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Abstract

In this paper we demonstrate how Lyapunov-Krasovskii functionals can be used to
obtain exponential bounds for the solutions of time-invariant linear delay systems.
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1 Introduction

The objective of this note is to describe a systematic procedure of constructing quadratic
Lyapunov functionals for (exponentially) stable linear delay systems in order to obtain
exponential estimates for their solutions.

The procedure we propose is a counterpart to the well known method of deriving exponential
estimates for stable systems & = Ax by means of quadratic Lyapunov functions V(z) =
(x,Ux). Here U > 0 is the solution of a Lyapunov equation A*U+UA = —W where W = 0
is any chosen positive definite matrix. If 2wU < W for some w > 0 then

le]l < w(U)2e",  t20 (1)

where || - || denotes the spectral norm and x(U) = ||U|| ||U™}| is the condition number of U,
see [6]. Note that this estimate guarantees not only a uniform decay rate w for all solutions
of # = Az but also a bound on the transients of the system.

It is surprising that a similar constructive method does not exist for delay systems. It is
true, there exists an operator theoretic version of Lyapunov’s equation in the abstract semi-
group theory of infinite dimensional time-invariant linear systems, see [2], but this does not
provide us with a constructive procedure. For constructive purposes more concrete Lya-
punov functions must be considered. Since the fifties different types of Lyapunov functions
have been proposed for the stability analysis of delay systems , see the pioneering works of
Razumikhin [11] and Krasovskii [10]. Whereas Razumikhin [11] used Lyapunov type func-
tions V' (z(t)) depending on the current value z(¢) of the solution, Krasovskii [10] proposed
to use functionals V' (z;) depending on the whole solution segment x, i.e. the true state of



the delay system. These functionals, which are defined on the space of (continuous) initial
functions, are called Lyapunov-Krasovskii functionals. For a brief discussion of these two
approaches and some historic comments, see [5, §5.5].

The majority of results concerning Lyapunov’s direct method for delay systems provides suf-
ficient criteria for stability and asymptotic stability. These results assume that Lyapunov
functionals with certain properties are given, and so the exponential estimates derived by
means of these functionals are not obtained in a constructive manner. For a constructive
procedure converse results are needed which show how Lyapunov functionals of a specific
type can be constructed for a given class of stable delay equations. Such converse results
are available for certain delay systems, see e.g. Halanay [4], but they do not abound as the
sufficient stability criteria based on given Lyapunov functionals.

Quadratic Lyapunov functionals have been proposed for time-invariant linear delay equa-
tions by Repin [12], Datko [3], Infante and Castelan [8], Huang [7], Kharitonov and Zhabko
[9]. However, with exception of the latter reference, these Lyapunov functionals cannot be
used for deriving exponential estimates, if no additional a priori information is available.
Infante and Castelan propose an interesting method of constructing exponential estimates
whose decay rate comes arbitrarily close to the spectral abscissa of the delay system. But
their method presupposes that a concrete exponential estimate is already available. The
constants of the exponential estimate which they derive from a quadratic Lyapunov func-
tional depend explicitely on the constants of the presupposed a priori estimate. (compare
(3.6), (3.19) and (2.6) in [8]).

In order to overcome this dependence on an a priori estimate we use a modified Lyapunov-
Krasovskii functional introduced in [9]. This functional is constructed in a similar way
to that of Infante and Castelan but contains an additional integral term. As in [8] the
construction is based on a solution of a matrix differential-difference equation on a finite
time interval satisfying additional symmetry and boundary conditions. The matrix bound-
ary value problem plays, roughly speaking, a similar role for linear delay equations as
Lyapunov’s equation in the delay free case. Our differential-difference equation is more
complicated than that in [8] since Infante and Castelan only considered the one delay
case. Since these matrix equations have only recently been discovered there is as yet no
systematic solution theory available. This will be a subject for future research. However,
first algorithms have been developed for the solution of the corresponding matrix boundary
value problem.

The note is organized as follows. After some preliminaries on delay systems in the next
section we describe the construction of the Lyapunov-Krasovskii functional according to [9]
in section 3. Section 4 contains the main results of this note. Finally, section 5 presents
an example illustrating the basic steps leading to an exponential estimate for a given ex-
ponentially stable system with two (commensurate) delays.

2 Preliminaries
In this paper we consider time delay systems of the following form

dx(t)

= = Agr(t) + Y Aa(t = ). (2)

k=1



where Ay, Ay, ..., A, € R™™ are given matrices and 0 < hy < ... < h,, = h are positive
delays. For any continuous initial function ¢ : [—h, 0] — R" there exists the unique solution,
x(t, ¢), of (2) satisfying the initial condition

If t > 0 we denote by x;(¢) the trajectory segment
(@) 10— x(t+0,9), 0€]—h,0].

Throughout this note we will use the Euclidean norm for vectors and the induced matrix
norm for matrices. The space of continuous initial functions C([—h, 0], R™) is provided with
the supremum norm ¢, = maxge_n, [|©(0)]-

Definition 1 The system (2) is said to be exponentially stable if there exist o > 0 and
~v > 1 such that for every solution x(t,y), ¢ € C([—h,0],R™) the following exponential
estimate holds

lz(t, o)l <ve™ el t=0. (3)
For simplicity we will call an ezponentially stable system just stable. The matrix-valued
function K : [—h, 0o] — R™" which solves the matrix differential equation
d m
K () = AK(t) + S AK(t—hy), t >0,
j=1

with initial condition
K({t)=0for —h <t <0, K(0) = I,,

is called the fundamental matriz of the system (2)here I, is the identity matrix. It is
known that K (t) also satisfies the differential equation [1]

d m
ZE (1) = KA+ ; K(t—hj)A;, t>0. (4)

The following result is known as the Cauchy formula for the solutions of system (2), see [1].
m o0
x(t, o) = K(t)p(0) + Z/ K(t—h; —0)Ajp(0)do, t>0. (5)
j=1""hj

Every column of K (t) is a solution of system (2), so if the system is exponentially stable,
then the matrix satisfies an inequality of the form (3). As a consequence, the integral

U(r) = /0 h KT(OWK(t+7)dt (6)

is well defined for all 7 > —h and any matrix W € R™*",



3 Lyapunov-Krasovskii functionals

We will now construct quadratic Lyapunov functions for the system (2) in a similar way
as for linear differential equations without delays. In this latter case, given any stable
system & = Az, a quadratic Lyapunov function is determined in the following way. For
an arbitrarily chosen quadratic function w(x) = 2" Wx with positive definite W = 0 one
constructs a quadratic function v(z) = Uz, U = 0 such that

dv(z(t))/dt = —w(x(t)), teR (7)

for every solution, x(t), of # = Ax. Function v(x) = 2" Ux satisfies (7) if and only if U is
the (uniquely determined, positive definite) solution of the Lyapunov equation

AU+ UA=-W. (8)

Analogously we choose for the delay system (2) positive definite n x n matrices Wy, Wi,...,
Wam and consider the following functional on C([—h, 0], R™)

m

w(e) = " (0)Wo(0) + Y 0" (—hi)Waep(—hi) + ) /_ hsoT(H)Wm+k<p(9)d9, (9)

k=1

where ¢ € C([—h, 0], R") is arbitrary. If the system (2) is exponentially stable, then there
exists a unique quadratic functional v : C([—h,0],R") — R such that ¢t — v(z:(p)) is
differentiable on R, and

dv(z(¢))

dt
for all solutions z(t, ) of (2), ¢ € C([—h, 0], R™) [9]. Functional v(-) is called the Lyapunov-
Krasovskii functional associated with (9). It has been shown in [9] that the functional is
given by

= —w(z(p), t=0 (10)

o) =eT(OU0)p(0) + 3 267(0) / U(—he — 6) Aypl6)d-+
k=1 —hi,
+ ; ; /;hk (2 (92)Ak /_hj U(eg — ‘91 + hk — hJ)Ajw(Gl)dﬁl d‘92+ (11)
£y / 2T (0) Wi+ (i + 0)Wonis] 0(6)d0
k=1 ~hk
where
U(T) = /OO KT(t) W0+Z(Wk+thm+k) K(t+7’)dt, T Z —h. (12)

Note that by exponential stability of (2) the matrix U(7) is well defined for all 7 > —h and
is of the form (6) with

W=Wo+ Y (Wi + hWip) . (13)
k=1

We call U(7) the Lyapunov matriz function for the system (2) associated with the functional

w(+) (9). Note that the first (1+m+m?) terms in (11) are completely determined by U and
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hence only depend upon the weighted sum W of the positive definite matrices W),. However,
the last m terms in (11) depends on the individual Wj’s. We will see later that all these
terms are needed in order to derive exponential estimates for (2) by means of the above
quadratic functionals. For the case of a single delay in (2) a similar Lyapunov-Krasovskii
functional has been considered by Infante and Castelan in [8]. However, in their paper
the matrix Wy + (hy + 0)W,,4x in each one of the last m terms of (11) is replaced by a
constant positive definite matrix. This is due to the fact that Infante and Castelan did not
include the integral term in their definition of the functional w(-), see [8, (3.4)]. However,
we will see in Remark 5 that this integral term is an essential ingredient for deriving an
exponential estimate of the form (3) for an exponentially stable delay system without any
further a priori knowledge.

Remark 1 If (2) is without delays (hy = 0, k = 1,...,m) then the interval [—h,0] is
reduced to {0}, C([—h,0],R") to €({0},R") = R" and we have K(t) = e?*. Identifying
¢ € C({0},R") with z = ¢(0), the quadratic functional w(-) (9) is given by w(z) = 2" Wz
where W is defined by (13), and v(+) is given by v(z) = 2"U(0)x, = € R™. Note that in
this case U(0) is by definition equal to

U:/ ATV et (14)
0

so that U = U(0) satisfies the Lyapunov equation (8). So the above construction of the
Lyapunov-Krasovskii functional v(-) from w(-) generalizes the construction procedure via
the Lyapunov equation (8) in the delay free case. O

Remark 2 In the delay free case the success of quadratic Lyapunov functions rely on the
fact that for a given w(x) = 2" Wz the corresponding v(x) = ' Uz is not obtained via
the integral expression (14) but can be computed from the linear Lyapunov equation (8).
Similarly, the above construction of the Lyapunov-Krasovskii functional (11) would not
be practical if it required the evaluation of the integral (12) (and so, in particular, the
knowledge of the fundamental matrix K(¢) on R, ). But it is not difficult to show (see [9])
that U(7), 7 € [—h, h| solves the following matrix delay differential equation

%Uu) = U(r) A + kZ U(r — ) Ay, 7 €[0,] (15)

and additionally the following conditions
e the symmetry condition

U(-1)=U"(r), 7¢&[=h,h], (16)

e the Lyapunov type linear matrix equation

U(0)Ao + AJU(0) + Y U™ (hy) Ay + ALU (hy,) + W = 0. (17)

k=1
A systematic study of the equations (15), (16), (17) has not yet been accomplished. We
conjecture that U(7)) is the unique solution of this set of equations, but a proof of this
conjecture is an open problem. O



4 Main results

In this section we show how one can use functionals (9) and (11) in order to obtain expo-
nential estimates for time delay systems.

We first specify two conditions under which a pair of (not necessarily quadratic) functionals
v,w: C([—h,0],R") — R satisfying (10) yields an exponential estimate of the form (3).

Proposition 3 Suppose that oy, as, 31, B4 are positive constants and v, w : C([—h, 0], R") —
R are continuous functionals such that t — v(z(¢)) is differentiable on R . If the following
conditions are satisfied for all p € C([—h, 0], R™)

1. ay ||e(0)]]> < v(p) < avw(yp),
2. By lp(0)]]* < w(p) < By el

3. Lo(z(p)) < —w(zi(p)) for allt >0,
then for all p € C([—h,0],R™)

Ozgﬁ 1
ot o)l < 22 e ol 120 (13)

Proof: Given any ¢ € C([—h, 0], R"), conditions 1. and 3. imply that

d 1

@U(iﬁt(@)) < —Q—QU(S’?t(@))a t>0.

Integrating this inequality from 0 to ¢ and applying Gronwall’s Lemma we get

1

() Svip)e @' >0

Then conditions 1. and 2. yield

ar [zt )" < v(ai(p) S vp)e =" <aby el e =", t>0.
Comparing the left and the right hand sides, the exponential estimate (18) follows. U

We will now show that conversely, if the system (2) is exponentially stable, then positive
constants aq, ag, 31, f5 can be determined such that the quadratic functionals v(-), w(-) con-
structed in the previous section satisfy the assumptions of Proposition 3. As a consequence
we obtain an exponential estimate of the form (3) for every set of positive definite n x n
matrices Wy, ..., Wa,.

Theorem 4 If system (2) is exponentially stable and Wy, W1, ... Wa,, are positive definite
real n X m matrices then there exist positive constants oy, aa, 31, B4 such that the quadratic
Lyapunov-Krasovskii functionals w(-) and v(-) defined by (9) and (11), respectively, satisfy
the assumptions of Proposition 3.



Proof: We have seen in Section 3 that the functional v(-) is well defined by (11) and
(12) since (2) is exponentially stable by assumption. Moreover it follows easily from the
definitions (9) and (11) that the two functionals v, w : €(|—h, 0], R") — R are continuous.
Let ¢ € C([—h,0],R™). We know from Section 3 that w(-) and v(-) are related by (10),
ie. t — v(z(p)) is differentiable on R, and w(-), v(+) satisfy the third condition of Propo-
sition 3 with equality. It remains to show that there exist positive constants ay, as, 51, 05
such that conditions 1. and 2. of Proposition 3 are satisfied. Let

)\min = min )\min(Wk)a )\max = max )\max(Wk)a

k=0,...,2 k=0,...,2

where Apin(Wy) and Apax(Wy) denote the smallest and the largest eigenvalue of the positive
definite matrix Wy, respectively. Then

Amin [HSO(O)HQ+ZHSO(—hk)H2+Z/_h Hs0(0)|!2d9] <

< w(P) < Amax [IIsO(O)II2 + > lle(=hi)I* + Z/h ||90(9)||2d9] :

From these inequalities we conclude that

Amin [[9(0)[|* < w () < Ana <1 +m A+ th> lell5 -

k=1

i.e. the functional w(-) satisfies the second condition of proposition 3 with

/81 - )\mina ﬁQ - (1 +m + Z hk))‘max- (19)
k=1

In order to check the first condition, let

_ U = Al
p= max (U}, a= max 4l

Then one can easily verify the following inequalities

0 A0V <l
2607 [ U~ 0)A0p(0)00 < pati o) + pa [ N0 o,

POT Wi+ (e + O)Woss) 9(6)d8 < (14 s 6(0) 0,
—hy, —hy,

fork=1,...,m.

In order to find an upper estimate of the double integrals in (11) we make use of the fact

that by the Cauchy-Schwartz inequality in L?(—h;, 0; R") we have

0 2 0
([ weona) <[ poonran, i=1..m

So



/1w%f&'m
< pa® ( / I (6:)] dez) ( / " g0 d&)
%m2<ﬁJM%W%Y+<fDW%MMJQS

1

0 1 0
< guatn [ (o) doe+ Gaths [ o)
—Ng —g

0
/ U(01—02+hk ](p 01 ]
<

IA

for all k,j =1,...,m. As a consequence we obtain the following upper bound for v(p):

- - m—+1 0
v(p) < p(l+ az he) 0 (0)))* + Z <,ua + (1 + ) Amax + Tuhkcﬁ) lo(0)]) dé.
k=1 k=1

—hy,
(20)
If we select ay > 0 such that the following two conditions hold

L4 aQ)\min Z 12 (1 + az;nzl hk))
o 052)\min > pna + (1 + h))\max + erl,uhCL

then
v(p) < aw(p).

To obtain the required quadratic lower bound for v(y), we consider the modified functional

U(e) = v(p) —allp()|*, » € e(~h,0LR")

where a > 0. Then 49(z(p)) = —w(z(¢)) where, for any ¢ € €([—h, 0], R"),

m m T
w(p) = —w(p) — ap(0)" |Agp(0) +2Ak<ﬂ(—hk)] — a|Agp(0) +2Ak90(—hk) ¢(0).
k=1 k=1
Omitting the last term in the definition of w(-) (see (9)) we obtain
(0)
_ (—h1) o
w(p) > ((0)", p(=h1) ", o p(=hm) ") W (e) : , ¢ €C([~h,0],R")
(p(_hm)
where
Wy 0 0 Ao+ A4, A Anm
0 W 0 AT 0 0
Wi(a) = : +a 0
0 0 W Al 0 0



Using Schur complements we see that the matrix W («) is positive definite if and only if

W(a) =Wy +a(Ag+ Ag) —a® Y AW AL = 0.
k=1

Since Wy > 0 there exists a; > 0 such that W(al) >~ 0. Integrating 20(z,(p)) = —w(z:(p))
from 0 to oo we get for o = ay,

v() — onll(0) |2 = () = / " D))t > 0.

Altogether we have found ay, ais > 0 such that the first condition in Proposition 3 is satisfied
and this concludes the proof. U

Remark 5 The above proof shows that every quadratic functional w(-) of the form (9) with
positive definite matrices Wy, ..., W, satisfies the second condition of Proposition 3 with
the constants (3, 3, > 0 given by (19). The first (m + 1) terms in (9) were needed to prove
that the corresponding functional v(-) (11) satisfies the first inequality in the first condition
of Proposition 3. The last m terms in (9), along with the first term, were used in the proof to
derive the second inequality. So, w(-) defined by (9) can be viewed as a quadratic functional
with a minimum number of quadratic terms to yield a Lyapunov-Krasovskii functional v(-)
satisfying the first condition in Proposition 3. As mentioned above the integral terms in (9)
are missing in the definition of w(-) in [8]. This is compensated by an additional exponential
factor €%, § > 0 in the definition of v(-), see [8, (3.1)], where —¢ is supposed to be strictly
greater than the exponential growth rate of the delay system. Therefore the construction
of Infante and Castelan requires some a priori knowledge about the spectral abscissa of the
system. O

Remark 6 Clearly the exponential estimate obtained by Theorem 4 depends on the choice
of the matrices W, = 0, k = 0,1, ...,2m. These matrices may serve as free parameters in
an optimization of the estimate. In this note we do not try to obtain tight estimates, we
only wish to demonstrate that the above Lyapunov-Krasovskii approach yields a systematic
procedure for determining exponential estimates for an exponentially stable delay system
(2) without any additional a priori information. O

5 Illustration

In this section we illustrate the results of the previous section by an example.

Example 7 Consider the system

i) = ( Y )x(t) + < N ) ot —1)+ < IO )x(t ~9). (1)

The characteristic quasipolynomial of the system is

f(s) = s*+3s+2+0.98 % +0.98se > + [0.49]> e,

9



All the roots of this quasipolynomial lie in the open left half complex plane. The roots
closest to the imaginary axis are

512 ~ —0.363 £ j1.388

so that the spectral abscissa of the system is —0.363. Since delay systems satisfy the
spectrum determined growth assumption [2], there exists for every € > 0 a constant v, > 1
such that the solutions of (21) satisfy the inequality

lz(t, @)l < 7e lpllg e @275, 2> 0.

We will now apply Theorem 4 in order to obtain an exponential estimate for the system (21)
without making use of any knowledge about its spectral abscissa. Let us choose Wy = I,,,
k =0,1,...,4 so that the functional w(-) (9) is given by

w(p) = ||90(0)||2+||s0(—1)||2+||90(—2)||2+/1 ||90(9)||2d0+/ lo(8)11” de.

—2

for p € €([—2,0],R?). Obviously

le(O)II* < w(p) < 6llell2

so we may choose #; =1 and (3, = 6.
The matrix W (a) used in the proof of Theorem 4 is given by

— . (10 2 0\ ,/0.7301 0
W(O‘)_(O 1)_0‘(0 4)_0‘ ( 0 0.7301)'

W («) is positive definite for a = 0.23, so we may choose «; = 0.23.
The corresponding functional v(z;) is of the form

0 01

v(xy) =z (U (0)x(t) + 1.41:T(t)/ U(—-1-196) (1 0) z(t + 6)do—

-1
0

—0.982"(t) / U(—=2 — 0)x(t + 0)do+

-2

+0.49 / 01 (¢t + 65) [ / 01 <(1J (1)) U(01 — 05) <(1J (1)) x<t+el)d91] 0,

— 0.686 / DT+ ) [ / 0 G (1]) U0 — 0, — D)t + el)del] d0,+

-1 -2

2 -2

0 0

+ /0 (24 0) ||z(t + 0)|° db + /O (3+0) ||x(t + 0)| do.

-1 —2

Here the Lyapunov matrix function
U(r) = 6/ KT(t)K(t +7)dr
0

10



Figure 1: Matrix U(7), piecewise linear approximation

satisfies the equation

%U(T) — _U(r) ((1] g) U —1) (097 067) —U(r-2) (0'819 0819) L (22

In Fig. 1 we plot the four components of a piecewise linear approximation of the Lyapunov
matrix function. From the plot we get

u=3.44 and a = 0.7.
The upper bound (20) of v(-) has the following form

3 0 0
o(z) < u(1—|—3a)\|:c(t)\|2+(,ua—l—2—|—§ua2)/ le(t+0) |2 do+ (ua—|—3—|—3ua2)/ 2t + 0)[do.
—1 —2

The value a5 should satisfy the conditions
oy > (14 3a) =10.65, ay > pa + 3+ 3ua® = 10.46

and so we may choose ay = 10.65.

As a result we obtain an exponential estimate (18) for the solutions of the system (21) with
the following constants

v 22 1669, 0= - ~0.047.
aq 20[2

In order to verify how well the piecewise linear approximation represents the Lyapunov
matrix valued function we compute the solution of equation (22) with the initial condi-
tion generated by the linear piecewise approximation as initial function on [—h, 0], see
Remark (16). The four components of the corresponding solution are plotted on Fig. 2.
A comparison Fig. 1 shows a good fit between the solution U(7) and the piecewise linear
approximation on [0, h. O

11
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Figure 2: Matrix U(7), numerical solution
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