ∈ (k, k + l] and is in Ω. The same way we
proceed with the polygon z̃k+lzk+l+1 . . . zk+l+p, where again p is minimal, such that
zk+l+p > z̃k+l. Inductively this yields σ|]1,∞[ as desired, and together with σz0 we have
σi ∈ K∞ is strictly increasing for i = 1, . . . , n, and σ = (σ1, . . . , σn)T is a path in
Ω ∪ {0}.

Remark 13. The functions σ ∈ Kn
∞ that we constructed in Theorems 11 and 12 are

possibly not smooth on a discrete set in ]0,∞[. Nevertheless, for each i = 1, . . . , n, the
derivative σ′i of σi is positive, except on this discrete set. By smoothing techniques of
classical analysis (molifiiers, e.g.) these can be smoothened to to σ̃ ∈ Kn

∞ ∩ C∞(]0,∞[),
satisfying σ̃(t) ∈ Ω for all t > 0. This in particular implies (σ̃−1

i )′(t) > 0 for all t > 0
and i = 1, . . . , n.

For completeness, we state yet another result from [5]:

Lemma 14. For Γ ∈ (K ∪ {0})n×n the following are equivalent:

11



1. ∃ρ ∈ K∞, D = diagn(id + ρ) : Γ ◦D � id,

2. ∃ρ ∈ K∞, D = diagn(id + ρ) : D ◦ Γ � id,

3. ∃ρ1, ρ2 ∈ K∞, D1 = diagn(id + ρ1), D2 = diagn(id + ρ2) : D1 ◦ Γ ◦D2 � id.

Proof. Equivalence between 1 and 2 is easily established and thus omitted. The third
assertion is based on the observation, that for any ρ ∈ K∞, there exist ρ1, ρ2 ∈ K∞, such
that

(ρ+ id) = (ρ1 + id) ◦ (ρ2 + id).

To this end choose, e.g., ρ2 = 1
2ρ and ρ1 = 1

2ρ ◦ (1
2ρ+ id)−1. Then

(ρ1 + id) ◦ (ρ2 + id) = ρ1(ρ2 + id) + ρ2 + id =
1
2
ρ ◦ (

1
2
ρ+ id)−1 ◦ (

1
2
ρ+ id) +

1
2
ρ+ id =

(
1
2
ρ ◦ id +

1
2
ρ+ id) = ρ+ id.

Proof of Theorem 4. Just combine the statements of Proposition 5 and Theorem 12:
By Lemma 14 we have D ◦Γ � id if and only if Γ◦D � id. We may always decompose

D into two diagonal operators D1, D2 such that D1 ◦D2 = D, whereby D1, D2 are also
of the form diagn(id + αi), αi ∈ K∞, i = 1, 2.

So we have D1 ◦ Γ ◦D2 � id, which we write Γ̃ ◦D2 � id. Now apply Theorem 12 to
obtain a Kn

∞-function σ, satisfying

D1 ◦ Γ(σ(t)) = Γ̃(σ(t)) < σ(t), for all t > 0.

We conclude with an application of Proposition 5.

Note, that

5 Lyapunov functions for general networks of ISS systems

In the last section we constructed ISS Lyapunov functions for strongly connected net-
works. But for example cascade networks are not strongly connected. Fortunately, it is
already well known[13] that cascades of ISS systems are also ISS.

What is also known, is how to construct common ISS Lyapunov functions if the ISS
Lyapunov functions of the subsystems together with their supply pairs are known[12].

Now, for every connected network of ISS systems the corresponding gain matrix Γ
can be transformed into an upper triangular block structure, by a transformation using
permutation matrices, where the blocks on the diagonal are all irreducible (or 1× 1 zero
blocks, which each corresponds to just one single system that does not influence any
other system). From an interconnection point of view, this gives a cascade of strongly
connected networks, see Figure 1.

12
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Figure 1: Cascade of strongly connected components.

Lemma 15. For any reducible matrix A ∈ Rn×n there exists a permutation matrix P
such that

P TAP =


B11 B12 . . . B1k

0 B22 . . . B2k
...

. . . . . .
...

0 . . . 0 Bkk

 ,
where the square matrices Bii, i = 1, . . . , k, are either irreducible or 1× 1 zero matrices.

Proof. See [10, p. 544].

Note that this applies also to matrices Γ ∈ (K∞ ∪ {0})n×n.
For non connected networks one can treat each connected component separately.
Now the method to construct an ISS Lyapunov function for a cascade of two systems

is roughly as follows: We start with given ISS Lyapunov functions

α1i(|z1|) ≤ Vi(zi) ≤ α2i(|z|), i = 1, 2,
V1(z1) > γ1(|z2|) =⇒ ∇V1(z1) · g1(z1, z2) ≤ −β1(|z1|),
V2(z2) > γ2(|u|) =⇒ ∇V2(z2) · g2(z2, u) ≤ −β2(|u|),

for suitable K∞-functions αji, βi, and γi, i, j = 1, 2.
This directly implies

∇V1(z1) · g1(z1, z2) ≤ γ1(|z2|)− β1(|z1|),
∇V2(z2) · g2(z2, u) ≤ γ2(|u|)− β2(|u|),

(17)

which is an equivalent formulation of ISS Lyapunov functions. Now in [12] the pairs
(γ1, β1) and (γ2, β2) are called supply pairs. Note that multiplying each equation in (17)
by a positive constant gives a new Lyapunov function and a new supply pair. So supply
pairs are far from being unique. In [12] it was shown, that the supply pairs (γ1, β1) and
(γ2, β2) can be rescaled to new supply pairs (γ̃1, β̃1) and (γ̃2, β̃2), such that the sum of
the so obtained Lyapunov functions Ṽi, i = 1, 2, gives an ISS Lyapunov function for the
cascade.
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6 Conclusions

We constructed an ISS Lyapunov function for strongly connected networks of ISS systems
and proposed a procedure to apply this method for the construction of an ISS Lyapunov
function for arbitrary networks.
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