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Abstract

The construction of a material description in small scales represents a key
issue in multi-scale mechanical problems where a numerical homogenization
approach is aimed. The numerical construction of a representative volume
element (RVE) for the material must include an adequate description of its
geometrical structure and mechanical properties.

On the one hand, the material description through a RVE must be large
enough to include as many material properties as possible. On the other
hand, the RVE must be as small and simple as possible, to avoid expensive
computations in the simulation.

In this work, we analyze an strategy for the selection of the adequate RVE
size for elastic problems on thin sheets with strong texture. The selection
strategy includes the construction of the geometric descriptor as periodic
tesselation of the sheets and the stochastic assignment of stiffness matrices
for the different material grains inside the RVE. The procedure is illustrated
with an example on steel sheets of type DC01 with thickness 50µm.

1. The RVE calculation in multiscale problems

Modern simulation of many applied problems requires a methodology to
include physical phenomena from more than one scale. This is the case of
the mechanical deformation problems considered within the Collaborative
Research Center 747 “Micro Cold Forming”.
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For problems involving micro-components, not only the phenomena at
the component scale (large scale) determine the way a material piece react
to given forces, but also the phenomena at the scale of material grains (small
scale) play a significant roll in the single reactions of a micro-component.

The connection between the scales in the deformation process is mod-
eled following the theory of mathematical homogenization. In practice, this
requires a material description at the small scale to be used in calculations
and later summarized and sent to the large scale computations. This de-
scription is called Representative Volume Element (RVE) and must include
all necessary information about how material looks like and behaves at the
small scale. Obviously, only an accurate description of material can lead to
a proper method simulating both material scales together. For mechanical
problems, the RVE must include the geometrical description for a represen-
tative amount of material, together with the local properties at this small
scale.

On the one hand, the size of the RVE must be large enough to contain
enough material information describing a general piece in the small scale and,
on the other hand, the RVE must be small enough to keep computational
work affordable. This is the reason why the right selection of the RVE size
is an important issue when aiming a two-scale simulation. Finding the right
compromise between amount of information and small size is a key question
on implementing a two-scale simulation of any kind.

In this work, we consider material pieces made of rolled thin sheets and
the way of finding a good RVE size for the small scale. In particular, the
material considered here contains strong rolling effects in the form of texture,
i.e. crystal orientations of single material grains have preferred directions,
[1]. One main difficulty on materials with texture is that, although the
crystalline structures have the tendency towards one direction, each grain
slightly diverts its own orientation. On the other hand, this diversion cannot
be determined a-priori and each piece of material will unavoidably have a
different set of grain orientations. This stochastic feature of material has
been the issue on the previous works [2] and [3].

After presenting the basic aims of this work, the ideas of an algorithm
for the construction of RVE geometries are presented in Section 2. The
mechanical problem to be solved on every RVE domain and the strategy
to find a correct size for the RVE to be representative without becoming
too large are the topics of Section 3. Later, the results of the presented

2



strategy for geometries constructed out of information for Steel DC01 are
shown in Section 4 and finally, Section 5 draws some conclusive remarks on
the complete procedure.

2. Construction of periodic geometries

In order to describe the shape of a representative material piece, the RVE
geometry must consider periodicity. Being periodic, the RVE can be thought
as the basic piece used to construct a complete component in the large scale.
For the case of thin sheets, where the RVE thickness will be assumed to be
the same thickness as for the sheet, there are only two directions in which
the periodicity must be enforced. Figure 1 shows a side view of one periodic
RVE geometry and the way it can be used to construct a larger piece in form
of multiple RVEs joint together.

Figure 1: Side view of a periodic sheet of material. The horizontal direction contains
periodic grains and multiple copies of a RVE can be used to construct a larger material
piece.

One three dimensional example of a RVE geometry with periodicity in the
x and y directions is presented in Figure 2. The figure shows the RVE with
the constructed subdomains and the tetrahedral mesh constructed for the
finite element calculations. Figure 3 shows the six outer faces of the same
RVE from Figure 2 where it can be observed how the four faces ordered
horizontally contain the periodicity in form of two sets of mirrored domains,
while the two faces corresponding to the top and bottom of the RVE present
no relation between them.

The RVE geometries presented in this work are assumed to be in the
three-dimensional domain ΩRV E = [0, s]× [0, s]× [0, d] with d and s denoting
the sheet thickness and the horizontal diameter of the RVE, respectively.
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Figure 2: Example of a three dimensional RVE with periodicities in x and y directions.
On the right side, the same RVE with the constructed tetrahedral mesh.

The periodic geometries presented here are the result of a computational
algorithm including the following steps:

1. Random selection of a set of n points (xi, yi, zi) in ΩRV E to serve as
centers of the single grains inside the RVE.

2. Construction of replicas of the grain centers into periodic positions
outside the RVE. For the case of two periodic directions this means
8 replicas of each grain center. The replicas belong to the domain
[−s, 2s]× [−s, 2s]× [0, d] and have the coordinates (xi + as, yi + bs, zi)
with a, b ∈ {−1, 0, 1}, (a, b) 6= (0, 0).

3. Construction of a domain partition based in a Voronoi tessellation con-
sidering all (1 + 8)n centers and replicas together.

4. Extraction of the geometry inside the original RVE domain, keeping
track of all regions and their corresponding center index i. This ex-
traction must consider all possible region types present in the partition
and intersecting the RVE domain, it is

(a) regions fully inside the RVE domain,
(b) regions having at least one vertex inside the RVE domain,
(c) regions having at least one edge crossing the RVE domain, and
(d) regions with a face intersecting the RVE domain.

The geometries presented here are constructed via a C implementation
which makes use of some routines of the Qhull package (see [4]) for the
tessellation construction and the creation of the necessary region cuts.
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Figure 3: Outer faces of the RVE from Figure 2. The faces are ordered in a constructive
form from which one could build the three dimensional RVE boundary by folding along
the white borders.

Once a RVE partition has been constructed, the next step is to construct
a mesh for finite element computations. The meshing of RVE partitions has
been performed with the software TetGen which construct tetrahedral meshes
of all regions provided after the four steps above have been performed. For
details on the TetGen software see [5] and the references therein.

3. The mechanical problems in RVEs

Following [1] and [2], the local stiffness of each material grain can be mod-
elled using a stochastic model for the texture in the material. The stiffness in
the complete RVE can then be described as a function with different values
on each partition of the RVE geometry, it is, as a function C : R3 → R6×6,sym

assigning to the coordinates (x, y, z) a symmetric stiffness C(x, y, z).
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The mechanic problem of elasticity for the RVE domain reads

−div(σ(x, y, z)) = 0, (1)

σ(x, y, z) = C(x, y, z)ε(x, y, z), (2)

ε(x, y, z) =
1

2

(
∇u(x, y, z) +∇Tu(x, y, z)

)
, (3)

where u, ε and σ denote the deformation, strain and stress, respectively. The
boundary conditions are set in accordance with the three differnt modes of
tension and three modes of shear by applying a condition on the displace-
ment at some sides of the RVE geometry. This means that we analyze the
material responses on a RVE by solving six mechanical problems as the one
in equations (1–3) by fixed vales of the stiffness matrix C(x, y, z).

The six elastic problems provide information of the response of the mate-
rial piece described by the RVE to an applied tesion or shear force. The com-
mon way to summarize the stress responses and pass them to the larger scale
is to compute a volume average over the RVE geometry of every response.
This means that for each of the six symmetric components σij(x, y, z) of the
stress tensor σ(x, y, z), an integral of the form

σ̄ij =
1

V

∫
ΩRV E

σij(x, y, z)dxdydz (4)

must be constructed, where V denotes the volume contained in the RVE
geometry. The symmetric tensor

σ̄ =

 σ̄xx σ̄xy σ̄xz
σ̄yy σ̄yz

sym σ̄zz

 (5)

is the volume averaged response of the RVE to the applied mechanical forces
and does not depend on the coordinates (x, y, z) any more. The numerical
integrations to obtain the tensor σ̄ are known as the homogenization step in
the numerical homogenization literature.

For each of the six tension and shear modes, one can compute an homog-
enized tensor σ̄, making altogether a set of 36 elastic responses of the RVE
in consideration.

For a well studied material, where enough measurements exist, the ad-
ditional information must be used to modify the first task in the geometry
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construction algorithm from Section 1 where a selection of grain centers is
performed. In case measurements about grain sizes and/or distributions is
available, this information is used to change from a fully random selection of
grain centers, to a distributed selection. The extra information can describe
material characteristics like presence of larger grains close to the top and bot-
tom of the material or a preferred direction for the grains to be geometrically
elongated.

In this work, we consider Steel sheets of type DC01 and with thickness
50µm. For these sheets, there are measurements about grain diameters on
top, middle and bottom of the material which indicate a larger size (and less
occurrence) of grains on top and bottom and a smaller size (and more grains)
in the middle vertical section of the sheets. Also, there exist information to
fix the amount of grains to 40 grains for a volume of full thickness and an
area of 2500µm2.

The information about the different grain sizes on top, midle and bottom
layers of the DC01 sheets have been used here to design geometries in which
the vertical coordinate is constructed by the function

z =

{
d− d(1− 2ẑ)p, for ẑ <= 1/2
d+ d(2ẑ − 1)p, for ẑ > 1/2

(6)

Figure 4: Top view of the schematic arrangement of nested geometries. The grain centers
(◦) from the largest size are the same as from the smaller sizes.
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with z in µm and ẑ taken as a uniformly distributed variable. This function
generates more vertical coordinates in the middle layer of the material for
values of p > 1. For the results shown here, the measured material grains have
been used to set a value of p = 1.6 in the generation of vertical coordinates.

To analyze different sizes of RVEs, we consider all samples to have the
same thickness as the material and the two horizontal directions will be
modified to see how small or large they best fit a numerical simulation. The
idea is to calculate the mechanical elasticity problems of tension and shear
on a large amount of material samples to obtain statistical distributions of
results for different sizes.

In order to compare the different sizes, a large amount of material samples
was constructed and pieces of the different sizes were analyzed. Each group
of nested pieces was constructed by taking a material geometry of size s =
100µm and then successively taking smaller pieces from it of sizes s = 80µm,
s = 60µm, s = 50µm, s = 40µm, and s = 20µm. The grain centers from the
initial piece of size s = 100µm were considered as fixed, making some centers
appear in only some or in all pieces, depending on their x and y coordinates.
The top view of the nested geometries is illustrated in Figure 4, where the
colored lines represent the considered sizes, and the black circles are the fixed
centers.

The construction of the geometries for the different RVE sizes consider
the included fixed grains inside the corresponding boundary (cf. Figure 4)
and the periodic tessellation of this piece with some grains as described in
Section 2.

For each size, the included centers where replicated periodically and the
process towards the construction of the domain partition and its tetrahedral
mesh was performed using the algorithm from Section 2.

4. Simulation results for different RVE sizes

4.1. Example of a nested geometry for Steel DC01

An example is shown in Figure 5 with a set of nested RVEs with the edge
lengths 20µm, 40µm, 50µm, 60µm, 80µm and 100µm. The height of all RVE
has been considered as constant and equal to 50µm. The constant height is
equal to the thickness of the steel foil considered and cannot be reduced, as
the homogenization theory cannot be applied in this direction.

In Figure 5, it can be seen that the different subdomains, representing the
grains in the material, are generated from the same set of centers. However,
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Figure 5: Geometries with subdomains for a set of nested RVEs with edge lengths between
20µm and 100µm. Every sudmomain contains the geometrical periodicities in the x and
y directions.

the exact configuration of the boundaries differs because of the different con-
ditions for periodicity, having different set of grains to be periodically built
in the geometries.

The same geometries have can be tested under elastic loads applied in the
three tension and three shear modes. As an example of the results, Figure
6 shows the responses obtained by a unitary strain in the x-direction. It is
interesting to note how the grain limits can often be found as large changes
in the stres values. The different reactions to applied forces are the result of
the assignation of different stiffness for each grain. In this form, the size of
the stiffness in the pulling direction is decisive for the size of stress response
at each region of the domains.

In fact, the use of analytical and/or numerical homogenization to me-
chanical problems is based precisely on the idea of certain averaging taking
place over large enough material pieces. With respect to Figure 6, the largest
and smallest values in the first RVE cannot easily represent the overall ma-
terial behavior as they are strongly influenced by the specific geometry and
stifness values assigned to it. In contrast to this, for the larger sizes s, the
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Figure 6: Component xx of the stress responses obtained for a unitary strain in each of
the nested geometries shown in Figure 5.

RVEs contain enough large and low values which are homogenized and can
be expected to deliver a representative average for the material response.

For the nested RVEs in Figure 6, the averaged values of stress as defined
in equation (5) are shown in the table below. From this numbers, it can
be observed how the tension in the x direction creates large stresses in the
yy and zz components as well, while the three shear components remain
relatively small for the applied stresses.

s σ̄xx σ̄yy σ̄zz σ̄yz σ̄xz σ̄xy

20µm +2.993e+05 +8.678e+04 +1.120e+05 -9.981e+03 +1.428e+03 +2.071e+03
40µm +2.998e+05 +8.470e+04 +1.136e+05 -5.800e+03 -2.086e+03 +5.360e+03
50µm +2.986e+05 +8.777e+04 +1.115e+05 -7.770e+03 -4.529e+02 +3.271e+03
60µm +2.991e+05 +8.882e+04 +1.103e+05 -5.883e+03 +1.435e+03 +6.172e+03
80µm +2.990e+05 +8.965e+04 +1.095e+05 -5.823e+03 +7.613e+02 +5.318e+03
100µm +2.995e+05 +9.004e+04 +1.087e+05 -7.482e+03 -6.004e+02 +4.545e+03

On the one hand, it is important to consider RVEs with as many infor-
mation as possible for the material and, on the other hand, there exist a
necessity to simplify the computations on single RVEs for an efficient numer-
ical implementation. In practice, finding a good compromise between these
two aspects is a key task which can make the difference between an efficient
and an impractical multi-scale simulation.
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Figure 7: Results of tension in the three directions for a RVE example with edge length
s = 50µm. The plots show the subdomains defining the grains (top-left), the values of σxx
under a unitary strain in x direction (top-right), the values of σyy under a unitary strain
in y direction (bottom-left), and the values of σzz under a unitary strain in z direction
(bottom-right).

As already mentioned in Section 3, the RVEs can be elastically loaded
using six tension and shear modes. Figure 7 considers the 50µm RVE from
Figure 6 and presents the results for the three tension modes obtained under
unitary strain. The colors in the first subplot of Figure 7 show the domain
partition through the grains. The colors in the other three subplots cor-
respond to the jj component of stress for a tension of the RVE in the j
direction, for j ∈ {x, y, z}.

It may be observed how some areas with small stress for the tension in
x show large stress for tension in y or z directions. This is a clear results of
the single orientations at grain level, producing large stress values by loading
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in one direction and low stress values for loading in a differnt one. th same
effect can be observed for other regions with large stress due to tension in y
or z.

4.2. Distributions for different RVE sizes

Once it is clear how a realization of nested RVE we are interested in the
stochastic distribution for many of such realizations. For this, a large set of
M nested realizations have been created and analyzed under action of every
elastic mode.

If we only consider the responses of the nested realization while applying
a tension mode, we obtain in each realization the responses for every compo-
nent of σ̄, making a total of 6M responses which can be used to determine
the distribution o responses. Altogether, we are able to determine a distri-
bution of every reaction of the different RVEs under each tension and shear
modus, making a total of 36M responses.

Figure 8 shows the distributions obtained after applying a unitary ten-
sion in x-direction. The subplots in this figure show the different responses
(components of σ̄) expressed as boxplots, marking the median, the 25th and
75th percentiles and the most extreme data points not considered outliers.

Figure 8: Results for stress components by applying a unitary strain in x direction to a
large set of realizations nested ing stresses for tension in x direction
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To motivate the use of this statistical description, the sets of results for
each edge length were subjected to a Jarque-Bera test, a Lilliefors test and
a Chi-square test for the null hypothesis, that the underlying data follows
a normal distribution. In this example of x tension, only for the stresses in
the xz and xy planes of the smallest RVEs two of three tests rejected this
null-hypothesis at a 5% significance level.

It is interesting to notice how the distributions show a kind of convergence
as the edge lengths s for the RVE become larger. The mean values appear to
be kept, while the spread around them continuously decreases as the samples
increase their size. A similar effect can be observed for the shear modes. This
is illustrated here by Figure 9 where the strain applied was a unitary shear
in the yz-plane.

Figure 9: Resulting stresses for shear in yz plane

As already mentioned, there exist six modes and they a can all be com-
puted and summarized. This summary is presented in 10 where the box
diagrams in each subplot represent the distributions of mean values obtained
with the different sizes of RVEs considered. The box diagrams are ordered
from bottom to top: 20µm, 40µm, 50µm, 60µm, 80µm, 100µm in all sub-
plots. The distributions from Figures 8 and fig:yzshear correspond to the
first and fourth column of subplots in the summary of results.

The computational effort used to solve the different problems is shown
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Figure 10: Obtained components of stress (subplots’ rows) for all elastic modes (subplots’
columns) for different RVE sizes.
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in the following table, from where is easy to see how the increase in size is
directly reflected in more computational time.

edge length [µm] # subdomains average time [s]

20 5 12.1414
40 25 24.4405
50 40 40.9250
60 52 65.4595
80 102 132.5085
100 160 263.8000

The search we intended for can now be easily done by determining how
small must be the spread in the distributions from Figure 10. There, it can
be observed how the mean values remain constant for the different sizes s
of the RVEs while the spread of each distribution decreases for increasing
s. As the computational effort strongly increases by making s larger, the
size s can now be selected by finding the size s giving a spread smaller than
some tolerance (meaning enough material information is inside the RVE) and
producing affordable computational times. The question on the affordable
computational time depends on the particular multi-scale method to be used
and ensures that the evaluations at a larger scale are not so expensive while
calling for the responses in the small scale for an RVE.

For example, if we are only interested on having RVEs that can be pro-
duced in less than 120 seconds and produce not more than 10 GPa spread
for any applied unitary strain, the size s = 40µm would be the best choice,
as it already fulfills the spread condition and takes only 40.9250 seconds to
be computed.

5. Conclusions

We have shown an algorithm that can efficiently help on the selection of
the RVE size for texturized thin metal sheets.

The geometry construction of Section 2 is particularely designed to use
a texture model and create computational domains for thin rolled metallic
sheets. However, the ideas of periodicity can be easily generalized for any
3D problem with multiple scales.

The modal consideration for the material responses constitutes an effec-
tive form of analyzing the spreading of different stress components in depen-
dence of the RVE size and can be used for the best selection together with
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the computational times used to obtain results in each RVE size, as described
in the last part of the previous section.

It is important to remark that this strategy can be used for a arge variety
of material. the only necessary ingredients are the knowledge of geometric
properties of the grains (cf. Section 2) and a calibrated texture model (cf. [2])
that delivers stiffness tensors for the single material grains. The importance
of a calibrated texture model is on the precise mechanical properties for
single material grains, being specially important when the rolling process to
produce the material has been performed until the thickness d is very small,
as in the case of metal foils used in the production of micro components.

Once the optimal choice of the RVE size s has been done, this size can
be used to construct a Material Library (cf. [6]) and even to analyze the
sreading of stresses on an elasto-plastic computation trough the decomposi-
tion of total strain into elastic an plastic. For example, for an elasto-plastic
model including additive decomposition of strain, the spread of stresses can
be computed as the stochastic distributions obtained for the elastic strain
εelastic = εtotal − εplastic.

Further considerations regarding the plastic modelling of RVE for metallic
materials are works in progress.
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