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Abstract: Optimal controllers, like the classical Linear (Juadratic Regulator
closed-loop controller {LQR)Y, have proved to be a powerful tool in many applica-
tions and to be robust enough to compensate most differences between simulation
and reality., Mevertheless these controllers are not optimal if disturbances or per-
turbations in the system data occur. I these controllers are applied in a real
process, the possibility of data disturbances force recomputing the feedback con-
trol lasv in real-time to preserve stability and optimality, at least approxamately.
For this purpose, a numerical method based on the parametric sensitivity analysis
of nonlinear optimization problems is suggested to calculate higher order approx-
imations of the feedback control law in real-time. Using this method the optimal
controller can be adapted within a few nanoseconds on an typical personal com-
puter. The method iz illustrated by the adaptive optimal control of the classical
inverted pendulum.

Keywords: optimal control, Riccati controller, parametric sensitivity analy-
sis, perturbation

1 Introduction

Optimization and optimal contrel is a natural and widely used tool for giving a
systematic procedure for the design of feedback control systems in modern con-
trol theory. In the case of linear systems with full state measurements, the linear
quadratic regulator (L R)Y problem, also known as the Riccati controller, provides
one of the meost useful technicques for designing state space controllers, The Ric-
catl controller is known to be locally robust, which is a fundamental requirement
in designing feedback control systems. However, this optimal control technigques
do not provide the issue of general robustness. Nevertheless robustness properties
of the control system reflects an ability of the system to maintain both, adeguate
performance {optimality) with respect to an user defined objective function and
stability in the sense of variations and errors in the model dynamics. Hence the
enhancement of robustness iz one of the main reasons for using feedback.

This paper i concerned with the numerical solution of more generalized LR
problem. %We show that the well known optimal closed-loop controller (state
feedback controller) is neither optimal nor robust in the presence of disturbances
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or perturbationsin the system data. Unfortunately, the comparatively high com-
puting times for recalculation the state space controller disqualify commonly used
methods. This motivates the development of fast and reliable real-time optimal
approrimations for perturbed optimal controllers.

In stability analysis of finite dimensional nonlinear optimization problems, dif-
ferentiability properties of optimal solutions with respect to perturbation param-
eters are studied. Parametric sensitivity analysis iz concerned with the compu-
tation of parametric sensitivity differentials of optimal solutions. This sensitivity
information enables the control engineer to estimate the changes in the optimal
feedback law due to deviations of the system matrices from fixed nominal values.

In this paper, we consider an LQR full state feedback law applied to the clas-
sical inverted pendulum. An approximate feedback law appropriate for numerical
implementation is developed in the context of a fast, first order Taylor expan-
gion of the optimal feedback matrix with respect to system perturbations. This
first order approximations leads to a second order approsamation of the objective
functional and hence defines a near optimal and robust state space controller.

2 Perturbed LOR-Problems

We consider a linear time invariant dynamical system
i) = Axlt) + Bult),  2(0) = %o (1)

with {for the moment} constant matrices 4 € R**", B ¢ R""™. Herein z{t) €
R" denotes the state of the system with initial value x{0) = xp and u(t) &
R™ the control input for all ¢+ € [0,c0). Note, that often a linear differential
equation system (1) is obtained by linearization of a nonlinear dynamical systems
(ty = flx(t), u(t)). Equation (1) defines a control problem, if we ask for control
functions ¥(t) able to transfer the initial value x{0) = xg # 0 of the state variable
to

zite) =10, t, € [0, co). (2)
The final value x(t;) = 0 is not restrictive, since other values can always be
achieved by coordinate transformation. Hereafter we will investigate the infinite
time horizon iy = oo, This i a demanding problem since, on the one hand, a
fixed control will not assure, that the state reaches or even converges to zero,
and, on the other hand, we can assume that there exdst infinitely many control
functions satisfving condition {2).
We can take advantage of the second problem by selecting an ‘expedient’ con-
trol function out of the infinite number of posaibilities. Therefore we require an
objective functional to be minimized:

min F{z,u) = %fmxt:t)TQI{t) + u(t)T Ruf t)dt, (2
i, 1 a
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Q@ € R"™ >0 and R € R™"™ > 0. The LQR approach allows us to choose
two sets of parameters, the coeflicients of the matrix B and the coefficients of the
matrix ¢}, These matrices will balance the relative importance of the input w(t)
and state z{t) in the cost function that we are trying to optimize.
Often an additional output

w(t) = Cx(t), (4}

is investigated with w{t) € IR and ¢ € R™™". Such output functions come into
play due to theoretical aspects, see below. Moreover (4) allows for a description
of the relationship between the state x{t) and the measurable output ¥(t), i e.g.
not full state measurement iz possible.

In summary, the task is to determine a control function % : [0, c0) — IR™ that
minimizes the functional {2} subject to the constraints {1}, (2} and {4},

The next step in our design process is to assume that we have full state feedback
fie. that we can measure all states), and find a matrix £, € IR™*" which
determines the feedback control law

u(t) = — Kouzft). (5)

This can be done in a number of ways. We use the optimal control theory, which
will give us, under certain assumptions, the optimal controller with respect to
{3). The following theorem is well known and can be found in the literature, cf.
Locatelli [8], Bryson [3], Follinger [5].

Theorem 2.1 (Optimal Solution of the LR Problem) For a given matriz
QecR™letQ =CTQC =DTD >0, D& R™" be a factorization, such that
{4, BY is stabifizable and (A4, D) is observable. Then there exists one and only
one sofution 5% = 0 of the algebraic Hiccati equation

SA—SBE'BTS 4+ Q4 4T85 =1, (8)

such that
u(t) = —Kearlt), K. :=R'BTs (7Y
is optimal with respect to the objective F. Moreover (7) defines an asymptotic

stable closed-foop system and the optimal value F* of the objective {§) is given by
F*r=11l8%g < oo.

The assumptions in Theorem 2.1 are more of theoretical importance. For practical

reazons the following results from system theory might be helpful:
The system (4, B) is stabilizable, if {4, B) is controllable, i, e.g.

rank([B, AB,..., A" B]) = n. (2)



The system (4, I} is observable, if , e.g.

D
DA ,
rank , = 1. )
DAt

Hence from a practical point of view only the problem of asolving the underly-
ing algebraic Riccati equation (#), which iz nonlinear in S, is left. This matrix
efuation can be solved in numerous ways, eg. by Newton's method.

Next we extend the linear quadratic regulator problem {13-{4) to general linear
and nonlinear perturbations in the system matrices. In detail we are interested
in the perturbed linear gquadratic regulator problem

. 1 L . L
min Frug) = ;[ 7@ + e REn

< Jg
LQRG) st HY) = Alphit) + Bpuit) + dip 10
¥(t) = Clp)z)
0y = zolp).

Hence we do not have any longer constant matrices but mappings 4 : P —
R, B: P R . P —R"™ g: P —R" R:. P— R"™,
d: P — R rp : P — R" with P C IR*. The feedback law (7} iz able
only to optimally compensate for perturbations in the initial value zq(p), but
not for perturbations in 4, B, C, ¢}, B or 4. Additional constant elements € in
the right hand side of the dynamics in {1} could be neglected, due to coordinate
transformation reasons. Linear perturbations, eg. &4 with Afp) = 4 4+ Ad,
in the system matrices are enclosed in formulation {10}, since one can sort the
coefficients of e.g. A4 into vector p.

If for a fiwed value g, eg. po = 0, the assumptions in Theorem 2.1 hold for
LiR{pg), we can find an asymptotic stable closed-loop law

u(t) = —Koolpo)(t), (11)

where Ro.(po) denotes the dependency of the feedback matrix R, on pg. Here-
after we will investigate situations where on-line perturbations p might occur,
This means, that we expect deviations Apfrom the nominal value g, p = 4+ Np,
while the practical implementation of the Riccati controller works on an applica-
tion. We are not able to calculate the optimal feedback law

uft) = —Koo(p)x(t) (12)

fast enough, e.g. due to the computational complexity of the solution of the al-
gebraic Riccati matrix equation (8).



Since the optimal feedback law (12) iz not available and the (unperturbed) Riccati
controller 11} is known to be robust and to be able to compensate for perturba-
tions p € Uipg) out of a neighborhood of pg, the controller {11} tacitly is used,
even in the presence of deviations Ap # 0. In this situation one has to accept
that in general in the presence of deviations Ap 3 0 the controller (11} is not any
longer optimal with respect to the objective functional and moreover, that the
controller {11 might become instable for larger perturbations, e.g. from outside
the neighborhood Uipg).

Hereafter we will show, how to derive an asymptotic closed-loop law, which is im-
proved in view of optimality and robustness in comparison to {11} and moreover
close to but much less time consuming than the optimal feedback law {12},

3 Approximated Feedback Solution

Let pp be a nominal perturbation, eg. pg = 0. Hereafter let the assumptions of
Theorem 2.1 hold for A{py), Bipg), Clog), Qlpa), Bipg) and d{py) = 0. Hence the
feedback law {11} for the unperturbed problem LQR{py ) exdsts and is optimal with
respect to the objective functional F{x, u, pp). Moreover {7} defines an asymptotic
stable closed-loop system and we are allowed to replace all #(t) in (10} by {11}.
Hence LQR{p,) is reformulated by NLP{p,}, which is given by

Min. F(z, Koo, p) = % f (VT Q{pIa(t) + {Roax ()T Rip)Roox(t) dt
(NLP{g}) 3
st 1(t) = (A(p) — B{p)Keo)z(t) + dip)

II:\D} = .I'.;]I::p},

(13)

with Fiz, K., p) = Fix,—K.r,p), where the output {1} is neglected. Since
the feedback law (11} is optimal and minimizes the objective, it follows, that the
pptimal solution of {13} minimizes the objective, too.
Note, that {13} is not any longer a perturbed optimal control problem: it is a
perturbed finite dimensional nonlinear optimization problem {NLP} with equality
constraints. Moreover, due to the theory of initial wvalue problems for Linear
differential equations systems as in {13), the exdstence and uniqueness of the state
variahle r depending on the coefficients of the matrix K., can be assumed. This
vields x(t) = x(t: A, p) and {13} can be further transformed to the unconstrained
perturbed nonlinear optimization problem

P B
WMin., F{ Koo, ) = gfxgt.fim,p} Qipixit Kea, o) (14)
0

+i{ Koozt Ko, p}}TR{p} Koozt Koo,y p) di



with P{I{M,p) = Flxit: Ko, p), — Kozt Ko, p), o) and x(t: K, p)isthe unique
solution of the perturbed linear differential equation system in (13}, An optimal
solution of (14) solves the feedback law {11) {or (12) respectively), if the assump-
tions of Theorem 2.1 hold.

Problem (14} defines an NLP problem of the form

min H(z, p), (15)

which will be investigated hereafter due to reasons of readability. Problem {15}
can be solved efficiently for a suitable function H: R"™ % P — B and a fixed
parameter p = pp by standard techniques, e.g. SQP methods. The dimension
e - 1t of the optimization vector = results from the dimension of the matrix £ .
Unfortunately these methods are neither able to calculate K (p) on-line in the
presence of perturbations and we have to look for additional concepts.

%o far we have been able to transform a perturbed optimal control problem
into a perturbed NLP problem. We are espedally interested in the differentia-
bility of the optimal solution z{p) with respect to the perturbation parameter p.
Sufficient conditions for such solution differentiability are given by

Theorem 3.1 (Differentiability of optimal solutions) Let H be twice con-
tinuously differentiable with respect to = and p. Let 3 be a strong reguiar focaf
sofution of {15) for a fired parameter pg:

1. (necessary optimality conditions)

?SH{:G:PG} = D:

2. {second order sufficient conditions)
v VL H{z, oo = 0, € R, v £ 0.

There then erists a neighborfiood Plpg) such that (15) possesses a unigue strong
regular local sofution x(p) for all p € P(p). Furthermore, x(p) is a continuously
differentiable function of p in Pipy) and it helds, that

. s S . .
vierx:ﬂs.Fh)Ipt‘PG) = _vipHr\*yﬂ:pﬂ) r\jﬁ)

Herein V2, H denotes the Hesslan of the objective. Note, that the left matrix in
{18} is non-singular on the assumptions of Theorem 2.1. Hence, the sensitivity
differentials dx/dp at pp can be calculated explicitly by solving the linear equation
system.:

dx. . - . .
d—pﬂﬁn} = — (V3L H{z0,00)) ' V 3 H {0, 00) (17}



The proof of the theorem iz based on the implicit function theorem and can be
found for the more general case of constrained nonlinear optimization problems
in Fiaceo [4] or Buskens [1]. The assumptions in Theorem 3.1 can be checked
numerically,

This type of strong C!-stability of the optimal solution is crucial for designing
real-time approximations of perturbed solutions. In general, sensitivity deriva-
tives do not always exist in case of constrained NLP problems, e.g. at pointswhere
the set of active constraints changes. However, we deal with an unconstrained
problem which allows for some additional features. The sensitivity differentials
in {17) permit an approximation of the optimal perturbed solution z{p) by its
first order Taylor expansion:

. . . . ' dx, .
zHp) = z{po + Lp) w2 ELPIJ==3wﬂ)+d—pwﬂ)w—pﬂ)=sﬂ+d—p%)eﬁﬁ- (18}

The quantities z{pg) = z and %Lpg} are computed off-line. The benefit of {18} is
then, that only a matrix-vector multiplication and a vector-vector addition have
to be performed on-line to approximate x{p) very rapidly. Consecuently, {14)
iz particularly suitable for time critical processes and hence can be used as a
real-time approximation.

The Sensitivity Theorem 2.1 predicts the exdstence of a neighborhood where
the rank of the controllability and observability matrixes remain unchanged, This
guarantees the existence of a perturbed feedback law (12). Hence {18} can be used
to improve the feedback law (11} and to approximate the optimal feedback law
12) by

, _ . AR, , ,
at) =~  Keotre) + 2240m) 259 ), (19)
Znce di
- - - Yea .
Keolp) 7 Kool p) = Realpo) + I (o) (20
holds.

When dealing with approcdmations of the form {19} and (20) one has to ensure
that a change in the parameter p does not change the structure of the problem,
e.g. the stability and observability assumptions in {2} and (9). Hence in order to
guarantee a good approximation of the perturbed solution z(p) and respectively
Reo{p) by (18) the deviation Ap must at least not cause a change in the rank
of the controllability and observability matrices in (2) and {9}, However, the re-
gion of possible deviations can be checked off-line by appropriate computational
simulations. In the case of perturbations causing structural changes, the space
of reasonable perturbations can be covered by a family of nominal values (o),
i=1,2,... and sensitivity derivatives to synthesize the perturbed solution ade-
guately. To simplify the subsequent descriptions we assume that deviations Ap



do not influence the structure an especially the rank of the matrices in {8} and
(9% will stay unchanged.

Equations (19) and (20} vield acceptable real-time approsdmations for at least
small perturbations Ap. To quantify these approximations the following result is
of interest, cf. Buskens [2].

Theorem 3.2 Let the assumptions of Theorem 5.1 hold and et the function H
in {15) be three times continuously differentiable with respect to z and p. Then
there erists a neighborhood Ulpy) of po with

I=(e) — o)l = OfflAp]*), (21)
15 =(p), ) — H{Hp), )| = O 22, (22)

Mote, that the optimality of the objective is improved in comparison to the first
order approximation of the feedback law in {10), although the variables in Ko.(p)
are still of the order of Of]|Ap||*).
A feedback law {11}, {12} or (19} is instable if the corresponding objective fune-
tional tends to infinity if ¢ does. Hence the improved order of optimality {quadratic
approximation) in the objective functional for the feedback (19) indicates a more
robust feedback lawr, than one would have expected from the first order Taylor
approximation in {20},

Hereafter we illustrate the theoretical results presented before and apply feed-
back law (19) to the classical inverted pendulum.

4 Example: The balancing rod

To give an example we consider the classical example of a car with a rod on the
top, balancing a ball attached to the top of the rod {(ef. Figure 1). The equa-
tions of motion for the inverse pendulum are given by the well known nonlinear
differential equation system.:

(A + b + mlf cos E"— mld? sind
(I +mi*¥ — mglsind = —mhbcosd.

U,

(23)

Herein the state variable w0 : [0, 00} — IR defines the position of the car, while
the angle of the pendulum is given by # : [0,00) — IR. The system can be
controlled by the acceleration % : [0, 00y — IR. The constant m = 1[kg] denotes
the mass of the ball, Af = 10[kg| the mass of the car, ! = 1[n] the length of the
pendulum and g = 9.80855rn/s%] is the gravitational constant.

Hereafter let perturbations in the system dynamics and in the objective functional
be given by p := (M, m, !, )T € R with g = (10,1,1,0.57 and o defined in
the objective {26),{27).



Figure 1: The Balancing Rod
Linearization of {23} around the working point (w,ib,ﬁ',ﬁ")T = {0,0,0,0% and
exploiting sin# 7= £ and cos# = 1 leads to the first order Linear system

(1) 01 0 0 wit) 0
wt) | | 00 smm O o0 || wmm |y
8ith 0 0 0 1 Bt} 0 !
ith Lnnfﬁﬂ*%fn—]af (1) MM:M——;]M

—:Afg] —:E(p)

(24)
if the mass of the pendulum is assumed to be given as a point mass. For reasons

of readability let x(t) := (wit), wid), (1), H(#1NT € IRY, hence {24) is of the form
{ {2 (Z), &1L, ¢ {

() = Alp)x(t) + Blpju(l), (25)

which iz equivalent to the definition of the perturbed dynamics in (10},
Note, that the perturbations in (24) and {25) appear non-linear.
The objective functional to be minimized iz

Fleuz) =3 [ =07 Qe)att) + ut) Biopuit) d, (%)
with G
o 0 0 O

A= o oo o |€BR™ RE=(1-a)eR™ (@)
0 00 0



and o €]0,1] and ay = 0.5.

Since
rank(|Blp), A{pa) B{po), A{pa)* Bipo ), Alpo ) Bl pa)])

0.0 0.005 0.0 0.022 J
Cownp| 0085 00 002 00| _, (28)
- 0.0 —0.048 00 —024 [T°T

—0.048 0.0 —0.24 0.0

the system Is controllable and hence { A{pp), B }) is stabilizable.
Moreover,
+/0.5 0.0 0.0 0.0
. - 0.0 0.0 0.0 0.0 .
Plaa) = V@) = 4o 00 00 00 )
0.0 0.0 0.0 0.0

vields the observability of the the system {A{m ), Di{p)) since
Dipo)
Dip)A(
rank Lpﬂ}, Wo) | _ rank(0.71e;, 0.71eg, —0.23¢q, —0.33e12) = 4 = x,
Dipa)Aipe)"~"
(30}
where =; denotes the #'th unit vector.
Hence the assumptions of Theorem 2.1 hold and the unigue positive solution
S* = S*(pg) of the unperturbed algebraic Riccati equation {f)

SA(py) — SB(p) Bip ) " Bl )T S + Qlpo) + Alpp)T5 =0 (31}
can be calculated to

2.78 T 57.65 26.04
TTTO 3v44 0 20534 132341

ST=S") = | gres 20824 747663 3323.40 22)
26.04 13241 322240 1477.44
which defines a stable closed-loop system
u(t) = — Kool )2(8) (33)
in the unperturbed case,
Eoofpg) = Ry "B S*{p, ) = — (1.00, 5.57, 260.28, 115.20). (24}

Next we consider perturbations p = {Af,m,{, e)7. All assumptions of Theorem
2.1 are satisfied for the nominal problem. The Hessian in Theorem 2.1, in par-
ticular, is positive definit. There then exists a neighborhood P{py} such that
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{24)—{27) possesses a unique strong regular local solution () = K (pix(t) for
all p € Pim). Purthermore, the matrix A (p) Is a continuously differentiable
function of pin FP{pe) and we can calculate the parametric sensitivity differentials

%f Yy in (17). Since we have 2 =4, m = 1 and ¢ = 4 we have a tensor

dr,. 4K, o ,
( dp t“po}) =< dp mﬂ}) ion, . ERTI (35)

) zub
To calculate the approxdmation in {19} we define the matrix (%@)) c IR*™

b}r E
AR, . - AR, .
) () .
( dp ik dp Ltk
This yields
—4.98.10-7 —4.16-1077 —4.70-10-7 —2.00
L = [ _gm —0.20 044 —6.48
dp B —21.85 —20.51 —24.22 —48.45 |’
—9.73 —7.01 —68.59 —21.89
(37)
which can be used to rewrite the feedback law in (19} by
T
, - dien . , ,
ity = | Kt + { (=) 80) | 200, (38)

which will be applied hereafter.

Mote, that the sensitivities of the feedback matrix with respect to perturbations
in M, m, ! for the position of the car are much smaller (s 10~} than the others.
This indicates, that the value { K.{p)) will be nearly unchanged for perturba-
tions in M, m, !, (fe{p)h »= —1.00. Moreover, the feedback law in view of the
angle of the pendulum is sensitive in case of perturbations, of. row 2 of {37).
Furthermore, as a spin-off, we can note the high sensitivity of the feedback law
for the angel velocity in case of perturbations in the length of the pendulum
= —B8.59,

In order to judge the quality of the real-time feedback adaption for the inverse
pendulum, we set up the following deviations

Ap, = {2.0,-0.5,1.0,0.0)7, A = (5.0,2.0,1.0,0.0)7T,
Ap. = (-0.50.0,0.0,0.2)7, Aps = (0.0,-0.5 1.0, 0.0)7,
Mp, = (—0.5,—0.5, —0.5, —0.2%7, Apy = (2.0, -0.8 1.0, —0.4)7,
Ap, = (—3.0,1.2 -0.5,01)7, Ap, = (7.5,1.5,1.0,0.27,
Ap, = (=2.0,7.0,4.0,0.2)7, Mgy = (3.0,-0.55.0, -0.1)T

11
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The parameter values are then defined as p = py + &y, & € {a,...,5}. To
compare the different solutions, we define errors ¢, ¢ = 1,...,4:

G = ot £po),p) — it Kip) Bl e,
(2 = |nult Kip)p) — nult: K(g), |2,
¢ = |lutt: &0m0), ) — vt Kip), bl o2,y
(o= lut: Kp),p) — ult: K{p), o) c=.

t 2
1l = ( [ IIf{tPIIzdl‘> (20)

denotes the £2-Norm of a function f: [0,4;] —= R, ¢t; € RU {oco}. In extension
we present the values of the objective function (28) evaluated for the different
feedback solutions, to be able to check the optimality of the solutions with re-
spect to the objective value and to wverify the higher order approximation of the

Herein

objective as predicted in Theorem 2.2,

The feedback laws (11), (12) and {19} obtained for the linear model are used
hereafter as closed-loop controllers for the nonlinear dynamics {23} of the inverse
pendulum. For all computations the initial value x{0) = (0,0, 0.2, 0T is used.

| F(& (po),p) | FIEELP) [ FIER, P [ 4 2 G 3
| 760 10% | 616.10° | 616.10° | 2.00 101737 10-1 |03 101|141
o || 330-10% | 11910 | 118-10° | 111 10'(6.43 252.10%[1.26. 10t
pe || 148.10% | 133.10% | 132.10% |1.35.10%(3.00 150 10| 125
e || 5400107 | 177.10% | 176.10% |1.22. 10%|2.04 265 101|304
po || 283107 | 211.10% | 243.10% |s05  |631 101 101|191

By 155 10% 107 108 1.05-10% | 1.03-10%(8.82 101 | 7.20. 10%|150-10%
Pa 131-102 110- 102 110-10% | 1.55 101|557 101 | 1.18- 101|118
361 10% 252 10% oo 103 107% oo 118
118 108 118 1% oo 0.59 oo 113
204 10° 201108 oo 118 oo 815

w
8§88

Table 1: Comparison of Solutions

Case 1: Small perturbations

As a first case we investigate small deviations Ap, = (2.0, -0.5,1.0, 0.0)T. Fig-
ures 2 - 4 show the solutions for the state variables x1{t}-z,(t), the objective
function and the control function w(t) for ¢+ € [0,30]. The dash-dotted curve
shows the unperturbed solution for the nominal Riccati controller {11} with un-
perturbed dynamics, the grey solid curve presents the solution calculated with
the nominal Riccati comtroller {11) but perturbed dynamics, the dashed curve
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Figure 8 x{t:m) (left), xo(t: py) (right)

Figure 7: f;xl{i’:p&}z + w7 oy Y2 (left), uit: py) (right)
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shows the optimal solution of the perturbed problem with Riccati controller {12)
and the black solid curve gives the solution of the perturbed problem with the
improved optimal controller {19}, It should be noted, that the caleulation of {19)
requires only 16 additional multiplications and additions at each feedback step.
The nominal Riccati controller iz able to compensate for these small perturba-
tions in an asymptotic sense, ¢ — oo. Nevertheless we have to notice, that the
classical Riccati controller is far away from the optimal solution. The pictures
demonstrate the capacities of the improved controller {13}, whose solution is con-
gruent with the exact perturbed solution.

Case 2: Medium perturbations

Next we investigate medium deviations Ap, = (5.0,2.0,1.0,0.0%7. Figures 5 -
7 again present the solutions for state xi(¢}-x.(t), objective and control x{t) for
t € [0, 30]. As before we find, that the nominal Riccati controller {11} applied to
the perturbed dynamics {grey solid curve) is able to compensate for these medium
perturbations in an asymptotic sense, ¢ — co. But we observe an unwanted and
heavily oscllating behavior of the control variable, which causes oscillations in
all states: Position and velocity of the car, angle and angle velocity of the pendu-
lum. The solution obtained by this nominal Riccati controller {11} has nothing
in common with the optimal solution obtained by {12} {dashed curve). Elsewise
the improved optimal controller (19) applied to the perturbed dynamics {black
solid curve): The control and state variables are pretty close to the optimal solu-
tion. Except for the position of the car (Figure 5, left). Here we find a somewhat
different trajectory for ¢+ € [3,13], but for ¢+ & [13, 20] the solution is quite con-
gruent with the exact perturbed solution. Mote, that the objective is some what
different at this time window, but that the objective values are nearly the same
at the terminal time ¢ = 20, compare Table 1.

Case 3: Larger perturbations

Next we investigate larger deviations &py = (7.5, 1.5, 1.0,0.2)7, Figures & - 10
show the solutions for the state and control variables and the objective fune-
ticnal for ¢+ € [0,15]. The nominal Riccati controller {11) applied to the per-
turbed dynamics {grey solid curve) is not any longer able to compensate for these
perturbation not even in an asymptotic sense, ¢ — oo, The inverted pendulum
becomes instable by an increasing oscillating behavior. Hence the objective value
Fi{K{pg), p) as well as {1, {z tend to infinity.

Observe, that the improved optimal controller (19) applied to the perturbed dy-
namics {black solid curve) is not only able to compensate for these perturbation
but also very close to the optimal solution obtained by {12} (dashed curve). The
optimal value of the objective is achieved very good, compare Table 1, which was
predicted by Theorem 2.2, Moreover the robustness properties are demonstrated,
which reflect the abilities of the improved optimal controller {19} to maintain ad-
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equate performance {optimality) as well as stability in the sense of variations and
errors in the model dynamics.

5 Conclusion

The development of robust controllers, able to optimally fulfill an user defined
objective function is still a demanding and complex task. This paper is concerned
with a new method of calculating higher order approximations of perturbed op-
timal Riceatl controllers {LQRY. The technique of parametric sensitivity analysis
of unconstrained nonlinear optimization problems was used to improve optimal
controllers in the presence of perturbations. It was shown, that the time con-
suming part of the calculation can be done off-line and an approximation of the
perturbed solutions can be given within a few nanoseconds, exploiting the differ-
entiability of the solution using a Taylor expansion. Finally, the capability of the
proposed method was shown in the simulation results of an inverted pendulum.
The numerical results clearly indicate, that the on-line adaption of the optimal
controller approximation exhibit a favorable and robust quality, since the objec-
tive iz achieved with sufficiently high precizsion and the computational time for
the approximation is much smaller than the recalculation of the exact perturbed
optimal controller.
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