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Abstract

We report on a new iterative method for regularizing a nonlinear operator equation
in Hilbert spaces. The proposed algorithm is a combination of Tikhonov regularization
and a fixed point algorithm for the minimization of the Tikhonov–functional. Under the
assumptions that the operator F is twice continuous Fréchet–differentiable with Lipschitz–
continuous first derivative and that the solution of the equation F (x) = y fulfills a smooth-
ness condition we will give a convergence rate result. Numerical results with data from
Single Photon Emission Computed Tomography (SPECT) show the rapid convergence of
the proposed algorithms.

AMS Classification. 65J15, 65J20, 65J22, 44A12

1 Introduction

In this paper we consider the computation of an approximation to a solution of a nonlinear
operator equation

F (x) = y (1.1)

from noisy measurements yδ with
‖yδ − y‖ ≤ δ . (1.2)

If the problem is ill-posed, then (1.1) cannot be solved in a stable way and regularization methods
have to be applied.
In recent years, many methods have been proposed for the regularization of nonlinear ill-posed
problems. Prominent examples are Tikhonov regularization [16, 17, 5] and iterative algorithms
like Landweber methods [8, 10], Levenberg–Marquardt methods [6], Gauss–Newton [1, 2], con-
jugate gradient [7] and other Newton–like methods [9]. In many practical applications, iterative
methods show a good performance. On the other hand, convergence results can only be ob-
tained under severe restrictions on the operator, and for applications it seems often impossible
to meet these conditions.

1



Probably the best understood regularization method is Tikhonov regularization. As an
approximation to a solution, a global minimizer x

δ

α
of the Tikhonov functional

Φα(x) = ‖yδ − F (x)‖2 + α‖x − x̄‖2 (1.3)

with regularization parameter α is taken. If x∗ denotes a solution of F (x) = y and α is chosen
properly, then it can be shown that x

δ

α
→ x∗ as δ → 0 provided the operator F fulfills some

slight restrictions (mainly, it has to be assumed that the operator has a Lipschitz continuous
Fréchet derivative). Moreover, if we assume that the solution x∗ fulfills a smoothness condition
x∗ − x̄ = (F ′(x∗)

∗F ′(x∗))
ν), then an estimate

‖x∗ − x
δ

α
‖ = O(δ2ν/(2ν+1))

holds. For more details we refer to [4].
Besides choosing the proper regularization parameter, a main difficulty in Tikhonov regulari-
zation is the actual computation of a global minimizer of the functional (1.3). As the operator
F is nonlinear, the functional is not convex any more and might thus have several (even local)
minimizer. A chosen optimization routine has to make sure that a global minimizer is recon-
structed. To this end we have introduced the TIGRA–algorithm which combines Tikhonov
regularization with Morozov’s discrepancy principle as parameter choice rule and a gradient
method for the computation of a minimizer of the functional, see [12, 14] and Section 2. Under
relatively mild restrictions on the operator we were able to show that the method is of optimal
order for ν = 1/2. Namely, we have to assume that

I) F is twice continuous Fréchet-differentiable

II) the Fréchet derivative F ′ is (globally) Lipschitz-continuous,

‖F ′(x) − F ′(x̃)‖ ≤ L‖x − x̄‖ (1.4)

III) and the solution x∗ of (1.1) fulfills a smoothness condition

x∗ − x̄ = F ′(x∗)
∗ω (1.5)

with ‖ω‖ ≤ % and % small enough.

In the following, we will refer to these conditions by I–III.
The speed of a reconstruction of the TIGRA algorithm depends mainly on the gradient method
used to reconstruct a global minimizer of the Tikhonov functional with fixed regularization pa-
rameter. It is a well known fact that the speed of convergence for the gradient method is
sometimes slow, so it might be of great interest to replace the gradient method by a faster
algorithm. Moreover, gradient methods for the minimization of a functional Φ(x) have the
structure x

k+1
= x

k
− βkΦ

′(x
k
) with step size parameter βk that has to be determined addi-

tionally. In [14] a rule for the choice of βk that uses the knowledge of ‖ω‖, ω as in (1.5), was
proposed. In many practical applications ‖ω‖ will not be known explicitly and βk has to be
determined by other methods, i.e. βk = arg minβ{Φ(x

k
− βkΦ

′(x
k
))}, which increases again

the computational time. Thus the aim of this paper is to introduce faster methods for the
reconstruction of a global minimizer of the Tikhonov functional. In particular, we will focus on
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fixed point iterations.

The structure of the paper is as follows. In Section 2 we will recall some useful properties of
the TIGRA-algorithm and the Tikhonov functional. In Sections 3 and 4 we will introduce and
analyze two different fixed point iterations for the computation of a minimizer of the Tikhonov
functional with given parameter α. Based on these results, a fixed point based algorithm for the
regularization of nonlinear problems will be proposed in Section 5. Finally we will illustrate
our results in Section 6 with a numerical example from Single Photon Emission Computed
Tomography (SPECT).

2 Some results on TIGRA

The TIGRA–algorithm combines Tikhonov regularization with a gradient method for the iter-
ative construction of a minimizer of the Tikhonov functional. The algorithm has been investi-
gated extensively in [14]. In principle it works as follows:

• given yδ, δ, q, x̄, x0 and α0

• set k = 0, xα−1
= x0

• Repeat

� αk = qkα0

� compute x
δ

α
k

= arg min Φαk
(x) by the gradient method

with starting value xδ
αk−1

� k = k + 1

until ‖yδ − F (x
δ

α
k

)‖ ≤ 5δ

The analysis in the following sections is based on results from the paper mentioned above, and
thus we will summarize them now. The first result shows that the Tikhonov functional with
nonlinear operator F is still locally convex in a neighborhood of a global minimizer x

δ

α
.

Theorem 1 Let the conditions I–III be fulfilled, and assume that % with ‖ω‖ ≤ % is small
enough. For a global minimizer x

δ

α
of the Tikhonov functional Φα(x) we define the function

φ(t) = Φα(x
δ

α
+ th) , ‖h‖ = 1 . (2.1)

The function φ′′(t) is strictly positive for all 0 ≤ t ≤ r(α), φ′′(t) > γα, with

r(α) =
1

1 +
√

2
min

{√

2κα

3
,
2κα

K

}

, (2.2)
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with constant K > 0, κ = 1 − 3L% − γ and a free parameter γ > 0 that has to be chosen such
that κ > 0 holds. Thus φ is strictly convex in

Kr(α)(x
δ

α
) :=

{

x ∈ X : x = x
δ

α
+ h, ‖h‖ ≤ r(α)

}

. (2.3)

(see [14], p.441). Based on this result, it was shown that the gradient method converges to a
global minimizer of the Tikhonov functional if it is started with x0 ∈ Kr(α)(x

δ

α
). The next two

Theorems are concerned with the choice of α0 and q.

Theorem 2 Let x0 be given, and assume that the conditions of Theorem 1 are fulfilled. Then
there exists α0 such that x0 ∈ Kr(α0)(x

δ
α

0
).

(see [14], p.452)

Theorem 3 Let the conditions of Theorem 1 hold and assume that αk = qkα0. Then q < 1
can be chosen such that

x
δ

α
k−1

∈ Kr(α
k
)(x

δ

α
k

) . (2.4)

Moreover, if we assume ‖yδ − F (x̄)‖ > 5δ, then there exists k
∗
∈ N with

δ ≤ ‖yδ − F (xδ
α

k∗

)‖ ≤ 5δ < ‖yδ − F (xδ
α

k∗−1
)‖ , (2.5)

and
‖x∗ − xδ

α
k∗

‖ = O(
√

δ) . (2.6)

For a proof, see again [14]. With these results, the convergence proof for the TIGRA method
works as follows. For a given x0 (in most cases, it is convenient to set x0 = x̄) we chose
α0 according to Theorem 2. As x0 ∈ Kr(α0)(x

δ
α

0
), the gradient method converges to xδ

α
0
. If

q is chosen according to Theorem 3, then xδ
α

0
∈ Kr(α1)(x

δ
α

1
), and the gradient method for

minimizing Φα1
(x) and starting value xδ

α
0

converges towards xδ
α

1
and so forth. If the outer

iteration finally stops, then (2.6) guarantees the order optimality of the method. As we have
pointed out earlier, the main goal of this paper will be the replacement of the gradient method
by a fixed point iteration. As the above given proof for the order optimality shows, it will be
sufficient to show that the new method converges if it is started with a starting function in the
convexity area of the Tikhonov functional.

3 Tikhonov regularization and Fixed Point iterations:

A first attempt

The starting point for the development of our first fixed point algorithm is the necessary
condition for a minimum of (1.3):

α(x − x̄) = F ′(x)∗(yδ − F (x)) . (3.1)

Setting

Sα(x) =
1

α
F ′(x)∗(yδ − F (x)) + x̄ , (3.2)
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a minimizer of (1.3) clearly is a fixed point of Sα . However, Sα will be a contraction for large
α only: In case of a linear operator A, we get

‖Sα(x) − Sα(x̃)‖ =
1

α
‖A∗A(x − x̃)‖ ≤ ‖A‖2

α
‖x − x̃‖ ,

i.e. Sα is only a contraction if ‖A‖2 < α holds. As α(δ) → 0 for δ → 0, it depends on the data
error whether the fixed point iteration x

k+1
= Sα(x

k
) can be used for the reconstruction of a

solution of (3.1). A slightly more complicated but otherwise similar result holds in the case of
an arbitrary nonlinear operator.

Proposition 4 Assume that the minimizer x
δ

α
of (1.3) and x, x̃ belong to a ball with radius r

and center x̄. With an operator F fulfilling I-II we obtain an estimate

‖Sα(x) − Sα(x̃)‖ ≤ c

α
‖x − x̃‖ , (3.3)

with

c = L‖yδ‖ + L(‖F (x̄)‖ + r‖F ′(x̄)‖ + Lr2) + (Lr + ‖F ′(x̄)‖)2 + Lr(Lr + ‖F ′(x̄)‖) . (3.4)

Proof:
For an operator with I-II we get the Taylor expansion

F (x̃) = F (x) + F ′(x)(x̃ − x) + R(x, x̃) , (3.5)

and R fulfills an estimate
‖R(x, x̃)‖ ≤ L‖x − x̃‖2 . (3.6)

We obtain with (3.2)

Sα(x) − Sα(x̃) =
1

α
(F ′(x) − F ′(x̃))

∗
yδ +

1

α
(F ′(x̃)∗F (x̃) − F ′(x)∗F (x))

(3.5)
=

1

α
(F ′(x) − F ′(x̃))

∗
yδ +

1

α

(

(F ′(x̃) − F ′(x))∗F (x)

+F ′(x̃)∗F ′(x)(x̃ − x) + F ′(x̃)∗R(x, x̃)
)

. (3.7)

By using (1.4), the first term can be estimated by

‖ 1

α
(F ′(x) − F ′(x̃))

∗
yδ‖ ≤ L‖yδ‖

α
‖x − x̃‖ . (3.8)

As x, x̄ ∈ Br(x̄), we get

‖F ′(x)‖ ≤ ‖F ′(x) − F ′(x̄)‖ + ‖F ′(x̄)‖ ≤ L‖x − x̄‖ + ‖F ′(x̄)‖
≤ Lr + ‖F ′(x̄)‖ ,

‖F (x)‖ ≤ ‖F (x̄)‖ + ‖F ′(x̄)‖‖x − x̄‖ + L‖x − x̄‖2

≤ ‖F (x̄)‖ + ‖F ′(x̄)‖r + Lr2 .
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Using these estimates, the second term in (3.7) can be estimated by

1

α
‖(F ′(x̃) − F ′(x))∗F (x) + F ′(x̃)∗F ′(x)(x̃ − x) + F ′(x̃)∗R(x, x̃)‖

≤ 1

α

(
L(‖F (x̄)‖ + ‖F ′(x̄)‖r + Lr2) + (Lr + ‖F (x̄)‖)2 + 2Lr(Lr + ‖F (x̄)‖)

)
‖x − x̃‖ . (3.9)

Combining (3.8) and (3.9) finishes the proof.
�

If we assume c/α < 1, then Sα is at least locally a contraction and a fixed point iteration
x

k+1
= Sα(x

k
) can be used to reconstruct a solution of (3.1). However, we should keep in

mind that (3.1) is only a necessary condition for a global minimizer of (1.3), and thus the
iteration might converge to a critical point only. To ensure convergence to a global minimizer,
we have to use some convexity properties of the Tikhonov functional. According to Theorem 1
the Tikhonov functional is convex in a neighborhood Kr(α)(x

δ

α
) of a global minimizer (for the

definition of Kr(α)(x
δ

α
), see (2.3). Now, if we start the fixed point iteration with x0 ∈ Kr(α)(x

δ

α
),

then it is easy to see that the iteration converges to the global minimizer:

Theorem 5 Let the conditions I-III be fulfilled, and assume that x0 ∈ Kr(α)(x
δ

α
). If c

α
< 1,

then the sequence of fixed point iterates x
k+1

= Sα(x
k
) converges to the global minimizer of (1.3)

in Kr(α)(x
δ

α
) and the error estimate

‖xδ

α
− x

k
‖ ≤

(
c
α

)k

1 − c
α

‖x1 − x0‖ (3.10)

holds.

Proof:
The global minimizer x

δ

α
of (1.3) fulfills (3.1). Now let us assume there exists x̃ ∈ Kr(α)(x

δ

α
)

with (3.1) and x̃ 6= x
δ

α
. We set h = x̃ − x

δ

α
and

φ(t) = Φα(x
δ

α
+ th), 0 ≤ t ≤ 1 .

In particular we have φ(0) = Φα(x
δ

α
) and φ(1) = Φα(x̃). The function φ(t) is twice continuous

differentiable, and we have

φ′(t) = φ′(0) + φ′′(ξ)t, 0 ≤ ξ ≤ 1 .

According to Theorem 1, the function φ′′(ξ) is strictly positive for 0 ≤ ξ ≤ 1 if the conditions
I–III hold, and

0 = φ′(0) < φ′(1) = −Φα
′(x̃)h .

Thus x
δ

α
is the only point with (3.1) in Kr(α)(x

δ

α
). By the contraction property of Sα we find

‖x
k+1

− x
δ

α
‖ = ‖Sα(x

k
) − Sα(x

δ

α
)‖ ≤ c

α
‖x

k
− x

δ

α
‖ , (3.11)
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and all x
k

stay within Kr(α)(x
δ

α
) if only x0 ∈ Kr(α)(x

δ

α
). It follows by induction from (3.11) that

‖x
k+1

− x
δ

α
‖ ≤

( c

α

)k+1

‖x0 − x
δ

α
‖ ,

and the sequence of iterates converges to the global minimizer x
δ

α
. Now, as in Banach’s fixed

point theorem, we get the error estimate

‖xk+n − x
k
‖ ≤

n∑

i=1

‖xk+i − xk+i−1‖ ≤
(

c
α

)k

1 − c
α

‖x1 − x0‖ ,

and by taking n → ∞ follows (3.10).
�

The condition c/α < 1 is of course a restriction. It is a well known fact that the regularization
parameter tends to zero if the data error level tends to zero, and thus c/α ≥ 1 for δ small
enough. However, in practical applications one usually has a fixed data error level, and it
depends on the size of the error level and the operator F if the fixed point iteration with Sα

converges.
Another problem is the choice of the starting value x0, as it has to belong to the convexity area
Kr(α)(x

δ

α
). As α → 0 for δ → 0 and r(α) = O(α) holds, we need a real good guess x0 for the

minimizer x
δ

α
and small error level. We will address this problem in Section 5.

4 A Fixed Point iteration for small regularization pa-

rameters

An advantage of the fixed point iteration x
k+1

= Sα(x
k
) with the operator Sα defined in (3.2)

is that the evaluation of Sα is relatively cheap. Indeed, we have to evaluate the operator F and
the adjoint of its Fréchet derivative only once. However, if we want to reconstruct a solution
of (3.1) for small α, then we have to think of a different method. It turns out that we can find
another fixed point formulation describing a minimizer of the Tikhonov functional that turns
out to be a contraction. As nothing is for free, we have to pay with a higher numerical effort
for the reconstruction. Moreover, we require the knowledge of a minimizer of the Tikhonov
functional with a bigger regularization parameter.

Theorem 6 Let x
δ

α
be a minimizer of the Tikhonov functional (1.3), x

δ

α̃
a minimizer of Φα̃

with
α = qα̃ , q < 1 (4.1)

and

Fα(x) = F ′(x)∗F ′(x) + αI , (4.2)

B(x
δ

α̃
− x)2 =

1

2

1∫

0

F ′′(x + τ(x
δ

α̃
− x))(x

δ

α̃
− x, x

δ

α̃
− x) dτ . (4.3)
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Then x
δ

α
is a fixed point of the equation x = Tα(x) with

Tα(x) = Fα(x)−1F ′(x)∗(yδ −F (x
δ

α̃
) + B(x

δ

α̃
− x)2)− qFα(x)−1F ′(x

δ

α̃
)∗(yδ −F (x

δ

α̃
)) + x

δ

α̃
. (4.4)

Proof:
As F is twice continuous Fréchet-differentiable, we have the Taylor expansion

F (x
δ

α̃
) = F (x) + F ′(x)(x

δ

α̃
− x) + B(x

δ

α̃
− x)2 , (4.5)

where B(x
δ

α̃
− x)2 fulfills an estimate

‖B(x
δ

α̃
− x)2‖ ≤ L

2
‖xδ

α̃
− x‖2 (4.6)

see e.g. [18], Vol. I. Inserting this into the necessary condition (3.1) gives

α(x − x̄) = F ′(x)∗(yδ − F (x
δ

α̃
) + B(x

δ

α̃
− x)2) + F ′(x)∗F ′(x)(x

δ

α̃
− x)

or
F ′(x)∗F ′(x)(x − x

δ

α̃
) + α(x − x

δ

α̃
+ x

δ

α̃
− x̄) = F ′(x)∗(yδ − F (x

δ

α̃
) + B(x

δ

α̃
− x)2) ,

which is equivalent to

x − x
δ

α̃
= Fα(x)−1F ′(x)∗(yδ − F (x

δ

α̃
) + B(x

δ

α̃
− x)2) − Fα(x)−1(α(x

δ

α̃
− x̄))

(4.1)
= Fα(x)−1F ′(x)∗(yδ − F (x

δ

α̃
) + B(x

δ

α̃
− x)2) − qFα(x)−1(α̃(x

δ

α̃
− x̄)) . (4.7)

As x
δ

α̃
is a minimizer of Φα̃,

α̃(x
δ

α̃
− x̄) = F ′(x

δ

α̃
)∗(yδ − F (x

δ

α̃
))

holds. Inserting this equality into (4.7) yields

x = Fα(x)−1F ′(x)∗(yδ − F (x
δ

α̃
) + B(x

δ

α̃
− x)2) − qFα(x)−1F ′(x

δ

α̃
)∗(yδ − F (x

δ

α̃
)) + x

δ

α̃
.

�

In the following we would like to show that Tα is a contraction. To this end, we have to estimate

Tα(x) − Tα(x̃) = Fα(x)−1F ′(x)∗(yδ − F (x
δ

α̃
) + B(x

δ

α
− x)2)

−Fα(x̃)−1F ′(x̃)∗(yδ − F (x
δ

α̃
) + B(x

δ

α
− x̃)2)

−q(Fα(x)−1 − Fα(x̃)−1)F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
)) . (4.8)

We are going to investigate the last term in (4.8) first.
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Proposition 7 Let Fα(x) be defined as in (4.2), q < 1 and let x
δ

α̃
be a minimizer of Φα̃ with

α = qα̃ (4.9)

‖yδ − F (x
δ

α̃
)‖ ≤ 3α̃% . (4.10)

Moreover, assume that x
δ

α̃
, x, x̃ ∈ Br(x

δ

α
), where Br(x

δ

α
) denotes a ball with center x

δ

α
and

radius

r = c̃
√

α ,

c̃ > 0. Then
‖(Fα(x)−1 − Fα(x̃)−1)F ′(x

δ

α̃
)∗(yδ − F (x

δ

α̃
))‖ ≤ c1‖x − x̃‖ (4.11)

holds, where the constant c1 is given by

c1 :=
3L%(5 + 24Lc̃)

4q
. (4.12)

Here, L denotes the Lipschitz constant in II) and ‖ω‖ ≤ %, ω as in III).

Proof:
Let z, z̃ be solutions of the equations

Fα(x)z = F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
))

Fα(x̃)z̃ = F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
)) .

As Fα(x), Fα(x̃) are invertible for α > 0 we have

Fα(x)(z̃ − z) = Fα(x)z̃ − Fα(x̃)z̃ + Fα(x̃)z̃ − Fα(x)z
︸ ︷︷ ︸

=0

= (Fα(x) − Fα(x̃))z̃

or
z̃ − z = Fα(x)−1(Fα(x) − Fα(x̃))z̃ .

With z̃ = Fα(x̃)−1F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
)) follows

z̃ − z = Fα(x)−1(Fα(x) − Fα(x̃))Fα(x̃)−1F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
)) . (4.13)

To simplify the notation we set

A = F ′(x) (4.14)

Ã = F ′(x̃) . (4.15)

and

B(x̃ − x)( · ) =

1∫

0

F ′′(x + τ(x̃ − x))(x̃ − x, · ) dτ (4.16)

B̃(x
δ

α̃
− x̃)( · ) =

1∫

0

F ′′(x̃ + τ(x
δ

α̃
− x̃))(x

δ

α̃
− x̃, · ) dτ . (4.17)
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The operators Ã and F ′(x
δ

α̃
) admit the Taylor expansions

Ã = A + B(x̃ − x) (4.18)

F ′(x
δ

α̃
) = Ã + B̃(x

δ

α̃
− x̃) , (4.19)

with A, Ã, B(x̃ − x) and B̃(x
δ

α̃
− x̃) fulfilling the estimates

‖A − Ã‖ ≤ L‖x − x̃‖ (4.20)

‖B(x̃ − x)‖ ≤ L‖x̃ − x‖ (4.21)

‖B̃(x
δ

α̃
− x̃)‖ ≤ L‖xδ

α̃
− x̃‖

(4.11)

≤ 2Lc̃
√

α . (4.22)

It follows

Fα(x)−1(Fα(x) − Fα(x̃))Fα(x̃)−1 = Fα(x)−1(A∗A − Ã
∗

Ã)Fα(x̃)−1

(4.18)
= Fα(x)−1(A∗A − A∗Ã)Fα(x̃)−1 + Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1

= Fα(x)−1A∗(A − Ã)Fα(x̃)−1 + Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1 (4.23)

and thus with (4.13)

z̃ − z = Fα(x)−1A∗(A − Ã)Fα(x̃)−1F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
))

︸ ︷︷ ︸

=:T1

+ Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
)) .

︸ ︷︷ ︸

=:T2

(4.24)

By (4.19), the first term can be further decomposed into

T1 = Fα(x)−1A∗(A − Ã)Fα(x̃)−1Ã
∗

(yδ − F (x
δ

α̃
))

︸ ︷︷ ︸

=:T11

+ Fα(x)−1A∗(A − Ã)Fα(x̃)−1B̃(x
δ

α̃
− x̃)

∗

(yδ − F (x
δ

α̃
))

︸ ︷︷ ︸

=:T12

.

Using (4.10), (4.9), (4.20) and

‖Fα(x)−1A∗‖ = ‖(A∗A + αI)A∗‖
‖Fα(x̃)−1Ã

∗‖ = ‖(Ã∗

Ã + αI)Ã
∗‖

}

≤ 1

2
√

α

(4.25)

‖Fα(x)−1‖ = ‖(A∗A + αI)‖
‖Fα(x̃)−1‖ = ‖(Ã∗

Ã + αI‖

}

≤ 1

α

we can estimate T11 by

‖T11‖ ≤ ‖Fα(x)−1A∗‖‖A − Ã‖‖Fα(x̃)−1Ã
∗‖‖yδ − F (x

δ

α̃
)‖

≤ L

2
√

α
‖x − x̃‖ 3α̃

2
√

α
%

=
3L%

4q
‖x − x̃‖ . (4.26)
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T12 can be estimated in the same way:

T12 ≤ ‖Fα(x)−1A∗‖‖A − Ã‖‖Fα(x̃)−1‖‖B̃(x
δ

α̃
− x̃)

∗‖‖yδ − F (x
δ

α̃
)‖

(4.22)

≤ L

2
√

α
‖x − x̃‖2Lc̃

√
α

α
· 3α̃%

=
3L2%c̃

q
‖x − x̃‖ . (4.27)

By (4.19), T2 can be rewritten as

T2 = Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
))

= Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1Ã
∗

(yδ − F (x
δ

α̃
))

︸ ︷︷ ︸

T21

+ Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1B̃(x
δ

α̃
− x̃)

∗

(yδ − F (x
δ

α̃
))

︸ ︷︷ ︸

T22

.

Because of
ÃFα(x̃)−1Ã

∗

= Ã(Ã
∗

Ã + αI)−1Ã
∗

= (ÃÃ
∗

+ αI)−1ÃÃ
∗

,

it follows
‖ÃFα(x̃)−1Ã

∗‖ ≤ 1 ,

and thus

‖T21‖ ≤ ‖Fα(x)−1‖‖B(x̃ − x)‖‖ÃFα(x̃)−1Ã
∗‖‖yδ − F (x

δ

α̃
)‖

≤ 1

α
L‖x − x̃‖3α̃% =

3L%

q
‖x − x̃‖ . (4.28)

Moreover, we have

‖ÃFα(x̃)‖ = ‖Ã(Ã
∗

Ã + αI)−1‖ = ‖(ÃÃ
∗

+ αI)−1Ã‖ ≤ 1

2
√

α
,

and we obtain for T22

‖T22‖ ≤ ‖Fα(x)−1‖‖B(x̃ − x)‖‖ÃFα(x̃)−1‖‖B̃(x
δ

α̃
− x̃)

∗‖‖yδ − F (x
δ

α̃
)‖

≤ 1

α
L‖x − x̃‖ 1

2
√

α
2Lc̃

√
α3%α̃ =

3L2%c̃

q
‖x − x̃‖ . (4.29)

Putting (4.13), (4.24), (4.26), (4.27), (4.28) and (4.29) together we arrive finally at

‖(Fα(x)−1 − Fα(x̃)−1)F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
))‖ = ‖z − z̃‖

≤ ‖T11‖ + ‖T12‖ + ‖T21‖ + ‖T22‖

≤
[
3L%

4q
+

3L2%c̃

q
+

3L%

q
+

3L2%c̃

q

]

︸ ︷︷ ︸

=:c1

‖x − x̃‖ ,
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which concludes the proof.
�

Next we will have a closer look at the first two terms of (4.8).

Proposition 8 Let the assumptions (4.9)-(4.11) hold. If z, z̃ denote the solutions of

Fα(x)z = F ′(x)∗(yδ − F (x
δ

α̃
) + B(x

δ

α̃
− x)2)

(4.30)

Fα(x̃)z̃ = F ′(x̃)∗(yδ − F (x
δ

α̃
) + B̃(x

δ

α̃
− x̃)2) ,

then
‖z − z̃‖ ≤ c2‖x − x̃‖ (4.31)

holds, where c2 is defined by

c2 =
5L

4q

(
3% + Lc̃2q

)
+

3%L

q
+

3

2
Lc̃ + L2c̃2 . (4.32)

Proof:
By (4.30) follows

Fα(x)(z̃ − z) = (Fα(x) − Fα(x̃))z̃ + Fα(x̃)z̃ − Fα(x)z

= (Fα(x) − Fα(x̃))z̃ + F ′(x̃)∗(yδ − F (x
δ

α̃
) + B̃(x

δ

α̃
− x̃)2)

−F ′(x)∗(yδ − F (x
δ

α̃
) + B(x

δ

α̃
− x)2)

and thus

z̃ − z = Fα(x)−1(Fα(x) − Fα(x̃))z̃
︸ ︷︷ ︸

T1

+ Fα(x)−1(F ′(x̃) − F ′(x))∗(yδ − F (x
δ

α̃
))

︸ ︷︷ ︸

T2

+ Fα(x)−1(F ′(x̃)∗B̃(x
δ

α̃
− x̃)2 − F ′(x)∗B(x

δ

α̃
− x)2)

︸ ︷︷ ︸

T3

. (4.33)

Once again, these three terms will be treated separately. Using definition (4.30) of z̃, we get

Fα(x)−1(Fα(x)− Fα(x̃))z̃ = Fα(x)−1(Fα(x)− Fα(x̃))Fα(x̃)−1F ′(x̃)∗(yδ − F (x
δ

α̃
) + B̃(x

δ

α̃
− x̃)2) .

(4.34)
Defining A, Ã as in (4.14), (4.15), we get as in (4.23)

Fα(x)−1(Fα(x)−Fα(x̃))Fα(x̃)−1Ã
∗

= Fα(x)−1A∗(A−Ã)Fα(x̃)−1Ã
∗

+Fα(x)−1B(x̃ − x)∗ÃFα(x̃)−1Ã
∗

.
(4.35)

With

‖yδ − F (x
δ

α̃
) + B(x

δ

α̃
− x)2‖

(4.10),(4.6)

≤ 3%α̃ +
L

2
‖xδ

α̃
− x̃‖2

(4.11)

≤ (3% + Lc̃2q)α̃

12



it follows from (4.34), (4.35)

‖T1‖ = ‖Fα(x)−1(Fα(x) − Fα(x̃))z̃‖
≤

(

‖Fα(x)−1A∗‖‖A − Ã‖‖Fα(x̃)−1Ã
∗‖

+‖Fα(x)−1‖‖B(x̃ − x)∗‖‖ÃFα(x̃)−1Ã
∗‖

)

‖yδ − F (x
δ

α̃
) + B(x

δ

α̃
− x)2‖

≤
(

1

2
√

α
L‖x − x̃‖ 1

2
√

α
+

1

α
L‖x − x̃‖

)

(3% + Lc̃2q)α̃

(4.9)

≤ 5L

4q

(
3% + Lc̃2q

)
‖x − x̃‖ . (4.36)

The term T2 is estimated with( 4.25) and (4.10) by

‖T2‖ = ‖Fα(x)−1(F ′(x̃) − F ′(x))∗(yδ − F (x
δ

α̃
))‖ ≤ L

α
‖x − x̃‖(3%α̃)

=
3%L

q
‖x − x̃‖ , (4.37)

and we are left with the last term in (4.33). By the Taylor expansion of F we obtain

F (x
δ

α̃
) = F (x) + F ′(x)(x

δ

α̃
− x) + B(x

δ

α̃
− x)2

or
B(x

δ

α̃
− x)2 = F (x

δ

α̃
) − F (x) − A(x

δ

α̃
− x) .

Simultaneously
B̃(x

δ

α̃
− x̃)2 = F (x

δ

α̃
) − F (x̃) − Ã(x

δ

α̃
− x̃)

holds, and thus

B̃(x
δ

α̃
− x̃)2 − B(x

δ

α̃
− x)2 = F (x) − F (x̃) + A(x

δ

α̃
− x) − Ã(x

δ

α̃
− x̃)

= F (x) − F (x̃) + (A − Ã)(x
δ

α̃
− x̃) + A(x̃ − x) . (4.38)

The Taylor expansion for F gives

F (x) − F (x̃) + A(x̃ − x) = −B(x̃ − x)2 ,

and inserting these terms into (4.38) yields

B̃(x
δ

α̃
− x̃)2 − B(x

δ

α̃
− x)2 = −B(x̃ − x)2 + (A − Ã)(x

δ

α̃
− x̃) . (4.39)

Now, using (4.14), (4.15) and (4.18) the term T3 can be decomposed as follows:

T3 = Fα(x)−1(F ′(x̃)∗B̃(x
δ

α̃
− x̃)2 − F ′(x)∗B(x

δ

α̃
− x)2) (4.40)

= Fα(x)−1A∗

(

B̃(x
δ

α̃
− x̃)2 − B(x

δ

α̃
− x)2

)

︸ ︷︷ ︸

=:T31

+ Fα(x)−1B(x̃ − x)∗B̃(x
δ

α̃
− x̃)2

︸ ︷︷ ︸

=:T32

. (4.41)
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By (4.39), (4.25), (4.11) and (4.9) we obtain

‖T31‖ = ‖ − Fα(x)−1A∗(B(x̃ − x)2 + (A − Ã)(x
δ

α̃
− x̃)‖ (4.42)

≤ ‖Fα(x)−1A∗(B(x̃ − x)2‖ + ‖Fα(x)−1A∗‖‖A − Ã‖‖xδ

α̃
− x̃‖ (4.43)

≤ 1

2
√

α

(
L

2
‖x − x̃‖2 + L‖x − x̃‖2c̃

√
α

)

(4.44)

≤ 3Lc̃

2
‖x − x̃‖ . (4.45)

For T32 holds

‖T32‖ = ‖Fα(x)−1B(x̃ − x)∗B̃(x
δ

α̃
− x̃)2‖ (4.46)

≤ 1

α
L‖x − x̃‖L

2
‖xδ

α̃
− x̃‖2 (4.47)

(4.11)

≤ L2c̃2‖x − x̃‖ . (4.48)

Thus we have

‖T3‖ ≤ ‖T31‖ + ‖T32‖ ≤
(

3

2
Lc̃ + L2c̃2

)

‖x − x̃‖ , (4.49)

and, putting together (4.33), (4.36), (4.37) and (4.49) we obtain finally

‖z − z̃‖ ≤ ‖T1‖ + ‖T2‖ + ‖T3‖

≤
(

5L

4q

(
3% + Lc̃2q

)
+

3%L

q
+

3

2
Lc̃ + L2c̃2

)

‖x − x̃‖ .

�

Theorem 9 Let the conditions I-III and (4.9)–(4.11) hold. Then the operator Tα, defined in
(4.4), fulfills an estimate

‖Tα(x) − Tα(x̃)‖ ≤ ĉ‖x − x̃‖ , (4.50)

with
ĉ := qc1 + c2 (4.51)

and c1, c2 defined in (4.12), (4.32).

Proof:
According to (4.8),

Tα(x) − Tα(x̃) = Fα(x)−1F ′(x)∗(yδ − F (x
δ

α̃
) + B(x

δ

α
− x)2)

−Fα(x̃)−1F ′(x̃)∗(yδ − F (x
δ

α̃
) + B(x

δ

α
− x̃)2)

−q(Fα(x)−1 − Fα(x̃)−1)F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
))

= z − z̃ − q(Fα(x)−1 − Fα(x̃)−1)F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
)) ,
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where z, z̃ are solutions of the equations given in (4.30). Lemma 8 states

‖z − z̃‖ ≤ c2‖x − x̃‖ .

From Lemma 7 follows

‖(Fα(x)−1 − Fα(x̃)−1)F ′(x
δ

α̃
)∗(yδ − F (x

δ

α̃
))‖ ≤ qc1‖x − x̃‖

and thus (4.50).
�

Proposition 10 Let r(α) be defined by (2.2), and assume x
δ

α̃
, x, x̃ ∈ Kr(α)(x

δ

α
). Then x

δ

α̃
, x, x̃

fulfill (4.11) with

c̃ = c̃(α, κ, L) =
1

L(1 +
√

2)
min

{√

2κ

3
,
2κ

K

√
α

}

. (4.52)

The proof follows immediately from the definition of r(α).
So far, it is not clear at all whether Tα is a contraction or not, as we have no information

on the size of the constant ĉ. However, this constant depends on several parameters, ĉ =
ĉ(L, %, q, κ), and we might show that, if the parameters are properly chosen, Tα is a contraction:

Theorem 11 Let ĉ be the constant defined in (4.51), 0 < qmin < q < 1, and assume that c̃ is
given by (4.52). If the solution x∗ of F (x) = y fulfills a smoothness condition

x∗ − x̄ = F ′(x∗)
∗ω

with ‖ω‖ small enough, then the operator Tα is a contraction in Kr(α)(x
δ

α
).

Proof:
It remains to show that ĉ < 1 holds for small ‖ω‖ ≤ %. First, we would like to rearrange
ĉ = qc1 + c2 in terms of Lc̃ and L%. We get ĉ = ĉ1 + ĉ2,

ĉ1 = L%

(
21 + 36Lc̃

2q

)

ĉ2 = Lc̃

(
9 + 6Lc̃

4

)

.

Let us start with ĉ1. First we observe that Lc̃ is bounded, and because of 0 < qmin < q < 1 we
do observe that

21 + 36Lc̃

2q

is bounded from above. Thus, if ‖ω‖ ≤ % is small enough, we find

ĉ1 <
1

2
.
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Now let us consider ĉ2. From the definition (4.52) of c̃ follows

Lc̃ =
1

1 +
√

2
min

{√

2κ

3
,

2κ

3K

√
α

}

≤
√

2κ

3
.

From Theorem 1 we recall κ = 1− 3L%− γ, where % has to be small enough to fulfill 3L% < 1.
Additionally, γ is a free parameter that has to be chosen such that κ > 0 holds. Thus we can
choose γ such that κ and consequently ĉ2 get arbitrarily small. In particular γ can be chosen
such that

ĉ2 <
1

2
.

Finally we get
ĉ < 1

and Tα is a contraction.
�

It might be of interest to discuss the influence of the parameter γ. A large γ means that κ is
close to zero, and thus r(α) is small as well. On the other hand, we have φ′′(t) > γα̃ (cf. (2.1)),
i.e. a large γ gives a larger lower bound on the second derivative of φ in Kr(α̃)(x

δ

α̃
).

Next, we can give a convergence result for our fixed point iteration.

Theorem 12 Let the conditions I-III be fulfilled, with ‖ω‖ ≤ % and γ are chosen such that
ĉ < 1. Moreover, let x

δ

α
and x

δ

α̃
be minimizers of the Tikhonov functional with α = qα̃, q < 1.

If x
δ

α̃
, x0 ∈ Kr(α)(x

δ

α
), then the sequence of fixed point iterates x

k+1
= Tα(x

k
) converges to the

global minimizer of (1.3) in Kr(α)(x
δ

α
) and the error estimate

‖xδ

α
− x

k
‖ ≤ ĉk

1 − ĉ
‖x1 − x0‖ (4.53)

holds.

Proof:
The proof is similar to the proof of Theorem 5.

Because of ‖x∗ − x̄‖ ≤ ‖F ′(x∗)‖‖ω‖ a smallness assumption on ‖ω‖ automatically induces
the assumption that x̄ has already been close to the solution. However, as the estimate for
‖Tα(x)−Tα(x̃)‖ in Theorem 9 is far from being sharp, we expect convergence of the fixed point
iteration even in cases where ‖ω‖ is bigger then it is allowed according to Theorem 11. In
addition, in many practical applications it will not be possible to estimate the constant ĉ, as
‖ω‖ and thus % can be only estimated roughly or might be even unknown.

As the evaluation of the operator Tα requires the knowledge of a minimizing function x
δ

α̃
of

Φα̃ we will present an algorithm that successively computes the minimizing functions x
δ

α
k

for a

given sequence {αk}k∈R of regularization parameters.
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5 A fixed point based algorithm for the regularization

of nonlinear operator equations

In this section we will use both fixed point iterations to form a regularization method for
nonlinear ill-posed operators. From the numerical point of view the first fixed point iteration
(with operator Sα) seems to be more effective, as the evaluation of Sα(x) requires only the
computation of F (x) and F ′(x)∗. In contrast, the evaluation of Tα needs the solution of a
linear operator equation. However, the fixed point iteration with Sα converges only if α is large
enough (see Theorem 5). Thus it seems a good idea to use the iteration with Sα as long as
c
α

< 1, and to switch to the iteration with Tα if the condition is violated.

As we have pointed out in the last section, the evaluation of Tα(x) needs a minimizer x
δ

α̃
of

Φα̃(x) with x
δ

α̃
∈ Kr(α)(x

δ

α
). To recognize this dependence, we will further write Tα(·, xδ

α̃
).

Another important question is the selection of the regularization parameter. As for the
TIGRA algorithm, we will use Morozov’s discrepancy principle, i.e. we will choose a regulari-
zation parameter such that

δ ≤ ‖yδ − F (x
δ

α
)‖ ≤ 5δ (5.1)

holds. We wish to remark that a regularization parameter with (5.1) does not exist for arbi-
trary nonlinear operators; its existence for the case of twice Fréchet differentiable operators was
shown in [11]. To find a parameter with (5.1), we are going to compute the minimizers of the
Tikhonov functional for a sequence {αk}k∈N of regularization parameters with αk+1 = qαk and
q < 1.

Let ᾱ be the regularization parameter with

c

ᾱ
= 1 ,

c as in (3.4). Thus we can use the fixed point iteration with Sα for all α > ᾱ, see Theorem 5
For simplicity, we define the operator Rα(x, x

δ

α̃
) by

Rα(x, x
δ

α̃
) :=







Sα(x) for α > ᾱ ,

Tα(x, x
δ

α̃
) for α ≤ ᾱ .

(5.2)

The proposed fixed point regularization algorithm reads as follows.
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• given yδ, δ, x̄, x0

• choose α0 > ᾱ, q < 1

• set k = 0 and xδ
α−1

= x0

• Repeat

� compute x
δ

α
k

as fixed point of Rαk
(x, x

δ

α
k−1

), use x
δ

α
k−1

as starting

value for the iteration

� αk+1 = qαk

� k = k + 1

item[ ]until ‖yδ − F (x
δ

α
k

)‖ ≤ 5δ

In order to obtain a convergence rate result, we have to ensure

i) x0 ∈ Kr(α0)(x
δ
α0

)

ii) x
δ

α
k−1

∈ Kr(α
k
)(x

δ

α
k

)

iii) The algorithm stops with x
δ

αk∗

and δ ≤ ‖yδ − F (x
δ

αk∗

)‖ ≤ 5δ.

This can be done by using the following results.

Proposition 13 If the regularization parameter α is chosen large enough, then x̄ ∈ Kr(α)(x
δ

α
).

Thus we can set x0 := x̄.

Proof:
We have

α‖xδ

α
− x̄‖2 ≤ ‖yδ − F (x

δ

α
)‖2 + α‖xδ

α
− x̄‖2 = Φα(x

δ

α
) ≤ Φα(x̄) = ‖yδ − F (x̄)‖2 ,

i.e.

‖xδ

α
− x̄‖2 ≤ 1

α
‖yδ − F (x̄)‖2 .

As x̄ ∈ Kr(α)(x
δ

α
) if ‖xδ

α
− x̄‖ ≤ r(α), it is sufficient to show

1

α
‖yδ − F (x̄)‖2 ≤ r(α) (5.3)

for large α. But as the left hand side of (5.3) tends to zero for α → ∞, and the right hand side
to infinity, this inequation always holds for large α.

�
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Proposition 14 Let α
k

= qαk−1. If ‖Lω‖ ≤ 0.241, then there exists q̄ < 1 s.t. x
δ

α
k−1

∈
Kr(α

k
)(x

δ

α
k

) for all q̄ ≤ q < 1.

The proof of the Proposition has been given in [14], (see Proposition 6.2.) Now we can give a
final convergence rate result.

Theorem 15 Let the conditions I-III hold. Then the parameters α0 > ᾱ and 2/3 < q̄ ≤ q < 1
in the fixed point regularization algorithm can be chosen s.t. the algorithm terminates within a
finite number of outer iterations. The last iterate, x

δ

αk∗

, fulfills the estimates

δ ≤ ‖yδ − F (x
δ

αk∗

)‖ ≤ 5δ , (5.4)

‖x∗ − x
δ

αk∗

‖ = O(
√

δ) . (5.5)

Proof:
According to Propositions 13 and 14, α0 and q can be chosen with x0 ∈ Kr(α0)(x

δ
α0

) and

x
δ

α
k−1

∈ Kr(α
k
)(x

δ

α
k

). As α0 > ᾱ holds, at least the first fixed point iteration is carried out by

using the operator Sα (which does not need another minimizer). Because of x0 ∈ Kr(α0)(x
δ
α0

),
the iteration converges towards xδ

α0
. Due to the choice of q we have xδ

α0
∈ Kr(α1)(x

δ
α1

). By

induction, we find that the fixed point iteration with operator Rαk
(·, xδ

α
k−1

) converges towards

x
δ

α
k

, with x
δ

α
k

∈ Kr(αk+1)(x
δ
αk+1

. In [14], Proposition 6.4. and Theorem 6.5. it was shown

that the outer iteration terminates after a finite number of iteration steps as long as the inner
iteration finds a minimizer of the Tikhonov functional with the actual regularization parameter,
and that (5.4) holds if q is properly chosen. Now, it is a well known fact that a minimizer x

δ

αk∗

of the Tikhonov functional that fulfills (5.5) and a smoothness condition III also admits an
error estimate (5.5), see e.g. [11].

�

We wish to remark that the choice of the parameters α0 and q depends on %, the estimate for
‖ω‖. Although it is possible to determine both parameters exactly (in dependence of %), we
have omitted these calculations because % will be unknown in many practical applications. In
these cases, the algorithm should be carried out with q close to 1 and a large α0.

Let us finish this section with a remark on the numerical realization of the fixed point
iteration with Tα. According to (4.4), we have to evaluate B(x

δ

α̃
− x)2 for the computation of

the iterates. Looking at (4.3), this requires the evaluation of an integral over an operator and
is thus difficult to implement. However, using (4.5), we get

B(x
δ

α̃
− x)2 = F (x

δ

α̃
) − F (x) − F ′(x)(x

δ

α̃
− x) ,

and inserting this equation in (4.4) we get

Tα(x) = Fα(x)−1F ′(x)∗(yδ − F (x) − F ′(x)(x
δ

α̃
− x)) − qFα(x)−1F ′(x

δ

α̃
)∗(yδ − F (x

δ

α̃
)) + x

δ

α̃
.

Moreover, as x
δ

α̃
is a minimizer of Φα̃(x), we have α̃(x

δ

α̃
− x̄) = F ′(x

δ

α̃
)∗(yδ − F (x

δ

α̃
)), and with

α = qα̃ we finally get

Tα(x) = Fα(x)−1F ′(x)∗(yδ − F (x) − F ′(x)(x
δ

α̃
− x)) − αFα(x)−1(x

δ

α̃
− x̄) + x

δ

α̃
. (5.6)
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Figure 1: Activity function f∗ (left) and attenuation function µ∗ (right)

which is much easier to implement.

6 Numerical results

We will present a first numerical result from Single Photon Emission Computed Tomography
(SPECT). In this medical application, the data g(s, ω) ∈ L2(R × S1) is described by the
attenuated Radon transform R(f, µ),

g(s, ω) = R(f, µ)(s, ω) =

∫

R

f(sω⊥ + tω)e−
∫
∞

t
µ(sω⊥+τω) dτ dt , (6.1)

with the two unknown functions (f, µ) ∈ L2(Ω)×L2(Ω) and a bounded domain Ω ⊂ R
2. Fréchet

differentiability and mapping properties of the attenuated Radon transform have been investi-
gated extensively in [3], and numerical results for the TIGRA algorithm both with synthetic
and real data have been presented in [13, 14]. It turns out that, due to the non-uniqueness of
the attenuated Radon Transform as operator acting on (f, µ), only the activity function f can
be reconstructed accurately. However, as the task in SPECT imaging is the reconstruction of
the activity function f from measurements g(s, ω) and unknown µ, a wrong reconstruction for
the density function causes no problems.

For our test computations we will use the so called MCAT phantom [15], that models a cut
through the human torso for the density function µ∗. The activity f∗ is concentrated in the
heart, see Figure 1. The data g(s, ω) = R(f∗, µ∗)(s, ω) is shown in Figure 2; for the inversion
it was contaminated with 5% noise.

We will here focus on the reconstruction of the minimizers of the Tikhonov functional with
given regularization by the fixed point iterations with operators Sα and Tα. As we have seen
in Section 3, a fixed point iteration with operator Sα will only converge if the regularization
parameter α is chosen large enough. In our example, it turns out that the fixed point itera-
tion x

k+1
= Sα(x

k
), x = (f, µ) converges for α ≥ α0 = 7000. If α1 = qα0 with q = 0.7, i.e.
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Figure 2: Generated data g(s, ω) = R(f∗, µ∗)(s, ω).
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Figure 3: f
δ

α
for α = 7000 and δ = 5%.

α1 = 4900, then the iteration with Sα does not converge anymore, and we have to switch to
the fixed point iteration with operator Tα.

Let us start with some reconstructions for α ∈ {20408, 10000, 7000}. As mentioned above,
the fixed point iteration with operator Sα can be used for the reconstruction of the minimizers
(f

δ

α
, µ

δ

α
) of the belonging Tikhonov functional. In Figure 3, the minimizer f

δ

α
of the Tikhonov

functional for α = 7000 can be seen.
In Figure 4 we have plotted the speed of the convergence of the iteration towards the fixed

point of Sα, i.e. the values of ‖(fk, µk)−Sα(fk, µk)‖ for α ∈ {10000, 7000} in a logarithmic plot.
We do observe that the convergence is faster for bigger α (and it is again faster for α = 20408).
The reason for this observation lies in the fact that the speed of convergence of a fixed point
iteration depends on the size of the contraction factor for the fixed point operator. For Sα,
we have found that the contraction factor can be estimated by c/α with a constant with the
constant c given in (3.4). Thus, if α decreases, the contraction factor is getting bigger and the
convergence speed decreases, too.
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Figure 4: Logarithmic plot of the iteration error.

α pα αpα

20 408 0.2654 5416.3
10 000 0.5436 5436
7 000 0.7766 5436.3

Table 1: Contraction factors pα for different α

Additionally we estimated the contraction factor p from the numerical results. From the
classical error estimates for the fixed point iteration follows

‖(fk, µk) − (fk+1, µk+1)‖ ≤ p‖(fk−1, µk−1) − (fk, µk)‖ ,

i.e. we might estimate p by

p ≈ 1

N

N∑

k=1

‖(fk, µk) − (fk+1, µk+1)‖
‖(fk−1, µk−1) − (fk, µk)‖

. (6.2)

On the other hand, as we have estimated p ≤ c/α, we do expect pα to be constant, as can be
seen in Table 1 .

For α = 4900, Sα is not a contraction anymore, and Tα is used to compute the minimizer.
According to (5.6), we need a minimizer of the Tikhonov functional with bigger regularization
parameter for the evaluation of the operator. To this end, we employed (f

δ

α
, µ

δ

α
) for α = 7000,

which has been already computed by the first fixed point iteration. The evaluation of Tα is
much more complicated as it is the case for Sα, because a linear system has to be solved in
every iteration step. In our implementation, the conjugate gradient method for the solution
of the linear system was used; in all our tests 2-8 cg-iterations were sufficient to compute a
good approximation to the solution of the linear system. As the linear system was solved with
an accuracy of 10−9, we expect the fixed point equation (f, µ) = Tα(f, µ) to be approximated
within the same level. Indeed, the numerical tests for α ∈ {4900, 3430, 2401} show that this
accuracy level is approached within a few fixed point iteration steps, see Figure 5.
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Figure 5: Logarithmic plot of the iteration error for Tα. The iteration error for α = 2401 is
almost the same as for α = 3430.

α pα

4900 0.045
3430 0.0656
2401 0.0656
1680 0.0394

Table 2: Contraction factors pα for Tα and different α

The rapid convergence suggests a small contraction factor. Indeed, if we estimate the
contraction factor as in (6.2), we get the factors as shown in Table 2. The numerical tests
confirm that our method is highly recommendable for the reconstruction of a minimizer of the
Tikhonov functional and therefore for the approximation of a solution of F (x) = y. The tests
suggest in particular that fixed point iteration with operator Tα converges rapidly. However,
we have to take into account that the solution of the linear equation, which is necessary for the
evaluation of Tα, consumes additional computing time. A detailed comparison of the numerical
effort of the suggested fixed point methods as well as a comparison with other algorithms like
TIGRA will be presented in a forthcoming article.
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Symmetric collocation methods for linear differential-algebraic boundary value problems,
September 2000.

00–16. Fabian Wirth:
The generalized spectral radius and extremal norms, Oktober 2000.

00–17. Frank Stenger, Ahmad Reza Naghsh-Nilchi, Jenny Niebsch, Ronny Ramlau:
A unified approach to the approximate solution of PDE, November 2000.

00–18. Peter Benner, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı:
Parallel algorithms for model reduction of discrete–time systems, Dezember 2000.

00–19. Ronny Ramlau:
A steepest descent algorithm for the global minimization of Tikhonov–Phillips functional,
Dezember 2000.

01–01. Efficient methods in hyperthermia treatment planning:
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