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USING THE EXTENDED FINITE ELEMENT METHOD FOR

KEYHOLE-BASED WELDING PROCESSES

M. JAHN AND J. MONTALVO-URQUIZO

Abstract. This article addresses the modeling and simulation of keyhole-based welding pro-

cesses using the eXtended finite element method with multiple indicator function. The welding

process is modeled by the heat equation where the keyhole geometry and the interface sepa-
rating molten and solid area are both represented by level set functions. The keyhole shape is

computed by an analytical approach based on the idea of Kaplan and remains constant during

the process. In contrast to this, the solid-liquid interface is considered as free boundary whose
evolution is described by the two-phase Stefan problem. The coupled problem including two

discontinuities is solved using miXFEM, an extended finite element method implemented within
the FEniCS framework. Numerical results are compared to experimental data for different

materials.d.

1. Introduction

In modern engineering, processes with time-dependent discontinuities are very common. One
example of such processes is welding of metals, where two or more materials are joined. The
process consists of the melting and solidification of material around the so-called welding line
and there are different welding methods available depending on the application. In this article,
we consider keyhole-based welding which is commonly used in the automotive and aeronautic
industries, among many others.

In keyhole-based welding, a focused laser beam is used as heat source to generate the melting
of material that forms the weld seam after solidification. A characteristic feature of laser based
welding is that, for a sufficiently high intensity of the laser beam, a narrow and long vapor channel
is formed in the material after a very short unstable period. Furthermore, if the laser beam is
translated along the welding line, this vapor channel, called keyhole accompanies its motion, see
Figure 1.1. While keyhole-based welding processes are already fit for mass production, there is
still need for simulating these process e.g. in order to optimize the weld seam and, hence, the
resulting product.

It is well known that inhomogeneous heating cause strong mechanical effects that dominate
the welding results in terms of final distortion and residual stresses around the weld seams (cf.
e.g. [28, 34]). The shape of the keyhole is responsible for the formation of the liquid melt pool
and the inhomogeneous distribution in the temperature field obtained during welding. This is
the reason for the high interest on a detailed analysis of its shape and effects.
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Figure 1.1. Schematic laser welding process, side and top views.
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For the simulation of keyhole-based welding processes in this article,the keyhole geometry is
computed and used as a boundary condition for the heat equation. Models for computing the
keyhole shape exist in many different levels of complexity, going from simple line sources [36] to
rather complex models which compute accurate keyhole evolution, as the ones presented in [10].
The probably most common approach to simulate welding processes goes back to [14] and is
based on approximating the heat source by a double ellipsoidal geometry. Although the use of
this ellipsoidal shapes works well for many welding cases, the welding based on a laser as heat
source is mostly determined by the narrow shape of the keyhole, which cannot be approximated
using these ellipses.

From a numerical point of view, the modeling and simulation of problems like keyhole welding
are very interesting since the keyhole and the solid-liquid phase boundary induce two (arbitrarily)
moving physical discontinuities. A flexible method, which has proven to be very suitable for
the simulation of such problems, is the extended finite element method (XFEM), see e.g. [12]
for an overview. The basic idea of XFEM is to improve a standard finite element method
by enriching the discrete function spaces with additional basis functions in order to capture
functional discontinuities at the interface location. Thereby, strong discontinuities (jumps) and
weak discontinuities (jumps in the derivative) of a function inside an element can be considered.
Within the method, a discontinuity is normally represented by the zero level set of a continuous
scalar function. By doing so, the physical geometry is decoupled from the computational mesh.

In this article, we use an approach based on XFEM in combination with the level set method
to model and simulate the thermal aspects of keyhole-based welding processes for different ma-
terials. Neglecting the fluid dynamics of the process, we use an analytical model based on [21]
to determine the keyhole shape in subject to material and laser parameters. Once computed,
this (fixed) keyhole geometry, represented by the zero level set of a signed distance function, is
moved along the material with the welding speed. To include solid-liquid phase transitions, the
Stefan problem with sharp interface is considered, which is also represented by the zero level set
of a (different) signed distance function. In contrast to the keyhole geometry, the solid-liquid
interface is only known at the initial time and its evolution described by the Stefan condition
is part of the solution. Based on the level set functions, local Heaviside enrichment is used to
enrich the function space for the temperature. As this enrichment generally allows jumps in a
function, we use Nitsche’s method [31] to introduce internal Dirichlet boundary conditions and
enforce continuity. By doing so, we follow a different approach compared to i.a. [2, 9, 24], who
successfully applied enriched finite element methods based on weak enrichments to the Stefan
problem in level set formulation.

This article is structured as follows: In Section 2, we define the governing equations and
boundary conditions for the thermal problem and the level set method which result in a coupled
problem. We consider the discretization of the subproblems independently, starting with the
thermal problem in Section 3, where we firstly discretize in time to get a series of stationary
problems so that we can define a weak formulation for each time step. The subsequent spatial
discretization using the extended finite element method is based on Nitsche’s approach [31]
to include weak internal Dirichlet boundaries [11] at the discontinuities (keyhole wall and the
solid-liquid interface). In Section 4, the model for computing the keyhole geometry is presented
and a level set function is constructed whose zero level set represents the keyhole shape. In
Section 5, the level set problem on a so-called narrow band is considered briefly. This section
includes deriving a weak and suitable discrete formulation and comments on a discrete interface
representation method as well as techniques to maintain the level set function. After giving
some details of the implementation in Section 6, numerical results for keyhole geometries and
melt pool shapes for different materials are presented in Section 7. A summary highlighting the
most important aspects of the article concludes this paper.

2. Model

Our modeling of a keyhole-based welding process focuses on the thermal aspects and is based
on the heat equation. While from a physical point of view, the locations and shapes of both,
keyhole and solid-liquid interface, are unknown and part of the solution, we assume that the
keyhole shape remains constant during the process and can be computed a priori by a given
model. Thus, only the solid-liquid interface given by the Stefan problem describing melting and
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solidification is unknown and part of the solution. For the computation of the keyhole geometry,
we adapt the approach presented in [21] and use an analytical model of the energy balance at
the keyhole wall to approximate the keyhole shape for a quasi-stationary situation, see Section
4. The derived keyhole geometry is then considered as internal (Dirichlet) boundary at which
evaporating temperature is assumed and its shape is translated with the laser motion velocity
VL along the weld line. Due to this, the model omits (re-)vaporization effects and we assume
that no material actually leaves the domain due to vaporization effects and that no plasma or
the like arise. Hence, our modular approach consists of

(1) the heat equation with its boundary conditions and the corresponding interface condi-
tions for the keyhole-wall and the solid-liquid interface,

(2) the Stefan problem in level set formulation to describe solid-liquid phase transitions, and
(3) the level set method to represent the (fixed and a priori computed) keyhole geometry

and the solid-liquid interface.

Remark: Since the only request for the thermal problem is that we have a given keyhole geometry
on which a Dirichlet condition for the temperature can be applied, any known keyhole model
can be integrated into this approach.

2.1. Thermal problem. Let Ω ⊂ R3, with ∂Ω polygonally, be a fixed domain consisting for
t ∈ [t0, tf ] of the disjunct regions Ω1(t), Ω2(t) and Ω3(t) that are separated by internal boundaries

Γ1(t) (the keyhole wall) and Γ2(t) (the solid-liquid interface), s.t. Γ1(t) = Ω1(t) ∩ Ω2(t) and

Γ2(t) = Ω2(t) ∩ Ω3(t) and Γ1(t) ∩ Γ2(t) = ∅. We assume that Γi(t), i = 1, 2, is sharp and
sufficiently smooth for all t ∈ [t0, tf ] and introduce the normal vector ~ni(t,x) to Γi(t) pointing
from Ωi into Ωi+1.

The temperature field is given by u : Ω × [t0, tf ] → R with u|Ωi
= ui, i ∈ {1, 2, 3} and its

evolution is described by

(2.1) ρc
∂u

∂t
−∇ · (λ∇u) = f, in Ω1(t) ∪ Ω2(t) ∪ Ω3(t), t ∈ (t0, tf ),

in which we assume that the density ρ is constant in Ω while the specific heat capacities ci and
the thermal conductivities λi are assumed as constant in each subdomain Ωi(t) and, therefore,
dependent on the time.

For the boundary ∂Ω = ΓD ∪ ΓN ∪ ΓR with ΓD ∩ ΓN ∩ ΓR = ∅, the following conditions are
given

(2.2)

(2.3)

(2.4)

u = gD, on ΓD × (t0, tf ],

λ
∂u

∂~n
= gN , on ΓN × (t0, tf ],

λ
∂u

∂~n
= gR(u), on ΓR × (t0, tf ],

where ~n denotes the outer normal to ∂Ω. Thereby, the function gR(u) describes the thermal
transfer to the environment which we model as combination of Newton’s law of cooling and the
Stefan-Boltzmann law

(2.5) gR(u) = gc(u) + gr(u) = α(ua − u) + εσ(u4
a − u4)

with α being the heat transfer coefficient, ua denoting the ambient temperature, σ is the Stefan-
Boltzmann constant and ε is the emissivity of the material. As before, the coefficients α and ε
are assumed to be constant in each phase and, hence, are time-dependent.

At the keyhole wall Γ1(t) and the solid-liquid phase boundary Γ2(t), we expect the so-called
isothermal interface conditions

(2.6) u(·, t) = uΓ1 on Γ1(t) and u(·, t) = uΓ2 on Γ2(t)

to hold for all times t ∈ [t0, tf ] with uΓ1 being the evaporating temperature and uΓ2 being the
melting temperature, s.t. uΓ1

> uΓ2
. As a result, it is

(2.7)

(2.8)

(2.9)

u(·, t) > uΓ1
in Ω1(t),

uΓ1 > u(·, t) > uΓ2 in Ω2(t),

and u(·, t) < uΓ2
in Ω3(t).



4 M. JAHN AND J. MONTALVO-URQUIZO

Initially, the temperature distribution on Ω1(t0) ∪ Ω2(t0) ∪ Ω3(t0) is given by

(2.10) u(·, t0) = u0

and

(2.11)

(2.12)

Γ1(t0) = {x ∈ Ω : u(x, t0) = uΓ1}
Γ2(t0) = {x ∈ Ω : u(x, t0) = uΓ2}.

2.2. The level set method. For the representation of both internal boundaries, the level set
method [1, 39] is used. Thus, the location of an arbitrary sharp interface Γ is given by the zero
level set of a continuous function ϕ : Ω× [t0, tf ]→ R, i.e.

Γ(t) = {x ∈ Ω : ϕ(x, t) = 0}, t ∈ [t0, tf ].

Given the initial value ϕ0(·) = ϕ(·, t0) with zero level set Γ0 = Γ(t0) and boundary conditions on

the inflow boundary ∂Ωin := {x ∈ ∂Ω : ~V (x, t) · ~n(x) < 0, t ∈ [t0, tf ]} defined by a continuous
function ϕin : ∂Ωin × [t0, tf ] → R, the evolution of the level set function ϕ and consequently of
the interface Γ in time can be described by the problem

(2.13)

∂ϕ

∂t
+ ~V · ∇ϕ = 0 in Ω× [t0, tf ],

ϕ(·, t0) = ϕ0 in Ω,

ϕ(·, t) = ϕin(t) on ∂Ωin × [t0, tf ],

where ~V = ~V (x, t) is a sufficiently smooth velocity field. While the choice of ϕ can be (almost)
arbitrary, from a numerical point of view it is advantageous to use a so called signed distance
function, i.e.

ϕ(x, t) =


− min

x̃∈Γ(t)
||x− x̃||2, if x ∈ Ω1(t)

min
x̃∈Γ(t)

||x− x̃||2, if x ∈ Ω2(t)
,

which satisfies ||∇ϕ|| = 1.
Relating to our situation, we introduce two level set functions ϕ1, ϕ2 ∈ C1(Ω × (t0, tf )) ∩

C0(Ω̄ × [t0, tf ]) and define Γ1 as zero level set of ϕ1 and Γ2 as zero level set of ϕ2. However,
since we assume that the motion of the keyhole geometry is prescribed meaning that ϕ1(x, t)
and Γ1(t) are known for all t ∈ [t0, tf ], we only have to solve problem (2.13) for ϕ2 which is a
priori unknown and part of the solution. For this purpose, we introduce the Stefan condition [37]

(2.14) [[λ∇u · ~n2]] = ρL~VΓ2
· ~n2 on Γ2,

with [[·]] denoting the jump that is defined for a function φ by [[φ]] = φ|Ω1 − φ|Ω2 and L denoting
the material’s latent heat. The Stefan condition describes the movement of the interface Γ2(t)

in time in terms of its normal velocity ~VΓ2
· ~n2 and couples the heat equation with the level set

problem.

2.3. Coupled problem. Assuming that the level set function ϕ1 ∈ C1(Ω × (t0, tf )) ∩ C0(Ω̄ ×
[t0, tf ]), and hence, the keyhole geometry Γ1(t), is a priori known or can be determined by
some approach independently from the thermal problem for t ∈ [t0, tf ], our coupled model for a
keyhole-based laser welding process reads:
Find the solid-liquid interface ϕ2 ∈ C1(Ω × (t0, tf )) ∩ C0(Ω̄ × [t0, tf ]) and the temperature
distribution u which is sufficiently smooth, i.e. u ∈ C0(Ω̄ × [t0, tf ]), u(·, t)|Ωi

∈ C2(Ωi(t)) and
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∂tu(·, t) ∈ C0(Ω1(t) ∪ Ω2(t) ∪ Ω3(t)) for t ∈ [t0, tf ] such that

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

(2.15f)

(2.15g)



ρc
∂u

∂t
−∇ · (λ∇u) = f in

⋃3

i=1
Ωi(t), t ∈ (t0, tf ),

u = gD on ΓD × (t0, tf ],

λ
∂u

∂~n
= gN on ΓN × (t0, tf ],

λ
∂u

∂~n
= gR(u) on ΓR × (t0, tf ],

u(·, t) = uΓ1
on Γ1(t),

u(·, t) = uΓ2
on Γ2(t),

u(·, t0) = u0 in
⋃3

i=1
Ωi(t0),

(2.16) [[λ∇u · ~n2]] = ρL~VΓ2
· ~n2 on Γ2(t),

(2.17a)

(2.17b)

(2.17c)


∂ϕ2

∂t
+ ~VΓ2

· ∇ϕ2 = 0 in Ω× [t0, tf ],

ϕ2(·, t0) = ϕ2,0 in Ω,

ϕ2(·, t) = ϕ2,in(t) on ∂Ωin × [t0, tf ],

for given sufficiently smooth data gD, gN , gR u0, uΓ1
, uΓ2

, ϕ2,0, and ϕ2,in.

3. Discretization of the thermal problem

First of all, we introduce the thermal diffusivity κi = λi

ρici
, i = 1, 2, 3, and scale the equations

and boundary conditions accordingly so that there is no coefficient operating on the time derivate.
The resulting scaled functions are indicated by the symbol .̄ We discretize the thermal problem
using Rothe’s method that means we approximate the (sufficiently smooth) time derivative by
a finite difference approximation and transform the problem into a sequence of quasi-stationary
problems. These problems can then be formulated variationally and discretized in space by using
the eXtended finite element method in combination with Nitsche’s approach [31].

3.1. Discretization in time. Discretizing the time interval [t0, tf ] by Nt + 1 time steps into
tn = t0 + n∆t, n = 0, . . . , Nt, where ∆t denotes the time step size, we apply the implicit
Euler time discretization to the thermal problem which then reads: For n = 0, . . . , Nt − 1, find
un+1 ≈ u(·, tn+1) such that

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

un+1

∆t
−∇ ·

(
κn+1∇un+1

)
= f̄n+1 +

un

∆t
, in

⋃3

i=1
Ωi(tn+1),

un+1 = gn+1
D , on ΓD(tn+1),

κn+1 ∂u
n+1

∂~n
= ḡn+1

N , on ΓN (tn+1),

κn+1 ∂u
n+1

∂~n
= ḡn+1

R (un+1), on ΓR(tn+1),

un+1 = uΓ1 , on Γ1(tn+1),

un+1 = uΓ2
, on Γ2(tn+1).

The non-linear term u(t)4 in ḡR(u), cf. (2.5), can be linearized in time using the Taylor
approximation. It is

(3.7)

u(tn+1)4 = u(tn)4 +
∂u(tn)4

∂u(tn)
(u(tn+1)− u(tn)) +O(u(tn+1)− u(tn))2

= u(tn)4 + 4u(tn)3 (u(tn+1)− u(tn))

= −3u(tn)4 + 4u(tn)3u(tn+1)
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Using this, ḡR(u) can be split it into an explicit part

(3.8) ḡexpl
R (u(tn)) = ᾱn+1u(tn) + ε̄n+1σu4

a + 3u(tn)4

and an implicit part

(3.9) ḡimpl
R (u(tn+1)) = −ᾱn+1u(tn+1)− 4ε̄n+1σu(tn)3u(tn+1)

and the latter will be shifted to the left-hand-side of equation (3.4).
For a fixed n ∈ {0, . . . , Nt− 1}, we use the notation ξ = 1

∆t and obviate the time dependency

by setting Ωi := Ωi(tn+1), i = 1, 2, 3, u := un+1, etcetera. After summarizing the right-hand-

side in (3.1) by f̃ and splitting ḡn+1
R (un+1) in an explicit and implicit part, we end up with the

stationary problem

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

ξu−∇ · (κ∇u) = f̃ , in
⋃3

i=1
Ωi,

u = gD, on ΓD,

κ
∂u

∂~n
= ḡN , on ΓN ,

κ
∂u

∂~n
− ḡimpl

R (u) = ḡexpl
R , on ΓR,

u = uΓ1
, on Γ1,

u = uΓ2 , on Γ2.

whose solution represents an approximation of the temperature distribution for each time step.

3.2. Weak formulation. In order to solve the given problem using the extended finite element
method, we introduce the affine space

H1
gD

(⋃3

i=1
Ωi

)
:=
{
v ∈ L2(Ω) : v|Ωi ∈ H1 (Ωi) , i = 1, 2, 3, v|ΓD

= gD
}
,

where each element v ∈ H1
gD

(⋃3
i=1 Ωi

)
can be restricted onto a subdomain Ωi denoted by

vi := v|Ωi
. While we choose the general setting with gD as Dirichlet boundary condition (in

trace sense), setting gD = 0 leads to the more familiar Hilbert space H1
0

(⋃3
i=1 Ωi

)
which will

be used in (3.19). For functions u, v ∈ H1
gD

(⋃3
i=1 Ωi

)
⊂ H1

(⋃3
i=1 Ωi

)
, we define

(3.16) (u, v)H1(
⋃3

i=1 Ωi) := (u, v)H1(Ω1) + (u, v)H1(Ω2) + (u, v)H1(Ω3)

with

(3.17) (ui, vi)H1(Ωi) :=

∫
Ωi

∇ui∇vidx, i = 1, 2, 3.

By using this definition and the L2-norm we end up with the norm

(3.18)
(
||·||2L2(Ω) + | · |2

H1(
⋃3

i=1 Ωi)

)1/2

=: ||·||H1(
⋃3

i=1 Ωi)

and define the corresponding Hilbert space

(3.19) V0 :=

{
v ∈ H1

0

(⋃3

i=1
Ωi

)
: v|Γj

= 0, j = 1, 2

}
and the affine space

(3.20) VΓ :=

{
v ∈ H1

gD

(⋃3

i=1
Ωi

)
: v|Γj

= uΓj
, j = 1, 2

}
where the interface conditions are introduced in a trace sense, as before. A weak formulation
of the problem (3.10) is then given by: For ξ, κ ∈ L∞(Ω), f̃ ∈ L2(Ω), ḡN ∈ L2(ΓN ) and

ḡimpl
R (u), ḡexpl

R ∈ L2(ΓR) find u ∈ VΓ s.t.

(3.21)
(ξu, v)L2(

⋃3
i=1 Ωi) + (κu, v)H1(

⋃3
i=1 Ωi) − (ḡimpl

R (u), v)L2(ΓR)

= (f̃ , v)L2(Ω) + (ḡN , v)L2(ΓN ) + (ḡexpl
R , v)L2(ΓR)
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for all v ∈ V0.

3.3. Discretization in space using Nitsche’s method. Let {Sh}h>0 be a family of shape reg-
ular triangulations consisting of tetrahedrons and h is the maximum diameter h = maxS∈Sh diam(S).
Furthermore, let Ωi,h, i = 1, 2, 3, be the discrete counterparts of Ωi separated by (at this point
arbitrary) approximations Γj,h, j = 1, 2, of Γ and Si := S ∩ Ωi,h the part of S in Ωi,h.

As the interfaces Γj,h are not explicitly considered as facets within the triangulation, the
conditions v|Γ1,h

= uΓ1
and v|Γ2,h

= uΓ2
cannot be included into the discrete function space in

the same way as the outer Dirichlet condition on ΓD. Thus, we introduce for k ∈ N the function
spaces

(3.22) V kh,gD :=

{
v ∈ H1

gD

(⋃3

i=1
Ωi,h

)
: vi ∈ C0(Ωi,h), v|Si

∈ Pk, S ∈ Sh
}

and

(3.23) V kh :=

{
v ∈ H1

(⋃3

i=1
Ωi,h

)
: vi ∈ C0(Ωi,h), v|Si

∈ Pk, S ∈ Sh
}
,

where the restriction vi of a function v has to be continuous on Ωi,h, i = 1, 2, 3, but not on
Ωh = Ω1,h ∪Ω2,h ∪Ω3,h, and add the interface conditions weakly to the problem using Nitsche’s
method [31].

Following [11], the discrete formulation of (3.10) is given by: Find uh ∈ V kh,gD s.t.

(3.24) a(uh, vh) +
∑4

i=1
ai(uh, vh) = L(vh) +

∑4

i=1
Li(vh)

for all vh ∈ V kh,0. The bilinear forms and linear forms are defined as

(3.25) a(uh, vh) =

∫
⋃3

i=1 Ωi,h

(ξuhvhd+ κ∇uh∇vh) dx−
∫

ΓR,h

ḡimpl
R (u)vhds

(3.26)

a1(uh, vh) =−
∫

Γ1,h

κ1∇u1,h · ~n1,hv1,hdc−
∫

Γ1,h

κ1∇v1,h · ~n1,hu1,hdc

+

∫
Γ1,h

µu1,hv1,hdc

(3.27)

a2(uh, vh) =

∫
Γ1,h

κ2∇u2,h · ~n1,hv2,hdc +

∫
Γ1,h

κ2∇v2,h · ~n1,hu2,hdc

+

∫
Γ1,h

µu2,hv2,hdc

(3.28)

a3(uh, vh) =−
∫

Γ2,h

κ2∇u2,h · ~n2,hv2,hdc−
∫

Γ2,h

κ2∇v2,h · ~n2,hu2,hdc

+

∫
Γ2,h

µu2,hv2,hdc

(3.29)

a4(uh, vh) =

∫
Γ3,h

κ3∇u3,h · ~n2,hv3,hdc +

∫
Γ3,h

κ3∇v3,h · ~n2,hu3,hdc

+

∫
Γ3,h

µu3,hv3,hdc

(3.30) L(vh) =

∫
⋃3

i=1 Ωi,h

f̃vhdx +

∫
ΓN,h

ḡNvhds +

∫
ΓR,h

ḡexpl
R vhds

(3.31) L1(vh) = −
∫

Γ1,h

κ1∇v1,h · ~n1,huΓ1
dc +

∫
Γ1,h

µuΓ1
v1,hdc

(3.32) L2(vh) =

∫
Γ1,h

κ2∇v2,h · ~n1,huΓ1dc +

∫
Γ1,h

µuΓ1v2,hdc
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(3.33) L3(vh) = −
∫

Γ2,h

κ2∇v2,h · ~n2,huΓ2dc +

∫
Γ2,h

µuΓ2v2,hdc,

(3.34) L4(vh) =

∫
Γ2,h

κ3∇v3,h · ~n2,huΓ2
dc +

∫
Γ2,h

µuΓ2
v3,hdc

where 0 < µ ∈ R is a stability parameter which has to be chosen large enough and can be derived
analytically for some situations [11]. In contrast to the continuous situation, it is not trivial to
show that the sum of all bilinear forms is coercive. In fact, this property depends heavily on the
choice of the stability parameter µ. In this paper, we do not investigate this issue further but
assume that there is a unique solution of problem (3.24) for a proper choice of µ.

3.4. XFEM representation of the function space. Within the extended finite element
method a function is represented by a standard and an enriched part. Since the enrichment is
usually locally restricted, only a minor subset of elements needs special attention while most of
the simplices and degrees of freedom can be considered just as in the standard finite element
context. Hence, the computational additional costs are low and the assembled matrices and
vectors are still sparse.

Using a Heaviside enrichment, cf. i.a. [12, 27,30], uh ∈ V kh , is given by

(3.35) uh =
∑
i∈N

uivi +
∑
i∈Ñ1

û1,iH1vi +
∑
i∈Ñ2

û2,iH2vi

with basis functions vi, i ∈ N , of the to (3.22) associated standard Lagrangian function space

Ṽ kh = {vh ∈ C(Ωh) : vh|S ∈ Pk, ∀S ∈ Sh} and corresponding coefficients ui. The index sets of

enriched basis functions Ñj , j = 1, 2, are defined by

(3.36) Ñj := {i ∈ N : meas2(Γj,h ∩ supp(vi)) > 0, vi ∈ Ṽ kh },

û1,i and û2,i are the enriched coefficients, and

(3.37) Hj(x) =

{
1, for x ∈ Ωj+1,h

0, else
, j = 1, 2,

are the Heaviside functions. The advantage of using this type of enrichment, is its flexibility
as it can be used for problems with strong and weak discontinuities by adding corresponding
conditions using Nitsche’s technique.

Remark: Although using curved intersection segments and the corresponding adaption of the
quadrature rules is possible as shown in [8], k = 1 is chosen as polynomial degree in this paper.
Thus, the interfaces Γj,h are linear approximations of Γj and, consequently, the intersecting
segments Si are linear as well.

4. Keyhole model

As mentioned earlier, any known keyhole model can be used in this approach since we (only)
assume that the keyhole geometry can be computed a priori based on the material and laser
parameters. Here, we adapt the approach of [21] and compute the keyhole geometry using an
analytical approach which is based on considering the heat balance at the keyhole wall. For
given material and laser parameters, the heat conduction is then approximated by a moving line
source [7, 36] and the local inclination angle yielding the keyhole geometry is computed using a
point-by-point scheme that compares absorbed power and conduction losses.

4.1. Laser model. Firstly, we introduce a Cartesian coordinate system (x̃, y, z), where x̃ is the
welding direction and -z is the laser beam direction, and the corresponding cylindrical coordinate

system (r, φ, z). After substituting the x̃-coordinate by x = x̃− ~VL(t− t0) for a constant velocity
~VL in x-direction, we end up with a quasi-stationary situation in a coordinate system related to
the laser position.

There might be different modes to distribute the intensity profile forming the laser beam and,
for this reason, we consider here the two most common ones used in the welding production,
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i.e. a constant intensity profile and a Gaussian-like distributed intensity profile. The intensity
maximum I0 is defined by

(4.1) I0 =
2PL

r2
f0π

with PL denoting the laser power and rf0 is the laser beam radius in focus height z0 which
depends, among others, on the wave length of the laser beam. Using this, the intensity profile
is given as

(4.2) IL(r, φ, z) =

I0
(

rf0
rf (z)

)2

· exp
(
− 2r2

rf (z)2

)
, Gaussian-like distribution,

I0

(
rf0
rf (z)

)2

, constant distribution,

where rf(z) is the current laser beam width

(4.3) rf(z) = rf0

(
1 +

(
z − z0

zRay

)2
) 1

2

depending on the Rayleigh length zRay.

4.2. Heat conduction at the keyhole wall. To approximate the heat conduction at the
keyhole wall, we use an analytic approach based on a moving line source [7, 36], whose power
per unit depth P ′ and location xHS(z) depend on z ∈ Ω. Due to the latter, we have a different

coordinate system (r̂xHS(z), φ̂xHS(z), z) for every z ∈ Ω with origin xHS(z). To simplify the

notation in this section, we shortly write (r̂, φ̂, z) := (r̂xHS(z), φ̂xHS(z), z) and keep in mind that

all ·̂ coordinates depend on xHS(z) and, especially, on z.
Using the moving line heat source model and the introduced notation, the temperature field

u(x̂, t) for a quasi-stationary situation with ∂tu = 0 in a semi-infinite work-piece is given by

(4.4) u(r̂, φ̂, z) = ua +
P ′(r̂, φ̂, z)

2πλ
·K0(Pe′r̂) exp

(
−Pe′r̂ cos(φ̂)

)
with K0(x̂) being the modified Bessel function of second kind and zeroth order, and Pe′ is the
modified Peclet number

(4.5) Pe′ =
~VLρc

2λ
=
~VL

2κ
,

cf. [7, 21]. Since evaporating temperature uΓ1 has to be reached for all points (r̂, φ̂, z) at the
keyhole wall, we can transform (4.4) to get a formula to compute the value of the heat source

P ′(r̂, φ̂, z) which is then given by

(4.6) P ′(r̂, φ̂, z) = (uΓ1
− ua) · 2πλ 1

K0(Pe′r̂)
exp

(
Pe′r̂ cos(φ̂)

)
.

In general, thermal conduction can be described by Fourier’s law. Assuming that heat propa-
gates isotropic which means that the isothermal surfaces are concentric spheres, we neglect heat
flux in z-direction and consider the heat flow only in radial direction, i.e.

(4.7) q̇(r̂, φ̂, z) = −λ∇u ≈ −λ∂r̂u.

Substituting u with (4.4) and differentiating leads to

(4.8)

q̇(r̂, φ̂, z) = −λ∂u
∂r̂

=
P ′(r̂, φ̂, z)

2π exp
(

Pe′r̂ cos φ̂
)Pe′

[
K0(Pe′r̂) cos φ̂+K ′1(Pe′r̂)

]
,

with K1(x̂) as modified Bessel function of second kind and first order. With (4.6) as value for

P ′(r̂, φ̂, z) to reach evaporating temperature at the keyhole wall, the heat flow at the keyhole
wall is

(4.9) qv(r̂, φ̂, z) = (uΓ1 − ua)λPe′
(

cos φ̂+
K1(Pe′r̂)

K0(Pe′r̂)

)
.
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y

xr

xf

xs

Figure 4.1. Keyhole half-geometry with the lines defining its front-back form
(long dashes) and its side form (short dashes).

Remark: To further simplify the notation, we introduce the transformation function ψ(x) :=
ψ(x;xHS(z)) = ψ(r, φ, z;xHS(z)) which converts coordinates (r, φ, z) in the standard coordinate

system to coordinates (r̂, φ̂, z) in the heat source’s coordinate system with origin in xHS(z),
z ∈ Ω.

4.3. Location of the heat source. As pointed out before, equation (4.9) is derived assuming
that for every z ∈ Ω there is a moving line source with energy P ′ by which evaporating tempera-
ture can be obtained at the keyhole wall in this z-layer. It is important to note that the location
of the heat source xHS(z) depend on z ∈ Ω and, especially, does not align with the (fixed) laser
position.

Given the coordinates xf
i = (xf

i, 0, zi) = (rf
i , φ

f
i, zi) and xr

i = (xr
i, 0, zi) = (rr

i , φ
r
i, zi) in the laser

coordinate system, we can approximate the position xHS
i using an explicit scheme that is based

on the distance between front and rear keyhole wall at layer zi. These coordinates correspond
to the lines depicted in the front, back and side of the keyhole geometry from Figure 4.1. More
precisely, we have to compute xHS

i = (xHS
i , 0, zi) = (rHS

i , φHS
i , zi) s.t. the following equation

holds:

(4.10) 0 = uΓ1
− uΓ1

= u(x̂f
i)− u(x̂r

i) = u(xf
i − xHS

i )− u(xr
i − xHS

i )

which, with (4.4), can be simplified to

(4.11)
0 = K0(Pe′(rf

i − rHS
i+1) exp(−Pe′(rf

i − rHS
i ))

−K0(Pe′(rr
i − rHS

i )) exp(Pe′(rr
i − rHS

i )).

The function in equation (4.11) has a singularity only at the origin and can be solved to find
rHS
i+1. This can be numerically well approximated by a bisection method and, once the heat

source’s location is found, we can define the transformation function ψ(x) and evaluate (4.9)

not in (r, φ, z) but in (r̂, φ̂, z) for the next z-layer.

4.4. Computation scheme for the keyhole geometry. For computing the keyhole geometry,
the local heat losses at the keyhole wall are compared to the locally absorbed intensity yielding
the relation

(4.12) tan (θ(r, φ, z)) =
qv(ψ(r, φ, z))

αfrI(r, φ, z)
=
qv(ψ(r, φ, z))

Ia(r, φ, z)
=
qv(r̂, φ̂, z))

Ia(r, φ, z)

for the local inclination angle θ, with αfr denoting the Fresnel absorption. Please note that
thereby we neglect the dependency of the absorption rate on the angle of incidence but use a
constant (mean) Fresnel absorption coefficient.

While (4.12) is an implicit equation and, in principle, allows for a point-wise computation of
the entire keyhole geometry, we only use it to determine the front, rear and side wall. Moreover,
we consider the equation explicitly by approximating the values on the right-hand-side using
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i zi
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θ

Figure 4.2. Discrete iteration to compute the Keyhole shape. Left: Side view
for computing the front and rear keyhole wall. Right: Front view for computing
the side view.

the preciously computed value of θ. With this, the explicit point-by-point scheme illustrated in
Figure 4.2 is as follows:

(1) Given the keyhole wall points xf
i, x

r
i and xs

i at the keyhole front, rear and side wall, we
firstly compute the location of the heat source xHS

i by solving (4.10).
(2) With this, we evaluate qv(ψ(xi)) and I(xi) to compute θ(xi) via relation (4.12) and

determine the next keyhole wall points at the front and rear, xf
i+1, xr

i+1 (in the x-z-
plane of the laser’s coordinate system) by

(4.13)

ri+1 = ri −∆z tan(θ(xi)),

φi+1 = φi =

{
0, at front wall,

π, at rear wall,

zi+1 = zi −∆z,

respectively

(4.14)

xi+1 = xi −∆z tan(θ(xi)),

yi+1 = yi = 0,

zi+1 = zi −∆z.

(3) Finally, the next point at the keyhole side wall, which is symmetrical to the x-z-plane,
is computed by

(4.15)

xi+1 = xHS
i ,

yi+1 = yi −∆z tan(θ(xi)),

zi+1 = zi −∆z.

Thereby, it is important to note that the x-coordinate of the side wall always aligns with
the x-coordinate of the heat source.

The full keyhole geometry is then approximated by defining ellipses for every zi, using the
front and rear wall points as semi-major axes and the side wall points as semi-minor axes in a
secondary step. We will elaborate this approach further in Section 4.6.

4.5. Multiple reflections. The existence of multi reflections is an essential phenomenon of the
laser welding process, as it is responsible for a large amount of energy absorbed into the material
pieces. For metallic components, it is known that these reflections can take an absorption factor
of around 30% and increase it to values around 80% of the total laser beam energy.

In our formulations, we denoted the intensity in (4.12) by I rather than IL because we have
to consider that only a portion of the incident laser beam’s intensity IL gets directly absorbed
into the material. The remaining intensity (1−αfr)IL is reflected and (partly) absorbed multiple
times within the keyhole causing an overall absorption of up to 80%.

Our computation of the keyhole geometry uses the front, rear and side keyhole walls by a
(downwards orientated) point-by-point scheme. Due to this descending computation scheme,
we only consider the influence of multi reflections in the negative z-direction, meaning that the
impact of a reflection on a previously computed point at the keyhole wall is neglected. Therefore,
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Figure 4.3. Scheme for computing the reflection angle for reflected rays.

we can assume that there is no incoming reflection that has to be considered in the computation
method for the first m > 0 points.

Our approach to consider multi reflections within the computation method for a given point
xi = (ri, φi, zi), with φi ∈ {0, π2 , π} at a keyhole wall with i ≤ m consists on performing the
following steps:

(1) Compute the inclination angle θ(xi+1) = θ(ri, φi, zi) by taking (only) IL(ri, φi, zi) into
account and then define xi+1 according to the scheme presented in Section 4.4.

(2) Determine the reflected intensity Ir(xi) = (1− αfr)IL(xi) as well as the reflection angle
δ(xi) = π

2 − 2θ(xi) relative to the horizontal axis, cf. Figure 4.3.
(3) Introduce a linear function fi(r, z) = zi− tan(δi)(r+ ri) to compute the point of impact

of the reflected intensity at the keyhole wall.

For a point xj with j > m the previously described method is adapted to consider multi
reflections starting by the following steps:

(i) Compute a tentative inclination angle θ̃(xj+1) = θ̃(rj , φj , zj) by taking (only) IL(rj , φj , zj)
into account and then define a tentative point x̃j+1.

(ii) Evaluate all functions fi, i = 0, . . . , j − 1, at (r̃j , zj) to find the closest points of impact
(ri0 , zi0) and (ri1 , zi1) forming an interval which contains (r̃j , zj).

(iii) Compute the reflected intensity Ir(r̃j , zj) (acting in −z-direction) by interpolating the
“cosinus parts” of the corresponding intensities Ii0 and Ii1

(iv) Define the total intensity at (r̃j , zj) by I(rj , φj , zj) = IL(rj , φj , zj) + Ir(r̃j , φj , zj) and
continue with step (1) of the previous scheme using this intensity.

Note that the functions fi are independent of the angle φi since a reflection occurs always in
normal direction. In our case that means that if an intensity is reflected at the front keyhole
wall, it has only an impact of at the rear keyhole wall and vice versa. This is also true for the
keyhole side walls. As we only consider these four points, we can model multi reflections without
implementing a numerically expensive ray tracing algorithm.

4.6. Level set representation of the keyhole geometry. The discrete points at the front,
rear and side keyhole wall computed by (4.12) can be used to construct a level set function whose
zero level set represents the whole keyhole geometry. Let xf

i = (xf
i, 0, zi), xr

i = (xr
i, 0, zi) and

xs1
i = (xs

i , y
s
i , zi) = (xHS

i , ys
i , zi) resp. xs2

i = (xs
i ,−ys

i , zi) = (xHS
i ,−ys

i , zi), i = 1, . . . ,M , be the
coordinates of the points at the front, rear and side keyhole wall. For every depth layer zi, we
approximate the keyhole shape by two half-ellipses using the front and rear keyhole wall points
as semi-major axes and the side keyhole wall points as semi-minor axes, see Figure 4.4.

By doing this, the half-ellipse connecting xf
i, x

s1
i and xs2

i is given by

(4.16) y2 = (ys
i )

2 − (ys
i )

2

(xf
i)

2
(x− xs

i)
2.

and the half-ellipse connecting xr
i, x

s1
i and xs2

i is given by

(4.17) y2 = (ys
i )

2 − (ys
i )

2

(xr
i)

2
(x− xs

i)
2.
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x

y

(xHS, 0)(xr, 0) = (x̂r − xHS, 0) (xf , 0) = (x̂f − xHS, 0)

(xs, ys) = (xHS, ys)

(xs,−ys) = (xHS,−ys)

Figure 4.4. Keyhole wall approximated at a fixed depth and with a heat source
location (xHS, 0) in both coordinate systems.

Based on this equations, we introduce the level set functions

(4.18)

ϕ1|zi (x) = ϕ(x, y, zi)

=


√

(y2 − (ys
i )

2 − (ysi)2

(xf
i)

2 (x− xs
i)

2), for x ≥ xHS√
(y2 − (ys

i )
2 − (ysi)2

(xr
i)

2 (x− xs
i)

2), for x < xHS
,

which are signed distance functions whose zero level sets Γ1|zi represents the (2D) keyhole wall
for each depth layer zi, i = 1, . . . ,M in the x-y plane. In the vertical direction, the different
ellipses (or equivalently the level set functions) are linearly interpolated between the z-layers
to obtain a continuous function ϕ1 whose zero level set Γ1 defines the 3D keyhole geometry.
Thereby, ϕ1 has to be extended for z < zM in an arbitrarily but continuous way. For problem
(2.15), the keyhole geometry is considered as constant and moves along the welding line at the
given welding speed VL. Hence, our sharp interface between keyhole and molten area is given by

(4.19) Γ1(t) = {x ∈ Ω |
(
x− (t− t0)~VL

)
∈ Γ1(t0), t ∈ [t0, tf ]}.

Remark: While in a first step, the discrete keyhole Γh is computed using a very small step size
∆z for a high precision approximation of the keyhole shape and depth, the level set function
ϕ1 and the corresponding zero level set Γ1 are constructed using only a subset of keyhole wall
coordinates which contains only about 10% of the previously computed points including the first
and the last one. This does not represent any remarkable reduction in precision, as the interfaces
are in the end linearly interpolated during the XFEM enrichment of elements.

5. Discretization of the level set problem

In contrast to the keyhole wall Γ1, whose shape and motion is a priori given by the keyhole
model and the process and material parameters for the entire process, the movement of the
solid-liquid interface Γ2 unknown and part of the solution. We use the level set method as
representation technique so that the evolution of Γ2 can be described by the level set problem
(2.17). As this is identical with our approach for tackling the two-phase Stefan problem [18], we
refer to this paper and only cite the most important aspects here.

We introduce a weak formulation of (2.17) which discretized using the method of lines, i.e.
we firstly discretize the problem in space and then in time. Since the level set function may
degenerate, we present maintaining methods to preserve the signed distance property and the
volume. For efficiency, the level set problem is not considered on the whole domain Ωh but on
a so-called narrow band around the interface Γ2,h. Therefore, we adapt the formulation and
consider the modified transport equation

(5.1)
∂ϕ2

∂t
+ ζ(ϕ2)~VΓ2

· ∇ϕ2 = 0 in Ω× [t0, tf ],
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instead, where ζ(ϕ2) is some cut-off function specified later. This reformulation is necessary
since the solution of the original transport problem often exhibits oscillations at the boundary
∂ΩNB of the narrow band, as shown in [20].

5.1. Weak formulation. Now, we define the time dependent function space

(5.2) WϕD
(t) = {v ∈ L2(Ω) : ~VΓ2

(·, t) · ∇v ∈ L2(Ω) ∧ v|∂Ωin(·,t) = ϕD(·, t)},

multiply the transport equation with an v ∈ L2(Ω), and integrate over Ω so that we end up with

the weak formulation: For t ∈ (t0, tf ) and ζ(ϕ2) ∈ C(Ω) find ϕ2(·, t) ∈WϕD
(t) with ∂ϕ2

∂t ∈ L
2(Ω)

s.t. ϕ2(·, t0) = ϕ2,0 and

(5.3)

(
∂ϕ2

∂t
, v

)
L2

+ (ζ(ϕ2)~VΓ2
· ∇ϕ2, v)L2 = 0, ∀v ∈ L2(Ω), t ∈ [t0, tf ].

5.2. Discretization in space. For the triangulations {Sh}h>0 we introduce the standard La-
grangian finite element space

(5.4) W l
h = {vh ∈ C(Ωh) : vh|S ∈ Pl, ∀S ∈ Sh},

and define for [t0, tf ] the affine space

(5.5)
W l
h,ϕD

(t) = {vh ∈ C(Ωh) : vh|S ∈ Pl, ∀S ∈ Sh,
v(x) = ϕD(x, t), ∀x ∈ ∂Ωin,h(t)},

with l ≥ 1, to consider functions with Dirichlet boundary conditions on the discrete influx
boundary ∂Ωin,h(t). Using these function spaces, (5.3) discretized in space reads: For t ∈ [t0, tf ]

find ϕ2(·, t) ∈W l
h,ϕD

with ~VΓ2
(t) ∈ L∞(Ωh) and

∂ϕ2,h

∂t ∈ L
2(Ωh) such that

(5.6)
∑
S∈Sh

(
∂ϕ2,h

∂t
+ ζh~VΓ2

· ∇ϕ2,h, vh

)
L2(S)

= 0, ∀vh ∈W l
h.

Thereby, the polynomial degree l = 2 is chosen for the finite-dimensional function space (5.5).
This is due to different reasons, cf. [15] and i.a. has the advantage that the degrees of freedom
coincide with the degrees of freedom of linear basis functions on a regularly refined mesh. This
will be used for characterizing the interface Γ2 discretely and by the reinitialization technique.

Remark: Solving hyperbolic PDEs with standard finite element methods is known to be
possibly instable. This is why often additional terms acting as stabilization method [35] are
introduced. In our application however, there are no high velocities or big changes of ∇ϕ2,h so
that we can omit such terms.

Construction of the narrow band(s). The narrow band method is based on the assumption that
the given discrete level set function ϕ2,h is an approximate signed distance function so that the
DOF values are be approximately equal to the exact distance from a vertex to the interface.
Using this, we define the inner narrow band by

(5.7) VINB = {v ∈ V(Sh) : ϕ2,h(v) < γh},

with γh = γh, γ ∈ Z+, and h = maxS∈Sh diam(S), and the outer narrow band by

(5.8) VONB = VINB ∪

 ⋃
v∈VINB

⋃
S∈P1(v)

V(S)

 .

The outer narrow band thereby corresponds to all vertices of the inner narrow band set as well
as all vertices of the first neighbor patch of all simplices in the inner narrow band domain. With
these set, the corresponding domains ΩINB := {S ∈ Sh : V(S) ⊂ VINB} and ΩNB = ΩONB :=
{S ∈ Sh : V(S) ⊂ VONB} can be defined.
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Based on this, we define the discrete cut-off function ζh as

(5.9)

ζh(ϕ2,h) = ζh(ϕ2,h(x, t))

=


1 for |ϕ2,h(x, t)| ≤ βI,h,
ζ̂h(ϕ2,h, βI,h, βO,h) for βI,h < |ϕ2,h(x, t)| ≤ βO,h,
0 for |ϕ2,h(x, t)| > βO,h,

with

(5.10) ζ̂h = (ϕ2,h(x, t)− βO,h)
2 2ϕ2,h(x, t) + βO,h − 3βI,h

(βO,h − βI,h)3

which slowly decreases the influence of the advection term towards the boundary of ΩINB. The
parameters βI,h = βIh and βO,h = βOh with βI < βO < γ divide the inner narrow band layer
into three sublayers in a form that the cutoff parameter is equal to 1 in the innermost layer,
tends to zero in the middle layer and is equal to zero in the outermost layer of the inner narrow
band. A viable choice for these parameters is for example βI = 2, βO = 4, γ = 6.

5.3. Discretization in time. We discretize (5.6) in time using the so-called θ−scheme. Please
note that since the time discretization of the level set problem may differ in comparison to the
discretization described in Section 3.1, we now discretize the interval [t0, tf ] by Ñt+1 time steps

tn = t0 + n∆̃t, n = 0, . . . , Ñt with ∆̃t denoting the time step. Let θ ∈ [0, 1] be a parameter and
ϕn2,h(·) ≈ ϕ2(·, tn) be an approximation of the level set function ϕ2 at time tn, the completely
discretized level set problem then reads

(5.11)

∑
S∈Sh

(
ϕn+1

2,h −ϕ
n
2,h

∆̃t
+ θζn+1

h
~V n+1

Γ2
· ∇ϕn+1

2,h + (1− θ)ζnh ~V nΓ2
· ∇ϕn2,h, vh

)
L2(S)

= 0, ∀vh ∈W 2
h .

Therein, we treat (5.9) explicitly with respect to time by defining ζn+1
h = ζ(ϕn2,h) to avoid the

task of solving a non-linear equation. For doing so, the innermost narrow band layer width βIh
has to be chosen to be sufficiently large.

5.4. Representation of Γ2. While we used an arbitrary approximation Γ2,h of Γ2 for the
(formal) discretization of the thermal problem in Section 3, the XFEM representation is based
on the approximating Γ2 linearly which results in planar intersection segments. Hence, we
use the representation technique of [15] which also provides a detailed investigation about the
approximation quality and the discretization error for this approach:

For tn = t0 + n∆̃t, n = 0, . . . , Ñt, let ϕn2,h ∈ W 2
h be the finite element approximation of the

level set function ϕ2(·, tn) and Γ̄n2,h its zero level. We define the set of simplices containing Γ̄n2,h
by

(5.12) SΓ2

h (tn) :=
{
S ∈ Sh : meas2(S ∩ Γ̄n2,h) > 0

}
and introduce SΓ2

h/2(tn) as the set consisting of all simplices that are obtained, if the elements

in SΓ2

h are regularly refined. The finite element approximation ϕn2,h of ϕn2 is then linearly in-
terpolated by Iϕn2,h using standard Lagrange interpolation on the patch of refined elements

S ∈ SΓ2

h/2(tn) and the discrete approximation of Γn2 is given by

(5.13) Γn2,h :=
{
x ∈ Ω : Iϕn2,h(x) = 0

}
.

5.5. Maintaining techniques. As mentioned earlier, it is not only beneficial to have a level
set function ϕh which is close to a signed distance function but mandatory for the narrow
band approach. Unfortunately, the signed distance property may be lost during the evolution
of the level set function in time due to various reasons, e.g. discretization errors, insufficient
approximation of the curvature and topological changes. Therefore, the level set function has
to be reinitialized. In our approach, we use a variant [15] of the Fast Marching Method (FMM)
[39], providing a signed distance approximation ϕ̃h of ϕh. Since the FMM slightly distorts the
interface Γ2,h and, consequently, is not volume-preserving, a volume correction algorithm must
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be additionally applied. Both methods are described in detail in [18] and some more notes about
the idea and the technical implementation can be found in [15] and [17].

5.6. Construction of a velocity field. The evolution of the level set function ϕ2 is driven

by the velocity ~VΓ2
. In regards to the Stefan problem, this velocity field ~V nΓ2

∈ (W 1
h )d can be

computed using the Stefan condition (2.14), which discretely reads

(5.14) [[λ∇unh]] · ~n2,h = ρL~V nΓ2
· ~n2,h on Γn2,h, n ∈ {1, . . . , Nt}.

In our method, we compute ~VΓ2
in two steps: In the first step, equation (5.14) is used to compute

the velocity at the interface by either evaluating the gradient ∇unh on Ωn2,h and Ωn3,h directly
or by evaluating an approximation of the gradient based on a regression scheme using several
point evaluations [6]. This velocity is then extended to the whole narrow band in a second step,
making this approach very similar to the Fast Marching Method. We refer again to [18] for
details.

6. Computational approach and some implementation aspects

For the numerical simulation of keyhole-based welding, we split the process into three sub-
problems by firstly distinguish between the problems “computing the keyhole geometry” and
“solving the coupled thermal problem” and then by decoupling heat equation and level set prob-
lem. While in the presented approach the computation of the keyhole geometry is based on
an analytical approach which is independent of the (remaining) sub-problems, the decoupling
of the thermal problem and the level set problem result in different aspects which have to be
considered within the numerical method.

6.1. Decoupling of the thermal problem. The thermal problem with given Γ1(t) for t ∈
[t0, tf ] consists of the sub-problems (2.15) and (2.17) which are coupled by the Stefan condition
(2.16). In this article, we use the same strategy as in our previous work [18] and decouple the
heat equation and the level set problem by solving both in succession: Given all data for tn, we

(1) determine the interface’s normal velocity ~V n+1
Γ2
· ~n and the velocity field ~V n+1

Γ2
using the

approaches presented in Section 5.6,
(2) solve the level set problem (2.17) to obtain ϕn+1

h and the new interface Γn+1
2,h ,

(3) construct new XFEM function spaces and solve the thermal problem (2.15) for un+1.

Thereby, we use the implicit Euler scheme for time discretization in both subproblems. However,
due to the narrow band approach and the decoupling strategy, the time discretization of level set
problem and heat equation may still differ since we may need intermediate time steps as CFL
conditions arise.

6.2. CFL conditions. For the numerical solution of the thermal problem (2.15)-(2.17), two
different types of CFL conditions have to be considered. The first CFL condition is motivated
by the physical behavior of the material while the second and third CFL condition are technical
constraints which are introduced by the narrow band approach.

6.2.1. Physically motivated CFL condition. The first CFL condition is introduced by (2.7) which
includes that vapor and melt are separated by the isoline of the vaporization, just as the molten
and solid material are separated by the isoline of the melting temperature. For the simulation,
it follows that although keyhole wall Γ1 and solid-liquid interface Γ2 are considered as zero level
sets of separate independent level set functions ϕ1 and ϕ2, the model does not allows that Γ1

and Γ2 intersect or touch each other, cf. Section 2.1. In fact, Γ2 can only be defined outside the
keyhole where u < uΓ1

so it is Γ2 * Ω1.
Remark: While this condition can be easily met by choosing an arbitrarily small time step

size, one is interested in choosing a time step size which is close the largest possible step size
due to efficiency. Therefore, one can either compute the time step size for every step using the

previously determined values of welding speed ~Vw, interface velocity ~VΓ2
and minimum distance

between Γ1 and Γ2 or define a reasonable value a priori and check every step regarding a violation
of the CFL condition.
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6.2.2. CFL conditions due to the narrow band approach. A consequence of the narrow band
approach is that one has to consider the following two CFL conditions:

• Since ζ decreases the transport of the level set function everywhere but in the most

inner band, the velocity ~VΓ2
must not exceed a value which would make the interface

Γ2,h leave this region. Therefore, the CFL condition

(6.1) ∆t‖‖~V nΓ2
‖2‖L∞(ΩINB) < βI,h, ∀n ∈ {0, . . . , Ñt}

must hold.
• For constructing Ωn+1

INB ⊂ ΩnONB, we need ϕ2,h to be close to a signed distance function
on ΩnONB. If the velocity transporting the interface is too big, we may end up considering
the constant values ±(γh + ε) during the solution and reinitialization process. To avoid
this, the condition

(6.2) ∆t‖‖~V nΓ2
‖2‖L∞(ΩINB) < h, ∀n ∈ {0, . . . , Ñt}.

has to be respected.

Remark: A typical parameter choice includes βI > 1 so that (6.1) is automatically fulfilled, if
(6.2) holds, making this the limiting condition. Please also note that even though the method’s
description assumes the reinitialization procedure to be applied after every time step, it might be
better to apply reinitialization and update the narrow band after every m-th time step instead.
This results in a more restrictive CFL condition given by

(6.3) m∆t‖‖~V nΓ2
‖2‖L∞(ΩINB) < h, ∀n ∈ {0, . . . , Ñt}.

6.3. Synchronization of time steps. As a consequence of the CFL conditions or the possible
use of different time discretization schemes for the thermal problem (2.15) and the level set
problem (2.17), the discrete time steps in both problems may not coincide. Since common time
steps are mandatory for our decoupling strategy to work, we have to explicitly synchronize the
time step sizes for the subproblems.

For this purpose, we define the time step size ∆t of the thermal problem as so-called major
time step size and use the values tn = t0 + n∆t with n ∈ {0, . . . , Nt}, cf. Section 3.1, as
synchronization points. The time step size ∆tϕ used for the discretization of the level set
problem is then adjusted by introducing (potentially) non-equidistant intermediate time steps

tn,i so that both, the time step size ∆̃t caused by a different time discretization scheme and
time step size ∆tCFL to fulfill the CFL conditions, are respected. The described procedure is
illustrated in Figure 6.1

(a) Time stepping for different discretization
schemes

(b) Time stepping due to CFL conditions

Figure 6.1. Time stepping synchronization: Intermediate time steps for the
solution of the level set problem are synchronized with the time step size for the
thermal problem.
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Algorithm 1 Numerical approach to simulate laser-based keyhole welding using miXFEM and
the FEniCS framework

Require: Ω, ΓD, ΓN , ΓR, gD, gN , Sh, ∆t, βO, βI , γ, material/process parameters.

Ensure: un
h, Γn

1,h, ϕ
n
1,h, Γn

2,h, ϕ
n
2,h, ~V

n
Γ2

for n = 0, . . . , NT .

Initialization:

Compute keyhole geometry with the model presented in Section 4.4 and Section 4.5 and obtain
ϕ1,h and Γ0

1,h via (4.18).

Compute a temporary guess for û0
h by solving the heat equation with Γ0

1,h as discontinuity for one

small time step ∆̂t.

Construct ϕ0
2,h, first defining ϕ0

2,h = −(û0
h − uΓ2) so that Γ2,h corresponds to the melting temper-

ature and then performing a reinitialization step.

Compute u0
h by solving the heat equation with Γ0

1,h and Γ2,h as discontinuities for one small time

step ∆̃t
if narrow band method is used then

initialize ΩINB and ΩONB with ϕ2,h.
end if

Time stepping:

for n = 0, . . . , Nt − 1 do

Compute the velocity field ~V n
Γ2

with one of the methods described in Section 5.6.

Check first CFL condition described in Section 6.2.1 and adapt ∆t if necessary.

Assign tϕ = n∆t (current simulation time) and ϕ
tϕ
2,h = ϕn

2,h.

while tϕ < (n+ 1)∆t do
Assign largest allowed time step to ∆tCFL such that CFL conditions (6.1) and
(6.3) are satisfied.

Compute time step for level set propagation ∆tϕ = min{∆tCFL, (n+ 1)∆t− tϕ}.
Propagate level set function with ~V n

Γ2
to obtain an updated level set

function ϕ
tϕ+∆tϕ
2,h .

if reinitialization is necessary then

Replace ϕ
tϕ+∆tϕ
2,h by its reinitialized version.

if narrow band method is applied then
Update inner and outer narrow band regions ΩINB, ΩONB with the

reinitialized function ϕ
tϕ+∆tϕ
2,h .

end if
end if
Set tϕ = tϕ + ∆tϕ.

end while
Set ϕn+1

h = ϕ
tϕ
2,h.

Compute ϕn+1
1,h by moving ϕn

1,h with ~VL.

Update function spaces considering ϕn+1
1,h and ϕn+1

2,h as discontinuities, all boundaries resp. bound-

ary conditions and solve the heat equation (3.24) to get the new temperature approximation un+1
h .

end for

6.4. Implementation framework. The full numerical approach for the simulation of laser-
based keyhole welding including the Stefan problem in level set formulation is shown in pseudo
code in Alg. 1. This procedure is implemented using miXFEM and a level set toolbox, both
developed within our work group for the FEniCS framework. The resulting library allows for
the automated solution of problems involving arbitrary discontinuities which may evolve and
also intersect each other. The advantage of the automated approach is that the use can use a
high abstraction level to define the variational formulation of the problem at hand and use a
specifically developed compiler which generates the corresponding low-level C++ code.
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6.4.1. The FEniCS project. FEniCS is a collaborative project of researchers who develop tools
for automated scientific computing, especially in the field of finite element methods for the
solution of partial differential equations [25]. It consists of a collection of core components such
as

(1) the Unified Form Language UFL [4], which is a domain-specific language to specify finite
element discretizations of differential equations using variational formulations close to
the mathematical notation,

(2) the FEniCS Form Compiler FFC [23, 32], which analyzes given UFL code and, in combi-
nation with Instant and FIAT [22], generates UFC [3] code for arbitrary finite elements
on simplices based on the variational forms specified in the UFL file,

(3) DOLFIN [26], the main problem solving environment and user interface whose function-
ality integrates the other FEniCS components and handles communication with external
libraries or toolboxes such as miXFEM.

6.4.2. miXFEM - an XFEM toolbox for FEniCS. FEniCS provides a lot of useful classes, struc-
tures and other utilities for the automated solution of PDE based problems with the conventional
finite element method. However, it has to be extended by new modules for considering non-
standard problems. In order to solve problems with arbitrary time-dependent discontinuities,
we developed an XFEM toolbox [16,19] partly based on the PUM toolbox [29,30].

For this to work, miXFEM adds features to the domain specific language UFL in order to define
enriched function spaces. Additionally a new syntax for integrals on arbitrary interfaces is intro-
duced. The UFL file is compiled using an extended FeniCS Form Compiler, which understands
and interprets the new features, to generate the corresponding C++ code. Based on this code,
the problems can be solved numerically using an extension of the DOLFIN library, implemented
in C++. While some key features are presented in [19], a detailed technical description of all
features is given in [16].

6.4.3. Level set toolbox. Another extension to FEniCS used to solve problem (2.15)-(2.17) is a
level set toolbox, which is used to compute the evolution of the level set function resp. the
discontinuity. The toolbox consists of discretized weak formulations for different time stepping
schemes formulated in UFL and compiled with the FFC which are used by a C++ library. This
library provides an implementation of the presented Fast Marching Method and the volume
correction approach which can be used for various problems. A detailed description is given
in [17]. For efficiency, all computations can be performed on a narrow band mesh.

7. Results

The presented model is used to simulate keyhole-based laser welding for the materials alu-
minum 3.2315, steel 1.0330 and steel 1.4301 whose material properties are given in Table 11.
While we firstly comment on the effect of multi-reflections on the keyhole shape, the main as-
pect of this section is the comparison of experimental results and the simulation findings. For
this purpose, our cooperation partner the Bremer Institut für angewandte Strahltechnik (BIAS)
has performed experimental studies with varying parameters for the welding speed VL and laser
power PL for each material so that we can compare the simulation outputs wit real experimental
results.

7.1. Simulation setup. For the simulation, we use an implicit Euler scheme for time discretiza-
tion and the polynomial degree k = 1 for the discrete space V kh so that the temperature is a
linear function. The time step size ∆t ∈ [5 · 10−6 s, 5 · 10−4 s] is computed during the run
time for each step by the evaluating the CFL condition (6.2). The mesh is consists of regions
with different element sizes where it is hmin = 4 · 10−5 and hmax = 3 · 10−3 to allow for a
sufficiently efficient computation with respect to all scenarios but is of course not fitted to the
internal boundaries Γ1,h and Γ2,h at all. A section of the simulation output during the process
is exemplary shown in Figure 7.1 using the software ParaView [5]. In lack of better data, we
assume that the initial radii of the keyhole at the front, back and side are given by the laser spot
radius for all simulation runs.

1When no value is known, we use for the steel the corresponding value of iron and for aluminum 3.2315 the

value of pure aluminum.
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Table 1. Material properties of steel 1.4301, steel 1.0330 and aluminum 3.2315
[13,33,38].

symbol 1.4301 1.0330 3.2315 description

u0 300 K 300 K 300 K initial temperature

ua 300 K 300 K 300 K ambiance temperature

um 1673 K 1700 K 933 K melting temperature

uv 3000 K 3000 K 2800 K evaporation temperature

ρ 7900 kg/m3 7860 kg/m3 2700 kg/m3 density

cp 830 J/kg K 460 J/kg K 900 J/kg K specific heat capacity

λs 15 J/mK 60 J/mK 160 J/mK thermal conductivity in solid

λl 35 J/mK 40 J/mK 110 J/mK thermal conductivity in melt

L 276000 J/kg 276000 J/kg 386000 J/kg latent heat

αfr 0.38 0.36 0.20 absorption coefficient

Figure 7.1. Visualization of simulation results for steel 1.0330 with VL = 4
m/min and PL = 2000 W. Keyhole is indicated by the white line, solid-liquid
interface is visualized in yellow. The XFEM approach allows for considering
mesh independent discontinuities.

7.2. Effect of multi-reflection on the keyhole geometry. As described in Section 4.5,
only the portion αfr of the intensity is absorbed when a ray impinge at the material while the
remaining part 1 − αfr is reflected. Hence, the important characteristic in keyhole-based laser
welding is the partial absorption of a multiple reflected laser ray at each wall contact. To point
out the impact of this effect, Figure 7.2 shows an example of the keyhole shape without and with
multi-reflections for the material steel 1.4301 with αfr = 0.38, VL = 4 m/min, and PL = 2000
W. In this example, it can be observed how the inclusion of multi reflections generates a keyhole
keeping the same width but getting at least twice the penetration length of the keyhole into the
material.

For simplicity, many publications that address welding processes neglect multi reflections.
Instead, the Fresnel absorption rate is chosen significantly higher in order to compensate their
impact. Using the same scenario as before, Figure 7.3 shows the keyhole shape with multi-
reflections compared to a situation with αfr ≈ 0.6 where no reflections are considered. This can
be done, but has a high risk of choosing a wrong scaling factor. Notice in the example of Figure
7.2 that the same penetration depth was obtained, but the geometric shapes differ, specially
in the lowest part of the keyhole. Furthermore, the scaling factor taken here to get the same
penetration depth was around 1.58, which is not straightforward to know and might only be
useful for this specific combination of material, laser configuration and process speed.
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Figure 7.2. Keyhole geometries without (top) and with multi-reflections (bot-
tom) for the material steel 1.4301 and the parameters αfr = 0.38, VL = 4 m/min,
and PL = 2000 W.

7.3. Keyhole-based laser welding for different materials. Now, we consider keyhole-based
laser welding for the materials steel 1.4301, steel 1.0330 and aluminum 3.2315. As mentioned,
the BIAS has performed several experiments for each material using different parameters for
the welding speed VL and laser power PL. The experimental design is as visualized in the
introduction. In more detail, specimens of size 100 mm × 40 mm × 6 mm are welded by a
single-mode fiber laser IPG YLR-1000SM with Gaussian beam profile that is applied to the
x− y plane of the metal sheets. In all experiments, no shielding gas is present.

The results of the experiments and simulation runs for each material and process parameter
configuration are given in the Table 2 for aluminum 3.3215, in Table 3 for steel 1.0330, and in
Table 4 for steel 1.4301. In these tables, it can be seen that the simulation always underestimates
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Figure 7.3. Keyhole geometries with multi-reflections for αfr = 0.38 (top) and
without multi-reflections but αfr ≈ 0.60 (bottom) for steel 1.4301 using the
parameters VL = 4 m/min and PL = 2000 W.

the melt pool width while the measured and simulated melt pool depth coincides very well.
Comparing the experimental data to the numerical results, cf. Figure 7.4 for aluminum, Figure
7.5 for steel 1.0330, and Figure 7.6 for steel 1.4301, the smaller melt pool width in all simulation
runs is obviously a consequence of neglecting the melt dynamics in the model which would have a
significant influence in the upper part of the melt pool due to buoyancy forces. This assumption
is supported by the fact that the difference in the melt pool width decreases for increasing
welding speed.
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Table 2. Experimental data and numerical results for aluminum 3.2315.

PL VL zexp wexp,0.5 zsim wsim

3000 W 5 m/min 1.31 mm 2.22 mm 1.32 mm 1.75 mm

3000 W 6 m/min 1.25 mm 1.66 mm 1.25 mm 1.67 mm

Table 3. Experimental data and numerical results for steel 1.0330.

PL VL zexp wexp,0.5 zsim wsim

2000 W 4 m/min 1.45 mm 1.20 mm 1.48 mm 1.00 mm

2000 W 5 m/min 1.10 mm 1.11 mm 1.27 mm 0.99 mm

(a) aluminum 3.2315, PL = 3000 W,

VL = 5 m/min.

(b) aluminum 3.2315, PL = 3000 W, VL =

6 m/min.

Figure 7.4. Melt pool geometry: Experimental and numerical results for alu-
minum 3.2315.

(a) steel 1.0330, PL = 2000 W, VL =

4 m/min.

(b) steel 1.0330, PL = 2000 W, VL =

5 m/min.

Figure 7.5. Melt pool geometry: Experimental and numerical results for steel
1.0330.

Table 4. Experimental data and numerical results for steel 1.4301.

PL VL zexp wexp zsim wsim

2000 W 4 m/min 1.53 mm 1.24 mm 1.45 mm 1.02 mm

2000 W 5 m/min 1.21 mm 1.13 mm 1.26 mm 1.00 mm

8. Conclusion

In this article, an extended finite element approach for laser-based keyhole welding modeled by
heat equation with two internal boundaries has been presented. Using an analytical model based
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(a) steel 1.4301,

PL = 2000 W,

VL = 4 m/min.

(b) steel 1.4301,

PL = 2000 W,

VL = 5 m/min.

Figure 7.6. Melt pool geometry: Experimental and numerical results for steel
1.4301.

on the energy balance at the keyhole wall, a computation scheme provided coordinates of points
at the front, rear and side keyhole wall. These points have been used to construct a section-wise
defined level set function whose zero level set represented the keyhole shape. The evolution of
the solid-liquid interface was computed by considering the two-phase Stefan problem in level
set formulation in the remaining domain outside the keyhole. Thereby, the thermal problem
and the transport equation are only coupled by the Stefan condition providing the interface’s
velocity so that an explicit decoupling strategy could be used where level set problem and heat
equation have been considered in succession. Moreover, this modeling allowed for discretizing
both subproblems using different methods. The numerical computation of the level set function’s
evolution is a standard problem and is here performed on a narrow band for efficiency. Since the
level set function tends to degenerate, not only SUPG stabilization but also reinitialization via
the fast marching method has been included in the numerical approach. In regards to the thermal
problem, a general concept of enriching the function space via local Heaviside enrichment was
used and the interface conditions at the keyhole wall and the solid-liquid interface have been
weakly imposed with Nitsche’s method. The discrete problem at hand was solved using miXFEM,
our XFEM toolbox for FEniCS. For validation, experimental data for keyhole-based laser welding
applied to the materials steel (1.4301, 1.0330) and aluminum (3.2315) are used, where the process

parameters welding speed ~VL and laser power PL are varied. The numerical results show a good
fit with the experimental data although a very simple keyhole model have been used which is
highly sensitive to the used material parameters. More important, the numerical approach is not
only very suitable for this kind of problem but also allows for an easy modeling and integration
of additional effects, e.g. fluid flow in the melt, as we will show in an upcoming publication.
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