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Abstract

The mathematical analysis of geoelectric applications leads
to the inverse problem of Electric Impedance Tomography
(EIT) on unbounded domains. We introduce appropriate
function spaces for this setting and discuss the analytic prop-
erties of the related forward operator on unbounded domains
with Lipschitz boundaries. For the numerical approximation
we consider Tikhonov regularization for a finite number of
measurements. The main theorem states that this yields
an approximation process which converges with an optimal
rate to a minimum norm solution. Finally, numerical re-
sults in two and three dimensions, which are obtained from
simulated, noisy data, confirm the theoretical findings.
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1 Introduction

A major application of geophysical imaging methods is in the exploration of
the earth’s interior. Data collected by making boundary, exterior or pointwise
interior measurements are used to construct an image of the spatial variation
of a parameter characterising structural variations within the earth’s interior.

There are several methods currently in use, each based on the observation
of a different physical effect. Examples include geomagnetic, seismic and geo-
electric methods. Exterior measurements are used in gravimetric or magnetic
approaches, whereas in ground water filtration, boundary measurements are
used together with pointwise interior measurements, see, for example, [22] and
literature cited there. Each of these methods depends on a special measure-
ment process based on a specific physical model and the main task consists of
an interpretation of the measured data using an inversion procedure.

The different approaches are complementary in that they cover a range of
depths and resolutions as well as reconstructing different physical properties
within the interior. For example, seismic methods are applied for recovering
mass densities at depths from 10 m up to 6 km, whereas in geolectric approaches
the depth of investigation ranges from 10 cm to 100 m.

The geoelectric measurement process considered in this paper consists of
using electrodes (metal stakes knocked into the earth) to inject electric current
into the ground and measure the corresponding electrical potential at the sur-
face, see Figure 1. The measured data depends on the spatial distribution of
electrical conductivity (the parameter). The process which maps the parame-
ter to the measured data (called the forward mapping or the forward operator)
depends nonlinearly on the conductivity distribution and, consequently, the in-
verse problem of determining the parameter from the measured data is also
nonlinear.

Figure 1: Multielectrode equipment Figure 2: Wenner design

The inverse problem posed by geolectric applications is closely related to
medical applications of Electrical Impedance Tomography (EIT). The mathe-
matical descriptions of the geoelectric and medical applications of EIT are the
same and the main difference is in the spatial extension of the domains being
considered. In medical applications, the domain is bounded and the measure-
ments cover all the accessible parts of the boundary. In geophysics the domain
may be assumed to be unbounded, although the measurements on the boundary



are restricted to a finite part. Nevertheless, most results for the well-studied
medical application carry over to unbounded domains relevant for geoelectric
applications.

Regularity conditions on solutions of the elliptic partial differential equa-
tions that are used to model the physical situation imply that material discon-
tinuities within the interior produce smooth boundary data and the effects of
high frequency components of the conductivity are severely damped. Hence,
the geoelectric inverse problem is also ill-posed and can only be solved approx-
imately by using a suitable regularization method [18, 30]. This paper aims at
analyzing Tikhonov regularization methods for geoelectric EIT.

1.1 Applications of geoelectric inversion

Geoelectrical imaging methods were originally used for geophysical and geo-
logical investigations but more recently the importance of these methods in
environmental problems and archaeological investigations has been recognized.

The goal of geophysical and geological applications is the exploration of
geological structures in the upper earth’s crust at typical depths ranging from
10 m to 4000 m. Geoelectric inversion is frequently evaluated together with
other methods and geological a-priori knowledge. Some examples of geophysical
and geological applications are:

e Resistivity imaging of active volcanos: Changes in the chemical com-
position of volcanic gases and thermal changes deep in the interior also
correlate to electric resistivity. Some recent work can be found in [21].

e Optimising geological drilling projects: geoelectric methods can be used to
gain spatial information useful in determining optimal drilling locations.
(cf. e.g. [39], [43]).

e Archaeological investigations: Here the main objective is to recover ar-
chaeological underground monuments, walls, cavities and settlements and
the depth of investigation ranges from 1 m to 10 m e.g. obtaining plans
of underground objects, investigations of structures inside buildings and
monuments or the detection of man-made cavities such as cellars and
underground corridors.

e Hydrogeological exploration and environmental investigations: This field
is concerned with depths from 1 m to 50 m and has become one of the
most important applications of geoelectric methods during the last 15
years. This field of applications includes investigation of infiltration pro-
cesses, detection of ground water resources, evaluation of environmental
impacts on ground water, exploration of former industrial and military
sites, risk assessment of potential hazardous waste disposal sites, explo-
ration of building sites, monitoring of (biochemical) remediation processes
and mapping of water flow in the vicinity of dams and reservoirs.



1.1.1 Measurement techniques

Within the geoelectric community a number of different measurement schemes,
i.e. electrode configurations, are considered: Wenner, Dipole - Dipole, Pole -
Dipole and Pole - Pole. The frequently used Wenner design is illustrated in
Figure 2: Electrodes which inject currents (A and B) and electrodes measur-
ing surface potential differences (M and N) are laid out along a straight line
separated by a constant distance a . When a measurement is completed, the
entire configuration is moved by a distance a in one direction and the next
measurement is taken. This is repeated several times starting from the same
initial position using different values of a .

The classical geoelectric application does not utilize any mathematical inver-
sion procedure. The data produced with one of these methods is only mapped
to a subsurface profile taking into account the median depth of investigation
covered by a single measurement. This mapping is called pseudosection or
apparent resistivity and is used to represent measured data.

1.1.2 Standard inversion methods for geoelectric applications

Several mathematically motivated inversion procedures have been proposed for
geoelectric applications.

The finite difference algorithm of Dey and Morrison[11] is used by many
authors for the numerical solution of the forward problem in three space dimen-
sions. This algorithm assumes that the conductivity distribution is constant in
one direction (i.e. it is essentially two dimensional) and calculates potential
distributions in the lower half-space.

A frequently applied inversion algorithm developed by Loke and Barker[29]
uses a regularized Gauss-Newton method. In order to reduce computational
costs, they also derived a quasi-Newton method where in each iteration the
Jacobian matrix is updated by a rank one matrix (i.e. a Broyden update). The
Jacobian is calculated only in the first iteration, assuming a constant back-
ground conductivity and using precomputed partial derivatives.

Ellis and Oldenburg [17] presented a nonlinear minimization approach, where
a suitable objective function is minimized under the additional constraint that
the residuum assumes a prescribed value depending on the data error. The
objective function includes a priori knowledge and restricts the non uniqueness
of the inverse problem.

Li and Oldenburg used an approximate inverse mapping ([28]).Using the
Born approximation, one dimensional inversion is performed on Fourier trans-
formed data. An inverse Fourier transformation then provides the approximate
inverse. In each iteration step the model is updated by applying the approxi-
mate inverse to observed and predicted data. This recovers three dimensional
conductivities but is restricted to the pole-pole layout.

1.2 Electrical Impedance Tomography (EIT)

The starting point of this paper is the well-developed theory for medical ap-
plications of EIT which we aim to transfer to unbounded domains as needed



for geoelectric applications. As well as the different support of the quantities
involved medical applications have the advantage that measurements can be
made on all accessible parts of the boundary; in geophysics the measurements
on the boundary are restricted to a finite part. Our main convergence result
for Tikhonov regularization, however, also applies to medical applications with
objects of bounded support.

1.2.1 The mathematical model

Let Q C IR™(n = 2, 3) and suppose that o :  — IR is a strictly positive isotropic
scalar conductivity distribution. If we assume that there are no current sources
inside Q2 then the electric potential u satisfies the partial differential equation

V-(oVu)=0 in Q. (1)

Injecting currents along the boundary is modelled by assuming a knowledge

of the current density function j = 0'% on the boundary of the object 0.

Throughout the paper, v denotes the outer normal. Solving the partial differ-
ou

ential equation (1) with the boundary condition 0% = j for a current density

j € H-1/2(8Q), leads to a consideration of the transfer impedance operator

Ay, : HY2(0Q) — HY?(69) (2)
i = ulaq. (3)

A, is the so called Neumann to Dirichlet operator.

The data for the inverse problem considered in this paper consists of a
partial knowledge of A, in the form of a set {(ji,u1), -, (Jn,um)}. Here each
ji 18 a current density function on the boundary, i.e. it consists of the values
of the electrical current injected through each electrode, and the uy consists of
the resulting potential on the boundary, i.e. in a fully discrete setting it is a list
of the potentials measured on the electrodes. In our case the domain €2 is the
lower half-plane space including topographical deformations on the boundary.
In other words, we are considering the problem in an unbounded region.

The precise definition of the forward operator will be given in Section 3.

1.2.2 Numerical methods

The use of electrical measurements on the boundary of human bodies for medi-
cal imaging started at the end of the 1970s. The technique was pioneered in the
1980s by Barber and Brown [2] using a backprojection technique for solving the
linearized inverse problem using data obtained by injecting currents and mea-
suring voltage differences via adjacent pairs of electrodes. Since that time there
has been much effort devoted to the development of more rigorous algorithms
and here we note just a few of the many subsequent developments.

Isaacson [24] introduced the idea of multiple electrode drives using optimal
current patterns. Paulson et al [36] extended this concept to include the idea
of optimal voltage measurements and implemented it using a regularized least
squares Newton-based reconstruction algorithm based a formulation of EIT as



a problem in nonlinear optimization . Similar implementations using a variety
of regularization methods have been reported by many groups.

More recently, attention has turned to methods based on the explicit use of
a priori knowledge e.g. [20, 3, 9] and this has lead to development of a variety of
different reconstruction algorithms including some based on integral equation
methods e.g. [16, 23, 10, 38] or on the linear sampling method e.g.[5, 6, 7].

1.2.3 TUniqueness results

The unique solvability of the full nonlinear inverse problem has been inves-
tigated by many authors. The problem usually studied is: Given the entire
Neumann-to-Dirchlet mapping A, what are the regularity conditions for which
the conductivity o is uniquely determined by A,. Some papers work with an
equivalent problem posed by the adjoint Dirchlet-to-Neumann map A, .

This problem was first considered by Calderén in a famous and elusive paper
[8] in which he proved the unique solvability of the linearized inverse problem.
The first uniqueness result on the nonlinear problem was obtained by Kohn
and Vogelius [26, 27]. They proved that if 9Q is C* then piecewise analytic
conductivity coefficients o are uniquely determined by the boundary data A,.
Alessandrini [1] extended these results to Lipschitz domains. Isakov [15] consid-
ered the case of piecewise constant conductivities. Sylvester and Uhlmann [40]
proved uniqueness for n > 3, 0 € C*°(Q) and Q with C* boundary 652 . Their
assumptions were gradually relaxed by various authors and the result holds
even for o € W2 >2(Q), [41, 32] as well as for Lipschitz domains [1]. Nachman
[33] proved uniqueness for n > 2 for conductivities 0 € W2P(2), p > n/2 on
Lipschitz domains. For n = 2 this result was improved by Brown and Uhlmann
[4] for conductivities o € WHP(2), p > 2. Recently Druskin [13]obtained a
result for Q = R2, under the assumption that there exists a partitioning of Q
into a finite set of subdomains with piecewise smooth boundaries within each
of which conductivity is constant.

1.3 Structure of this paper

In this paper we will consider a number of aspects of geoelectric EIT. In Section
2 we will introduce appropriate function spaces for dealing with the inverse
problem of EIT on unbounded domains. In Section 3 we discuss properties of
weak solutions on unbounded domains and it is shown that Neumann boundary
value problems are uniquely solvable (in the weak sense) even on unbounded
domains. We will define the forward operator, i.e. the parameter-to-solution
mapping, by means of a coercive trilinear form and analyze its differentiability.

In Section 4 we outline the theory of nonlinear inverse problems used in this
paper and 4 and discuss the well-known result by Engl, Kunisch and Neubauer
[19] on convergence rates. This will lead to the main theoretical result of this
paper, namely a convergence result for a Tikhonov inversion procedure for EIT,
which is also valid in the medical context.

Finally, in Section 5 we give some examples of numerical results.



2 Function spaces and imbedding theorems

In this section we will introduce appropriate function spaces for dealing with
EIT on unbounded domains €2. Sobolev spaces are well studied if = IR" or
Q =1R", the half space with z,, < 0, see e.g. [25, 42]. However, typical domains,
which we will consider, should be suitable for applications in geophysics, i.e.
such domains should allow topographical deformations on the boundary and we
have to generalize the standard results accordingly.

An appropriate choice of weight function will lead to suitable inhomoge-
neous Sobolev spaces and corresponding

e compact imbedding theorems,
e trace theorems,
e Poincaré inequalities,

even for unbounded domains with Lipschitz boundaries.

As the primary aim of this section is to prepare the necessary notation for
the subsequent main chapters of this article, most results are stated without
proof. The proofs can be found in the related chapters in [31],which is also
available via http://math.uni-bremen.de/zetem/~ mluka .

2.1 Weighted function spaces on unbounded domains

When dealing with Neumann problems of the type

V-(©eVu) = 0 in Q (4)
ou )
05, = J on 09, (5)

representing the physical process of injecting a current j into an unbounded
domain Q one cannot use the usual Sobolev space W' (Q) because, in general,
solutions for these problems are not square integrable in ().

Example: Let () be the half-space R3, set o =1 and j(s) = (1+ ||s||2)*% for
s € 00 = R? x {0}. Then a solution is given by w(z) = ||(z1,z2, 23 — 1)|| %,
which is not square integrable in IR3 .

To consider functions for such problems, we follow the approach in [25], where
weighted Sobolev spaces are introduced to solve elliptic boundary value prob-
lems on unbounded domains. Throughout this article, we use a simple type of
weight p(z) = (1 + |z|)%, where a > 1.

We now review some frequently used notations and introduce the basic concepts
of weighted Sobolev spaces. At the beginning we allow general open domains
Q C IR™. This will later be restricted to domains with Lipschitz boundaries in
order to obtain imbedding theorems and Poincaré inequalities.

Definition 2.1 Let Q C IR" be an open set. We use the following notation:

C*®(Q) = {f:9Q— R| f isdifferentiable infinitely often in Q},
C(Q) = {feC®(Q)|[f(z)] = 0as |z[ - oo},



Definition 2.2 Let p: R" — Ry, p(z) = (1+ |z])*, a > 1, be a weight. On
the spaces C3° and C'*° the weighted scalar product

(F.9hy = [ p@ 2 f @@ e+ Y [ af@og@dz, @

induces the norm

1y o= (5 00,) " = (107 oy + 19 W) - ()

Note that only the function f is multiplied with the weight function p.

Now we give a definition of weighted Sobolev spaces (on possibly unbounded
domains), which corresponds to the classical inhomogeneous Sobolev spaces.

Definition 2.3 The norm (7) is used to define the Sobolev spaces

. 11,
HY (@) = {fe0>@]lIfl, <o} ®)

[l
HYP(Q) = {feCe@|fll, <o} (9)

i.e., HYP(Q) and HLP(Q) are completions of suitable C*°- functions with re-
spect to the norm ||| ,.

2.2 Imbedding theorems

In order to obtain compact imbeddings of H#(Q) and H} *(Q) into L%(Q) we
restrict the domains 2 under consideration to open subsets of IR”™ with Lipschitz
boundaries 0€2. Moreover the construction of the necessary extension operators
described below requires that the non-smooth part of the boundary is restricted
to a compact set and that the number of smooth patches needed to cover 0f2 is
finite. Such domains are suitable for modelling EIT applications in geophysics.
We define the notion of a geophysical domain:

Definition 2.4 A domain Q C IR™ for which there exists a compact subset
S CIR" such that

i) Q\S=1R"\S and
ii) Q has a Lipschitz boundary
1s called a geophysical domain.

An illustration of such a domain is given in Figure 3.
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Figure 3: An illustration of a geophys- Figure 4: Partition of 2.
ical domain.

For such domains we obtain linear and continuous extension operators by gen-
eralising the construction introduced in [25].

Lemma 2.5 Let Q be a geophysical domain and p(z) = (1+|z|)%, a > 1,
a weight. Then there exist linear and continuous extension operators F :
HY*(Q) — HYP(IR™) and F, : H»*(Q) — HYP(IR™), with F(u)|lo = u and
Fy(u)|q = u.

The existence of such extension operators is sufficient to obtain compact imbed-
dings for weighted Sobolev spaces on unbounded domains, see[25, 31]. We define
a multiplication operator as follows.

Definition 2.6 Let p: IR" — IR, be a weight. The mapping M, is defined by
the formula M,(f) := p Lf, for every measurable function f: Q — IR.

We now obtain the required compact imbeddings for suitable weight functions.

Theorem 2.7 Let Q be a geophysical domain and p(z) = (1 + |z|)® a weight.
Ifn>2 and a >n/2 then M, : H-?(Q) — L2() is a compact imbedding.
Ifn=3 and a > 1, then M, : H-*(Q) — L?(Q) is a compact imbedding.

2.3 Trace theorems and Poincaré inequalities

In subsequent sections the restriction of differentiable functions to the boundary
0 will be used frequently. Hence, we will present a trace theorem for weighted
Sobolev spaces from [25], which is natural when compared with standard results
for unweighted Sobolev spaces on bounded domains and which we extend using
compactness.

Theorem 2.8 Let ) be a geophysical domain, i.e. an unbounded domain with a
locally finite Lipschitz boundary OS2. Further, let p(z) = (1 + |z|)® be a weight
and o > 1. Then there ezists a linear and continuous map v : HVP(Q) —
L?7(0R2) such that y(u) = ulgq for all u € C1(Q) N HLP(Q).

Additionally, if there exists an extension operator and if n > 2 and a > n/2
then, the trace operator v : HYP(Q) — L*? (09Q) is compact.

The same assertions are valid for v : HHP(Q) — L% (09), where n = 3 and
a > 1 is sufficient for the compactness of the trace operator .



We conclude this section by proving a Poincaré type inequality for such function
spaces.

Definition 2.9 Let W be a function space such that 1 € W, where 1 denotes the
function which assumes the constant value one. A continuous linear functional
I': W — 1R is called normalizing if T'(1) # 0, i.e., 1 ¢ Ker(T').

Theorem 2.10 Let Q be an unbounded geophysical domain, p(z) := (1+ |z|)®
a weight and I' a continuous linear normalizing functional. Then the following
conditions lead to Poincaré inequalities :

i) If n > 2 and o > n/2, then there exists a constant C > 0 such that for
all u € H-P(Q)

Jull? , <€ ( [ 1Vu(e) *ds + Twy?) (10)

ii) If n = 3 and a > 1 then there exists a constant C > 0 such that for all
u € HHP(Q)

i, < ¢ ([ IVu)da) - ()

Proof: i) Note that the assumption @ > n/2 implies 1 € H%?(Q). Assuming
that the assertion is false implies the existence of a sequence {up}nen with
up, € HYP(Q) and |unlly,, = 1 such that

% > /Q IV (z)2dz + T(un)? (12)

holds for all n € IV.

This implies that limy, o [|[Vun|||2(q) = 0 and [lun||, , = 1 for all n € IN.
Theorem 2.7 can be applied, to give a subsequence (denoted again by {un},c )
such that M,(uy,) = p'uy, is L?-convergent to some element in L?({2). Hence,
the sequence {uy}nev is a Cauchy-sequence in H?(Q2), and there exists an
element g € HY?(Q) such that lim, oo ||un — glly,, =0.

Since limg, o0 ||| Vun||| o) = 0 we have 9;g = 0 almost everywhere in Q for
each i € {1,---,n}. It follows that there exists a constant ¢y € IR such that
g(z) = ¢ for almost every = € Q. Equation (12) gives

111101o C(up) = 0. (13)

n—

Since T is continuous and linear it follows that
nll)IroloI‘(un) =T(g) = coI'(1). (14)

This implies that ¢y = 0 and therefore

. A 1,p
Jim u, =0 in H (©). (15)

10



This conclusion contradicts the assumption [lupl|; , = 1.
)

ii) By the assumption on the asymptotic behaviour |z| — oo it follows that 1 ¢
HL?(Q). An argument similar to that in i) provides a sequence u, € H?(Q)
such that [lusll; , =1, limy o0 [|up —gl|; , =0 forage H}P(Q) and g = ¢
for some constant. Since 1 ¢ H}?(Q) it follows that ¢ = 0 and the same
contradiction as in i) is established. o

Examples of normalizing functionals: For 1 € HY?(R), i.e. a > n/2 consider
the functionals

Ty(u) = /aQu(s)p(s)_ZdS and (16)
o = [ u(s)as, a7)

where S C 02 denotes a bounded subset as in the definition of geophysical
domains.

The trace theorem (Theorem 2.8) and the Cauchy-Schwarz inequality lead to
the estimate

2

Ty (w))® = /69 L uls) s

p(s) p(s)

1 u(s)? 2
dS/ ds < c||lul|] , 18
Lo e L oS < el (18)
1.e., I'1 is continuous. For I'y the estimate
r 2 4 ( / u(s)
[Ta(u)] maxpt)" \ Jg | o0s)2
(5)?

1 U
- < / 2 1
c/sp(s)zdS/aQ s <l (19)

proves continuity. The normalizing property of these two functionals is clear.

AN

2
is) <

IN
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3 Properties of the forward operator

For the formulation of the forward operator we assume that a known current
density j is injected on the boundary 92. The forward operator then maps the
parameter ¢ to the solution of the Neumann boundary problem

V-(eVu) = 0 in Q,

ou

“ov

For a complete model of geophysical EIT we will later combine this forward

operator with the restriction of the solution u to its values on the boundary.

For most of this chapter we investigate the properties of the forward operator

for a single measurement, i.e. for injecting a single current density j. Motivated
by applications in geophysics, we assume, that the support of j is compact.

The weak formulation for this Neumann boundary value problem and its

properties are well known. However, we use a slightly different approach which

is more suitable for treating the inverse problems in the subsequent sections.

To achieve compatibility with the following sections the usual bilinear forms

are substituted by trilinear forms, where the coefficient ¢ is introduced as an

additional variable.

Definition 3.1 Let H = HY?(Q) or H = HL}?(Q) and j € L*(00N) with
bounded support. Then the trilinear form T : L®(Q) x H x H — IR and
the linear form L; : H — IR are defined by

= 7 on O0ON.

T(o,u,v) = /Qo(a:)Vu(a:)V'U(a:)dz, (20)

Li(v) = /6 i(spo(s)ds (21)

for all 0 € L*®(9).
Moreover, for a given cy > 0 let Q C L*°(Q2) denote a set of uniformly strictly
positive parameters, i.e., the set of all functions o such that o > ¢y a.e. in €.

A function u € H is called a weak solution of the Neumann boundary problem
if
T(o,u,v) = Lj(v) , Vv € H . (22)

In order to apply the Lax-Milgram Theorem for proving existence and unique-
ness of a weak solution we have to analyze the coercivity of the trilinear form.

Proposition 3.2 The linear forms from Definition 3.1 are continuous.
Fora>n/2,n>2let

H = {u € H-#(Q) | T(u) = o} , (23)

where T' denotes a normalizing functional (cf. Definition 2.9).
Forn=3 and a>1 let

H=HLr(Q). (24)
If Q C L*(R) is a set of uniformly strictly positive parameters, then the trilin-
ear form T : L®°(Q) x H x H — R is uniformly coercive for all o € Q.

12



Proof: The continuity of 7" : L>®(Q) x H x H — IR is clear.
Note that for the linear form L; the support of j was assumed to be compact.
Then the estimate

Lol < [ i)l)lds
supp(j)
. -1
< Sesl{llfa)lf)(j)P(3)||J||L2(an)||ﬂ V|12 (00 (25)

together with Theorem 2.8 proves continuity for the linear form L; : H — IR.
Theorem 2.10 provides the estimate

[l , < [ [Vu@)de, (26)

for all u € H which leads directly to the uniform coercivity of 7' in Q, i.e.,

[ulf, < €[ [Vu(e)Pde
< Ccal/na(w)Vu(w)Vu(w)dw
= Ccy'T(0,u,u). (27)
<

The Lax-Milgram Theorem now guarantees that for each ¢ € @ and each
j € L?(09) with bounded support there is a unique solution u € # of the
(weak) Neumann boundary value problem (22).

For a definition of the forward operator, which maps a parameter o to the
solution u, we formalise the use of the trilinear form 7" as follows.

Lemma 3.3 Let H denote either HY?(Q) or HY P () and let Q C L™®(IR"™)
denote a subset of uniformly strictly positive parameters with o > ¢ > 0. Let
T denote a trilinear form

T:L®(R") xHxH—->R

which is a uniformly coercive mapping for all 0 € Q). Let H* denote the dual
space of H. Then the following statements hold.

1. For each o € L*(IR"), u € H we have

T(o,u,-) € H* and ||T (0, u,)ll3ye < cLlloll oo mmyllully -

Therefore, the linear mapping
u T(oyu,-) : H—H*
is continuous for each fized o € L*°(IR"), i.e.,

T(0,--) € L(H, ") and [ T(0, )| a2y < crlltell oo mmy

13



2. For each o € Q there exists a continuous mapping T, * € L(H*,H) with
|IT || < C, which is the inverse of T(a,-,+), i-e.,

T(o, T, g,-) = g(-) for eachg € H* and T, 'T(o,u,-) = u for eachu € H .

3. In the following, the abbreviation T, is used instead of T'(o,-,-). Then by
the previous statement T, T, ' = Idy» and T, 'T, = Idy holds for each

o€ Q.

4. The mappings o — T, : L°(R") — L(H,H*) and o — T, : Q —
L(#H*,H) are continuous.

Proof:
1. This follows directly from the definition of T'.

2. The existence of the inverse mapping T, ! € L(H*,H) and the estimate
|51 < C for each o € Q follow directly from the Lax-Milgram Theorem
for coercive linear forms.

3. This is a reformulation of the previous statement.

4. The estimate [|To||(3,3+) < cLl|o| Lo (rn) is Obvious and provides conti-
nuity of the mapping o — T, : L°(IR") — L(#H,H*). For the continuity
of 0 = Tt let 0,0’ € Q and consider

1T, =T = 1T, (T = To) T, |
< N N T — Toll| 75
< C%eo’ -] (28)

<

Remark: The operator T, introduced above depends linearly on the parameter
o,ie. Ty, =Ty +T,. However, the inverse operator T~ 1'is only defined on
the subset @), where it depends non-linearly on o.

Hence, we obtain the solution of the Neumann boundary problem (22), by
u="T, le .
We have to combine this with the trace operator
v : HYP(Q) — L7 (09)

in order to obtain the complete parameter-to-solution mapping, i.e. the forward
operator for a single measurement with current density j:

Definition 3.4
Ap, : Q — L*(09)

o = y(u) = yo T, 'L

denotes the parameter-to-solution map.

14



This definition extends easily to multiple measurements.

Definition 3.5 Let {jk}ke{l,---,m} be a set of compactly supported current den-
sities in L?(09). Then the parameter-to-solution mappings of the previous def-
inition are used to define the forward operator A by

A Q- ﬁ L>?(09), (29)
k=1
A = Ap, (30)

where Ay, denotes the k™" component of the operator A.

Finally we will analyze the differentiability of the forward operator with re-
spect to the parameter o for a single measurement. In order to abbreviate our
notation we use A := ALj.

Theorem 3.6 Let the assumptions of Lemma 3.3 be satisfied. For a fized o €
Q choose € > 0 sufficiently small such that the ball B:(c) C Q and € < é
Then the formula

o0

Ao +h) = Al0) + 7o (Z (—Tngh)é> (T;'L) (31)

=1

is valid for all h € B.(0).

Proof: Since A =yoT, 1Lj we have to analyze the non-linear dependence of
T, ! on 0. This is done by working as much as possible with 7},, which depends
linearly on o.

For a fixed j denote g := L; € H* and A(o) := T, g.
For h € B.(0) let us denote ¢’ := o + h, y, := A(o) =
Ta_,lg and z := Yy — Yo

By Lemma 3.3 we have T,y, = g and T,+y,» = g which leads to

T, g, yor = A(s') =

Taya = Ty (ya + Z)
T(0+h) Yo + T(a—|—h)z
Taya + Thya + Taz + Thz- (32)

This is equivalent to
Toz+Thz = —Thyo- (33)
As T, is invertible, z satisfies the equation
(Idﬂ + T;lTh) 2= —T Ty, . (34)

z can be written in terms of a Neumann series representation

z=Alo+h)— Alo) = (i (_TnghY) (_Tngh) Yo (35)
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if ||=T, 'Ty|| < 1. This is ensured by the assumption on ¢ since ||—7T; 1T} <
Cer, ||h]]-
~—

<e
The result follows by replacing y, = A(c) and by combining the Neumann
series with the linear and continuous trace operator +. o

The previous Theorems lead directly to an explicit description of derivatives of
the parameter-to-solution mapping A.

Corollary 3.7 Let the assumptions of Theorem 3.6 be satisfied. The first
derivative of the forward operator A, at o is given by the linear operator

Dy : B:(0) C Q C L®(IR") — L*(09)
h+ Dih = —yo T, 'T}, T, 'L, .
Similarly, the higher order terms in the Neumann expansion lead to explicit

representations of higher order derivatives of A.

Remark: The mapping A : Q — Y, for Q C P open, is of class C* for every
natural number £, i.e., it is of class C™. The £ derivative of A at o € Q is the
L-linear mapping which is obtained with the help of the symmetrizing operator
S, which sums over all permutations of (hi,-., he), as follows:

aﬁ

14
WA(U; hi,yhg) =yo (Sf 11 TalThk) T,'L; .
k=1
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4 Tikhonov regularization for geoelectric impedance
tomography

In this section we present the main result of this paper: a proof of conver-
gence for Tikhonov regularization applied to the inverse problem of electrical
impedance tomography on unbounded domains (2.

To be more precise, we will discuss the realistic situation, where a finite
number of current densities, ji, k = 1,..,m are injected and the resulting po-
tentials uy are measured on 0f2. From this partial knowledge of the Neumann-
to-Dirichlet map of the boundary value problem

V-(ocVu) = 0 in Q,

05 = j on 0N

we try to compute an approximation to the parameter . We consider approx-
imations obtained by minimizing appropriate Tikhonov functionals.

Let us first consider, what can be done with just one measurement. The for-
ward operator for a given current density j, which maps the parameter o to u
on 99, is given by A(c) =y o T, *L;. This operator has been analyzed in the
previous section.

Let y° denote noisy, measured data, which is assumed to have a limited accu-
racy, i.e. ||y—y°|| and y = A(c). The norms are taken in L?(99). In accordance
with the general theory for non-linear inverse problems, we assume, that an a
priori model o* has been chosen. We then compute an approximation ag by
minimizing the Tikhonov functional

F(o) = [|A(0) —9°|> + allo — o*|* .

4.1 Tikhonov regularization for non-linear inverse problems

The best we can hope for — in a nonlinear inverse problem — is to define a rule
for choosing o = a(6) in such a way, that ¢ converges to a ¢*-minimum norm
solution as § — 0. For an introduction to regularization theory for non-linear
operator equations and the concept of o*-minimum norm solutions, we refer
the reader to [18].

The following fundamental result concerning the convergence of Tikhonov reg-
ularizers for non-linear inverse problems was proved in [19].

Theorem 4.1 Let X,Y denote Hilbertspaces. Let A: D(A) C X — Y be a
continuous nonlinear operator between Hilbert spaces. Let 6 >0 and y° € Y be
such that ||y —y°||y < 8. Further, let the following assumptions on A hold :

1. D(A) is convez,
2. A is weakly sequentially closed,
3. a o*-minimum-norm solution s1 exists,

4. A is (Fréchet-)differentiable in a ball By(c™),
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5. the derivative A'(c") € L(X,Y) is Lipschitz continuous, i.e.,
|A"(0) = Ao xyy < Lllo™ —ollx, for all ¢ € By(o™F), where L
denotes the Lipschitz constant,

6. let there exist an element w € Y satisfying |t —o* — A’ (67)" w||x =0,
where L||lw|ly < ¢ <1, for a cog > 0.

Then, if p > 2|lot —o*||x + %{Q, where &y > 0 is such that 0 < d¢ for all

error levels § > 0 of consideration, for the parameter choice a := K¢, where K
denotes some positive constant, the asymptotic estimates

2K
@) -y < (1+52)5 and (30

1 1 VKe 1
6+ < 0 3
||aa g HX — m (\/I_( + L ) 6 (37)

are valid.

Remark: Assumption 6 is concerned with the smoothness of the solution
and can be relaxzed in different ways. For example, a practical relazation of this
restriction can be achieved as follows: let 9 € IR be positive such that there
exists an element wy € Y satisfying |0t —o* — A" (oF) wyl|x < ¥, where
Lijwylly < ¢co <1, for aco > 0. The error estimates of the above Theorem have
to be adapted accordingly:

2K
JA@S) —°lly < (1+ LCO>5—I-\/2pK5% 93 and  (38)

log —atllx < \/11_—60 <<\/1I_(+\/I§CO> 5%+\/2_P’9%> (39)

The proof of this generalisation which circumvents rather restrictive a priori as-
sumptions on o* can be found in [31]and it will be published in a more accessible
form in a forthcoming paper.

AN

4.2 The parameter-to-solution mapping for a single measure-
ment

The assumptions which are needed in the previous theorem to ensure the conver-
gence of Tikhonov regularization are entirely formulated in terms of the forward
operator. The forward operator of EIT has been studied in the previous section
but we need two more prerequisites in order to apply the convergence theorem
to EIT:

1. The results of the previous section were formulated for parameters o €
L*>°(9), the convergence theorem requires Hilbert spaces.

2. The forward operator needs to be weakly sequentially closed.
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Restricting the domain of the parameter-to-solution mapping to a suitable sub-
set of L*°(Q) together with a Sobolev imbedding theorem leads to a variant of
the forward mapping to which a convergence analysis can be applied. To sim-
plify the following steps, Sobolev spaces with fractional order will be avoided
and the following well known variant of imbedding is used :

Theorem 4.2 Let Q C IR" be a bounded domain with Lipschitz boundary. If
k > %5, then the imbedding

i: H*(Q) — C°(Q) (40)
is continuous and compact. Further, let Q' C IR™ be such that Q C Q' and
i': CUQ) — L=(DY) (41)

the operator which eztends each f € C°(2) to L°°(Y') by setting its values to
zero on '\ Q. Then obviously, i’ is injective and continuous.

In order to achieve compatibility with this imbedding theorem we have to
discuss the structure of the parameter o as it appears in geophysical applica-
tions. The domain of definition 2 was introduced in Chapter 2 as a subset
of IR", which combines the lower half space with a compact subset S C IR"
with a Lipschitz boundary, i.e. this model includes local topological features
like rocks, hills or even the shape of the electrodes used in the measurement.
This assumption is natural for our field of applications, where we seek a local
analysis of the underground region and the measurements are restricted to a
finite number of electrodes in a finite region of interest. We further assume,
that the values of the parameter o at locations which are far away from the
measurement positions only weakly influence the measurements in an averaged
way.

It is therefore acceptable to choose an arbitrarily large but fixed ball B(0, R) C
IR"™ of radius R at the origin and to assume that a rough model o9 > 0 on
/B(0, R) is known and sufficient for our approximations, see Figure 4. For
example gg might be a constant function, which represents the average electric
conductivity of the upper earth surface. Then a suitable subset of H2(22NBr(0))
will be chosen as domain of the forward operator.

Definition 4.3 Let Q denote a geophysical domain. Define Qg = QN Bg(0)
and let P C H?(Qg) be a uniformly strictly positive subset, i.e, there exists a
constant cy > 0 such that o > cg on Qg for all o € P.

For each bounded and strictly positive o9 > cog > 0 let Py, :== P — 0¢ be the
affine translation of P.

Definition 4.4 Let the space dimensionn = 2 orn = 3 and Q be an unbounded
geophysical domain. Further, let P C H?(QR) be given by definition 4.3 and
consider the compact imbedding i : H*(Qg) — C°(QRr). For a given og > co > 0
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and a given compactly supported current density j € L%(0N), the imbedded
parameter-to-solution mapping A; is defined by,

Aj: P, C H*(Qg) — L*7(09) (42)

Aj(O') ::’yOALj(Uo-f-')OiIOi . (43)

Corollary 4.5 Let P C H%(Qg) be given by definition 4.3. Then, the parameter-
to-solution mapping A; : P,y C H?(Qg) — L»?(0Q) defined by (43) is a con-
tinuous operator with a Lipschitz continuous first derivative on each open ball
BC Py,

Proof: The imbeddings i : H2(Qg) < C%(Qg) and i’ : C°(Qr) — L>®() are
linear and continuous, as well as the trace operator v : H — L2(8€2). The affine
mapping o — oo + o : L®(2) — L*®(R) is obviously C*®. Note that for the
previously defined P,, C C°(Q) there exists an open uniformly positive subset
Q C L*(R) such that o¢ + i'(P,,) C Q. By Theorem 3.7 and the subsequent
remark Ay, is C* on ). We therefore obtain the C* property of the compo-
sition (43) on each open ball B C P,,.

Remark: As in the previous section we can extend this result and obtain that
the forward operator is C*° on Py,.

Finally, we need to show, that the mapping A; is weakly sequentially closed.
Again, we exploit the compactness of the imbedding i : H?(2g) — C°(Qr) and
a result from [12]:

Proposition 4.6 Let X,Y,Z be Banach spaces, D(A) C X a weakly sequen-
tially closed subset and let A : D(A) — Y be a nonlinear operator, which can
be decomposed into a compact linear operator K : X — Z and a continuous
nonlinear mapping f : K(D(A)) C Z - Y, i.e., A= fo K. Then A is weakly
sequentially closed.

In our situation the compact linear operator is provided by the imbedding
operator. We immediately obtain the following result.

Corollary 4.7 The forward operator A; : P,y C H*(Qg) — L*?(0R) is weakly
sequentially closed, of class C*° on each open ball B C Py, and hence has a
Lipschitz continuous first derivative there.

4.3 Convergence of Tikhonov regularization

In the previous sections we have proved all necessary properties of the forward
operator in order to apply the convergence theory for non-linear Tikhonov reg-
ularization. Before stating the final result we want to summarize all the condi-
tions that were necessary to obtain these results:

1. the domain of definition € is a geophysical domain, see Definition 2.4,
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2. the current densities j, € L?(09Q),k = 1,..,m are compactly supported,

3. the current densities j; have to satisfy I'(jx) = 0, if the space of potentials
is chosen to be H'#(f2), see Theorem 3.2 ,

4. a bounded and strictly positive approximation oy is supposed to be known
on Q/B(R,0), where B(R,0) denotes an arbitrarily large but fixed ball,

5. the parameter-to-solution mapping is defined on A,,, see Definition 4.4.

Note that the domain of definition for the parameter-to-solution consists of
functions o with bounded support. However, we still require the theory devel-
oped in the previous sections for parameters on 2, since the EIT differential
equation has to be solved for oy + o which is defined on the full unbounded
domain €.

We now define the operator for a finite number of injected current densities.

Definition 4.8 Let {jk}ke{l,---,m} be a set of compactly supported current den-
sities in L2(0Q). Then the parameter-to-solution mappings 43 are used to define
the forward operator A by

m

A : P, C H*(Qg) = [] L*"(09), (44)
k=1

Ap == 7yodAp (o0+-)0 i' o, (45)

where Ay, denotes the k™ component of the operator A.

The final result now states that Tikhonov regularization can be applied to re-
construct an approximation to ¢ from a finite number of EIT measurements.
More precisely, with a finite number of measurements we cannot expect that
the Tikhonov approximation yields the true o™ even with perfect data. How-
ever, we can prove that the Tikhonov regularization with a finite number of
measurements converges (as the data error § — 0) to a parameter o, which
provides the same data as o™+ and minimizes the distance to o*.

Theorem 4.9 Let A(o) be defined by Definitions 4.8 and 4.4. and suppose
that the assumptions 1..5 hold. Then the minimizer ag of

14(0) = ¢’II” + allo* — o]/
converges to a o* minimum norm solution and
log, = o*[| = O(5'/?) .

Proof: Theorem 4.1 and Corollary 4.7.
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5 Numerical Experiments

The theoretical discussion presented in the previous sections of this paper lead
us to an implementation of nonlinear Tikhonov regularization where the main
task is the minimization of the nonlinear Tikhonov functional, see Section 4.
This is achieved by a Gauss-Newton minimization procedure which requires a
repeated evaluation of the forward mapping, its derivative and the adjoint of
its derivative. Since weak formulations exist for all these operators the finite
element method was chosen as an efficient tool for the implementation.

5.1 Implementation of the forward problem

There has been much discussion in the medical EIT literature of the need to
use accurate models of the electrodes used in the procedure and of the resulting
singular behaviour of the derivatives of the potential near the edges of the elec-
trodes. This is reflected by the need to refine the finite element meshes in these
regions, see ([34]). To achieve accurate evaluation of the operators required
for the nonlinear minimization, the adaptive finite element code “KASKADE
3.0” has been modified to solve various boundary value problems with respect
to different electrode models. “KASKADE 3.0” was developed at the Konrad-
Zuse-Zentrum in Berlin [35], [37]. A major advantage of this software is the use
of nonuniform adaptive meshes to increase accuracy of solutions. The program
automatically refines meshes with respect to an a posteriori error estimation
where solutions of higher order are compared locally with the solution of lower
order. This leads to a criterion whether to further refine a triangular (or tetra-
hedral) element.

5.2 Results on the forward problem

The first step in solving the geoelectrical inverse problem was achieved by im-
plementing the discrete forward operator by a finite element method. Figure
5 illustrates solutions generated by the finite element program for a constant
conductivity coefficient ¢. Various current patterns have been applied to 14
pike shaped electrodes placed at the boundary. The spatial frequency of the
current patterns increases from the upper left to the lower right figure.
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Figure 5: Potential distributions generated Figure 6: Adaptively refined FEM mesh

by various current patterns.

5.3 Adaptively refined meshes

To solve the geoelectrical forward problem numerically, the rapidly changing be-
haviour of solutions near the electrodes needs to be considered. This behaviour
is due to the electrode geometry and the boundary conditions introduced by
the electrode model.

In contrast to the rapid variation of the potential near electrodes, at large
distance from current sources the solution changes very slowly. We decided to
model these various kinds of behaviour by adaptively refined meshes of triangles
or tetrahedrons. The refinement process starts with a coarse triangulation with
large triangles at large distances from electrodes but the adaptive refinement
procedure introduces many small triangles near the electrodes. The process of
refining finite element meshes is well known but nevertheless tedious to imple-
ment. For technical details of the mesh refinement cf. [35, 37].

Figure 6 shows a mesh in various scales. The data for this example is the
same used for that one shown in Figure 5.

To solve the problem numerically, some simplifications must be performed
otherwise the implementation became too expensive and the algorithms were
much too slow. The spaces X := L?(Q) and Y := IR’ have been chosen for
implementing the nonlinear minimization. Using the space L?({2) as parame-
ter space violates the assumptions of the convergence analysis of Chapter 4 but
nevertheless, leads to satisfactory results and convergence rates. The discretiza-
tion is achieved by an adaptively refined triangulation {2, which remains fixed
throughout the reconstruction. The space of parameter functions was chosen
to be P, C L%(Q) with respect to the triangulation Qj to solve approximately
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the inverse problem the minimization of
2 2
T, (0) = [[A(0) = 4’|l + ello — o™ |20, (46)

must be performed. To achieve this minimization, the GauB-Newton method
was chosen to be implemented. This requires that at each iteration we solve
numerically the linear problem

Qdi+1 = b, where (47)
Q = DA(oy)TDA(ok) +al and (48)
b = DAw)" (v - Alor)) +ale" ~ o) (49)

which leads to the update ox41 = 0k + dgs1. This is repeated until the
residuum ||A(og41) — ¥°||;» becomes sufficiently small. Solving the linear prob-
lem is achieved using the conjugate gradient method. The most expensive step
there is the evaluation of the expression Qdj, which requires us to solve the
boundary value problem twice for each component A;. The system matrix M,,
(= M,) depends only on o which is fixed when solving the linear problem.
Using an LU sparse matrix solver leads to an efficient implementation since, for
solving the 2 x (I —1) x (no. of CG iterations) boundary value problems (with
various right hand sides), a single LU decomposition can be used. LU decompo-
sition and forward-backward substitution is performed using the Harwell-MA28
sparse matrix solver [14].

5.4 Optimal choice of regularization parameter

The following sequence of reconstructions with increasing regularization pa-
rameter o demonstrates how the damping of data errors within the inversion
process depends on a. The model shown in Figure 7 was used to calculate the
data. An error of 1% was added and the resulting perturbed data was used for
each reconstruction. The sequence starts with small a. Figure 10 is related to
this sequence and shows the corresponding reconstruction errors.

This demonstrates that the choice of « is crucial for the inversion of real
data. A systematic study of parameter choice rules will not be given here and
for a thorough discussion of this topic we again recommend [18].
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Figure 10:  L2-reconstruction-error
plotted against regularization parame-
ter o

Figure 9: L?-reconstruction-error plot-
ted against different error levels 4.

5.5 Convergence rates

The aim of this section is to study convergence rates obtained by the imple-
mented reconstruction algorithm and to compare them with the convergence
rates stated in the previous section. This task is achieved for a simple exam-
ple. It includes very low contrasts, i.e., the parameter varies slowly within the
interval [0.01,0.012] in order to approximate a smooth function which provides
a small ¥ value. Unfortunately, the z*-minimum-norm solution is not available
and hence the reconstruction-error can only be calculated with respect to the
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prescribed model function. The measured convergence rate is of order 0.4 which
is very close to the theoretical expected 0.5. Figure 9 shows the reconstruction
errors for different levels of data error . This seems very satisfactory taking
into account that the reconstruction algorithm violates the assumptions which
were sufficient for establishing the convergence analysis (the minimization of
the Tikhonov functional was implemented with respect to the L?-norm and not
with respect to the theoretically required H?-norm). Note that this example
includes only very low contrasts and therefore more accurate data is needed to
recover the structure of the conductivity coefficient.

The calculations for this example was achieved without the use of weight
functions and by applying the theoretically suggested parameter choice strategy
a = K, where K was determined to be optimal for the greatest error level of
consideration (0 = 1%). At the boundary 14 pike shape electrodes were placed
equidistantly for simulating the data.

We finally conclude with a 3D reconstruction, which was obtained from sim-
ulated data with an 1% error level. We want to emphasise that the simulated
data were obtained with a different, finer grid compared with that used in the
reconstruction algorithm.

Figure 11: 3D-model of an under- Figure 12: Reconstructions for § = 1%
ground structure, the layout of the elec- and o ~ 0.
trodes on the surface is marked.
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