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Abstract

This manuscript is concerned with modeling the measurement process in

a multi pulse regime in the context of meteorological radar data processing.

Based on the introduced model a method to reconstruct the radar reflectivity

and the Doppler information is suggested. In order to show the applicability of

the introduced model and of the inversion scheme we present several synthetic

test computations.

1 Introduction

In the classical framework a radar device is used in order to transmit electromagnetic

waves and to measure backscattered components. Let us assume that the transmitter

1



and receiver are technically combined in one single device. Moreover, assume the

following setting: a wave (pulse) is transmitted and after a certain delay (usually the

time required for switching between transmitting and receiving) the device starts to

sample with a certain rate 1/δt. Each sample represents then a measurement with

respect to a certain range. The maximum range Rmax is given by

Rmax = c · T/2 ,

where c is the speed of light, and T the time between transmitting the pulse and

measuring/sampling the last value. Usually samples are taken as long as the pulse

is traveling through a medium of interest or as long as the power of the backscat-

tered echoes can be measured by the receiver. After time T the next pulse will be

transmitted and the measuring process will then be repeated. In this way, the radar

device produces time series fr per range gate r with sampling rate 1/∆t = 1/T .

In order to ensure for fr a certain spectral band width, it is required that T can

be chosen adequately small (Nyquist law). But this implies an overlap of echoes

of different pulses, i.e. we have ambiguity problems and a decrease of Rmax. This

problem is known as the so-called Range-Doppler-Dilemma.

In principle, the way out must consist of choosing a small pulse repetition time and,

in order to ensure Rmax being adequately large enough, by solving the overlapping

problem somehow. Moreover, by the time needed for switching between transmitting

and receiving, a small pulse repetition time obviously cause so-called blind ranges

(by the switching process, which can technically not be avoided, no measurement

corresponding to that range can be taken). To this end, it is suggested to transmit

a sequence of pulses in some non-equidistant way. This leads to the fact that blind

zones of one pulse can be covered by other pulses.

Roughly speaking, in order to circumvent the Range-Doppler-Dilemma we suggest

to introduce a certain type of redundancy in sampling the atmosphere and by ap-

plying an algorithm which “de-overlaps” the radar measurement per range gate and
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generates equidistant (I, Q) - raw data fr with adequately large sampling rate which

is required for ensuring a proper Doppler frequency band width.

The remaining part of the manuscript is organized as follows: in Section 2 we present

the new measurement model, in Section 3 we describe how to reconstruct the radar

reflectivity and the Doppler information, and, finally, in Section 4 we present several

test examples.

The manuscript emphasizes on describing the mathematical idea and not on point-

ing out the meteorological impact of the invented method. To this end, a detailed

meteorological discussion is omitted.

2 Modeling the Measurement Process

In this section, we aim at modeling the measurement process in a multi pulse regime

such that the application of an inversion scheme may result in the well-known (I, Q)

representation of complex-valued and equidistant raw data fr (with sampling rate

adequately large enough).

In order to model the measurement process of a certain time interval I of length

Nδt, we start by choosing a family of L subintervals Il of length Nlδt (1 ≤ l ≤ L)

such that they cover the whole interval I, i.e.

L
⋃

l=1

Il = I ,

and that each Il contains measurements of all range gates under consideration.

We shall see later on that the choice of the position of each Il corresponds to the

sampling points of fr, i.e. if the Il’s are arranged in an equidistant way, then the

fr’s will be reconstructed on an equidistant grid. We remark that is not required
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that the family of subintervals forms a disjunct partition of I, i.e. the subintervals

may overlap, Il ∩ Il′ 6= ∅. We shall also see later on that a certain overlapping causes

nice properties of the (I, Q) - data representation fr.

For our approach the basic assumption is that for each Il the corresponding reflec-

tivity density distribution Pl is a fixed (complex-valued) function. In our setting Pl

depends only on the range gates, i.e. Pl = Pl(kδt) with k = 1, . . . , K.

As the next step, we introduce the multi pulse framework. To this end, we define

a finite sequence {tm}m=1,...,M which contains the time points in which the cycle of

pulses of adequate shapes is transmitted. We assume that tm ∈ I, for all m, and

for simplicity, that tm = kmδt, i.e. the sequence {tm} is determined by a sequence

of integers {km}m=1,...,M . Furthermore, we introduce a time gap variable d which

represents the small period of time where no sampling can take place (switching

process, right after transmitting a pulse), e.g. d = 3δt.

A reasonable way to represent all informations concerned with the transmitting and

the sampling process is to define the pulse-response matrix AI with respect to I

AI :=
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where rk indicates a specific range gate, and eiφm the phase of pulse m. The number

of columns of AI is K, whereas the number of rows corresponds to N .

Now, for each subinterval Il we extract sub-matrices of AI which represent the

4



pulse-responses measured in Il and denote them by Al, where dim(Al) = K × Nl.

Incorporating the assumption that Pl is fixed on Il, we may describe for each time

interval Il the measurement vector Zl of length Nl by

Zl = AlPl + ηl ,

where ηl denotes a certain additive noise model. All these sub-systems can be

combined in the following way

Zη = AP + η , (1)

where A is a block-diagonal matrix, i.e.

A =

















A1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 AL

















,

and

Z = (Z1, ..., ZL)T , P = (P1, ..., PL)T .

If the intervals Il would not overlap the measurement process would be completely

described by the linear model (1). However, in order to improve the flexibility of this

model in terms of the sampling frequency of the resulting (I, Q) representation fr we

must incorporate the overlapping. It is obvious that in this case the measurement

vector Z is not the proper representation of the entire measurement process. It

becomes necessary to introduce an overlap operator consisting of blocks of diagonal

matrices
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T =





















































,

where the l-th block is of dimension Nl
2. The overlap of block l and l′ exactly

represents the overlap of the subintervals Il and Il′ . Hence, the dimension of T is
∑L

l=1
Nl ×N . Since T describes the overlap it is reasonable to require that the sum

of each row of T is one. With the help of this operator we can express the general

measurement vector denoted by Ẑ as follows

Ẑ = TZ ,

where the length of Ẑ coincides with the length of I. Defining the operator B := TA,

the final linear measurement model takes the following form

Ẑε = BP + ε . (2)

3 Reflectivity and Doppler Shift Reconstruction

Reconstructing the radar reflectivity and the Doppler information means simply to

reconstruct P. This can be formulated as a minimization problem

‖Ẑε − BP‖2

2 −→ min
P

.
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Since (2) is a linear system and assuming that Cov(ε) = W, the optimal P∗ is given

by

P∗ = (BTW−1B)+W−1BT Ẑε .

However, it might be the case that the minimization problem is ill-posed, i.e. the

operator B has no full rank or the condition number of BTW−1B is quite large.

This leads to serious inversion problems. The origins of this deficiency are the

sequence {tm}m=1,...,M and the overlapping. Thus, a pre-stabilization is given by

an adequate choice of the pulse cycle and of the overlapping. The remaining ill-

posedness, also induced by the noise term ε, can be reduced by the application

of so-called regularization methods, e.g. Tikhonov regularization. The Tikhonov

stabilized/regularized solution is computed by minimizing the functional

‖Ẑε − BP‖2

2 + γ‖P‖2

2 ,

where the minimizer is given by

P∗

γ = (BTW−1B + γW−1)−1W−1BT Ẑε .

In order to choose an adequate regularization parameter γ we could aim at applying

Morozov’s discrepancy principle. To this end, we have to assume that ‖ε‖2
2 ≤ µ.

Hence, for an optimal γ we would have

‖Ẑε − BP∗

γ‖
2

2
∼= µ .

To find numerically a proper γ we choose c, γ0 > 0, some q with 0 < q < 1, and

define a sequence γj := qjγ0. Then, the iterative method to determine an adequate
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γ goes as follows: compute P ∗

γj
until

µ ≤ ‖Ẑε − TP∗

γj
‖2

2 ≤ cµ

holds.

We finally remark that there exist of course other ways to solve the minimization

problem (2). However, here we just have suggested one suitable way to reconstruct

P.

4 Numerical Simulations

For our first synthetic test example we have chosen the following setting: length

of sampling interval I is 1050δt; length of Il is 250δt with overlaps of 50δt, i.e.

L = 5. We note that L determines the resulting sampling rate of the (I, Q) - data

representation fr per range gate r. Furthermore, we introduce the time gap variable

d which is chosen to be 5δt. The sequence {tm} is determined by the following

sequence of integers {0, 70, 90, 120, 170, 180, 210, 250, 320, 340, 370, 420, 430, 460,

500, 570, 590, 620, 670, 680, 710, 750, 820, 840, 870, 920, 930, 960}. Assuming we

sample at 120 (= K) range gates, the resulting matrix AI , the corresponding sub-

matrices Al, and the final model matrix B are of the form as displayed in Figures 1

and 2.

In order to generate synthetic data we assume a very simple model for the reflectivity

functions Pl, namely

Pl(kδt) = e−
(1.001·l·kδt−(50+10·l))2

1000 · ei 3kδt
L , 1 ≤ l ≤ L , 1 ≤ k ≤ K ,

see Figure 3. The simulated measurements are obtained by adding i.i. standard
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normal d. noise ε, see model (2), i.e.

Ẑε = BP + c · ε , with c = 0.001, 0.0015, 0.003 .

To find reasonable reflectivity functions P∗ (and therewith the Doppler information),

we apply the Tikhonov regularization method with γ = 0.000001. The results are

displayed is Figure 4.

In order to show how to obtain (I, Q) - data series fr with higher sampling rate (two

times higher that in the previous example) we present another example where we

have used the same setting but now with L = 10, see Figures 7, 8, 9, and 10.

In both examples we observe that the complex-valued reflectivity function can be

reconstructed. In the presence of noise we may see that the reconstruction becomes

coarser as larger the range gate is. This depends clearly on the signal to noise ratio

of the received echoes (since the energy decreases with ∼ 1/r2
k). To obtain optimal

results one has to find the right balance between the choice of the pulse cycle, the

overlapping, the influence of noise, and the parameters of the inversion scheme.

5 Conclusion

In this manuscript we have presented a model which allows to overcome the Range-

Doppler-Dilemma. The invented method is based on a non-equidistant multi pulse

regime and is a combination of linear modeling and a overlapping process which

ensures an adequate Doppler frequency band width of the resulting (I, Q) - data

series fr per range gate. The suggest reconstruction scheme is based Tikhonov

regularization. In order to improve the accuracy and to reduce the computational

cost one may use more sophisticated inversion schemes.
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Figure 1: Left: the total pulse response matrix A, right: the five sub-matrices Al.
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Figure 2: The final model matrix B.
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Figure 3: The simulated reflectivity functions Pl, l = 1 (top), . . . , 5 (down).
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Figure 4: The first row shows the simulated Ẑε (red without noise). The re-

maining rows show the Tikhonov reconstructions of Pl, with c = 0.001, l =

1 (top), . . . , 5 (down).
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Figure 5: The first row shows the simulated Ẑε (red without noise). The re-

maining rows show the Tikhonov reconstructions of Pl, with c = 0.0015, l =

1 (top), . . . , 5 (down).
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Figure 6: The first row shows the simulated Ẑε (red without noise). The re-

maining rows show the Tikhonov reconstructions of Pl, with c = 0.003, l =

1 (top), . . . , 5 (down).
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Figure 8: The simulated reflectivity functions Pl, l = 1 (top), . . . , 10 (down).
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Figure 9: The first row shows the simulated Ẑε (red without noise). The re-
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1 (top), . . . , 10 (down).
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Figure 10: The first row shows the simulated Ẑε (red without noise). The re-

maining rows show the Tikhonov reconstructions of Pl, with c = 0.0015, l =

1 (top), . . . , 10 (down).
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A regularization of Zubov’s equation for robust domains of attraction, März 2000.

00–07. Michael Wolff, Eberhard Bänsch, Michael Böhm, Dominic Davis:
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