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Abstract

We investigate the mathematical model for induction hardening of steel and
present simulation results for the involved cooling process. The model ac-
counts for the thermomechanical effects coupled with phase transitions that
are caused by the enormous changes in temperature during the heat treat-
ment. The mechanical part of the quenching model includes the transfor-
mation strain and transformation plasticity induced by the phase transi-
tions (TRIP). The simulations have been performed by assuming a non-
homogeneous pre-heated workpiece with an austenite profile generated via
high-frequency inductive heating. The mathematical ingredients of the model
are presented and the main simulation results are reported for the case of a
gearing component made of steel 42CrMo4.

Key words: Heat treatment, surface hardening, phase transitions,
Transformation induced plasticity, Quenching

1. Introduction

For many applications in industry the surface of steel components is par-
ticularly stressed. Therefore, there exists a growing demand of surface hard-
ened products. Hardening is a metallurgical and metalworking process used
to increase the hardness of the boundary layers of a workpiece made of steel.
The first step for hardening is the heating of the components to a temper-
ature at which the iron phase changes from the initial phase into austenite.
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Then the material is quenched by applying high cooling rates on it. The rea-
son why the hardness of steel can be changed relies on the occurring phase
transitions. In the case of surface hardening, high cooling rates should be
achieved so that most of the austenite phase is transformed to martensite by
a diffusionless phase transition, producing the desired hardening effect.

Induction hardening is one of the most important surface hardening pro-
cedures and has been successfully applied in industry for more than 50 years.
In this heat treatment method, an induction coil is connected to the power
supply and the flow of alternating current through the coil generates an
alternating magnetic field which in turn induces eddy currents in the work-
piece. The energy dissipated due to these currents causes heat in the steel
component and can be used to heat up only a specific part of it.

Although the inductive hardening is well established among practitioners,
the needs for process optimization are still open. In this sense, the modeling,
numerical simulation, and optimization remain areas of great interest in the
applied research.

In this paper, we report on the research performed for a subproject of
the network MeFreSim–Modeling, Simulation and Optimization of Multi-
Frequency Induction Hardening as Part of Modern Production formed by
the Weierstraß-Institut für Angewandte Analysis und Stochastik (Berlin),
the Zentrum für Technomathematik (Universität Bremen), the Institut für
Mathematik (Universität Augsburg), the Stiftung Institut für Werkstoff-
stechnik (Bremen), and the industrial partners EFD Induction GmbH and
ZF Friedrichshafen AG.

We present here our work performed within the research network, con-
sisting of the numerical simulation of thermomechanical effects due to the
phase transitions during the quenching process of gear components.

This work deals with the model and simulation for the quenching pro-
cess after a high-temperature profile has been achieved with an inductor on
a gearing component. The rather general model for quenching of steel is
presented in Section 2, including heat conduction, phase transformations,
thermoelasticity and transformation induced plasticity (TRIP) to be consid-
ered in the computations. After this, Section 3 presents the material data,
simulation setting and main results for an implementation of a gearing com-
ponent made of steel 42CrMo4. The final Section 4 draws some concluding
remarks and present some ideas for further research.
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2. The mathematical model

For the complete heat treatment cycle we usually consider four character-
istic times: the beginning of the heating process t0 (at room temperature),
the end of the heating process t1, the end of a mantained high temperature
t̃1, and the end of the quenching process t2. In the case of induction hard-
ening the stabilization period [t1, t̃1] is very small and can be neglected such
that the process is only characterized by the heating interval [t0, t1) and the
quenching interval [t1, t2].

At time t0 steel is assumed to consist of a mixture of ferrite, pearlite,
bainite, and some martensite (the last one typically representing the smallest
amount). Unfortunately the exact phase distribution of such mixture of
phases is unknown in practice and represents an uncertainty factor in the
model. For this reason we introduce the symbol Z0 which will be reserved in
the following for the initial phase mixture prior to the heat treatment. During
the heating process Z0 is (partially) transformed to austenite. Later, during
the (rapid) cooling stage, the austenitic phase is transformed mainly into
marteniste, but it may also be transformed into ferrite, pearlite, and bainte
in a much smaller portion; the remaining volume fraction of Z0 remains
unchanged.

A good model for describing the heat treatment of steel is based on the
thermal and mechanical equations for the description of temperature and
mechanical deformations in the material pieces. Similar models with coupled
equations for thermomechanical problems have been previously simulated for
processes like heat treatment, welding and shape rolling, among others (cf.
e.g. [1], [5], [12], [14]).

The rapid cooling rates are obtained by prescribing appropriate bound-
ary conditions in a heat equation and the temperature gives rise to the time
evolution of the single phases. The coupling between the thermal and the
mechanical models is determined by the density changes in material resulting
from temperature and phase changes, as well as by the mechanical dissipa-
tion. At the same time, the phases’ evolution is a direct consequence of the
temperature changes, as described below.

2.1. The phase transitions

Mathematical models for phase transitions in steel have been considered
e.g. in [4]–[6], [8], [14], [17], [18], [19]. In many works, the description of the
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diffusive phase transitions in the isothermal case is done via the Johnson-
Mehl equation. In order to establish a general model for isothermal multi-
phase case during the cooling process we introduce the following notations:

• z0(t): the volume fraction of Z0, i.e., the mixture of phases present
before the heating process,

• z10 : the volume fraction of austenite at time t1 which stands for the
end-time of the heating process (i.e. the start of quenching)

• z1(t): the volume fraction of remaining austenite during the cooling
process, and,

• z2(t), · · · , z5(t): volume fraction of ferrite, pearlite, bainite, martensite,
which have been transformed from austenite during cooling.

As mentioned, the workpiece has the phase configuration Z0 at time t0,
thus we have z0(t0) = 1. Since the outer layers of the workpiece have been
transformed to austenite from Z0 during the heating process, it is observed
that the phases at the end of heating correspond to a portion of Z0 and a
portion of austenite, it is z0(t1) + z1(t1) = 1.

During quenching, austenite is transformed into ferrite, pearlite, bainite
and marteniste, then we can conclude

z1(t1) ≡ z10 = z1(t) + z2(t) + z3(t) + z4(t) + z5(t) for t ∈ (t1, t2].

and the remaining fraction of Z0 remains unchanged during cooling and
equals to z0(t1).

We describe the evolution of volume fractions during the cooling process
which occurs for t ∈ [t1, t2] by the following equations























z2(t) + z3(t) = z10

(

1− e−b(θ)(t−t1)a(θ)
)

for FPf
≤ θ ≤ FPs ,

z4(t) = (z10 − (z2(t) + z3(t)))
(

1− e−b̃(θ)(t−t1)ã(θ)
)

for Bf ≤ θ ≤ Bs,

z5(t) = (z10 − z2(t)− z3(t)− z4(t))

(

1−

(

θ −Mf

Ms −Mf

)n)

for Mf ≤ θ ≤Ms,

(1)
where the evolutions of ferrite, pearlite and bainite (the first and the second
equations) arise from the Johnson-Mehl-Avrami equation and the austenite-
marteniste phase change (the third equation) is from Schröder’s approach,
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see e.g. [13]. The parameters b(θ), a(θ), b̃(θ), ã(θ) and n have to be identified
using experimental data as in [11]. FPs(FPf

), Bs(Bf ), and Ms(Mf ) denote
the start (end) temperatures of formations of ferrite/pearlite, bainite and
martensite, respectively.

The equations (1) may be then be reduced to a system of ODEs. For
simplicity, let z̃ denote z2+z3, then it is easy to verify from the first equation
in (1) that

t− t1 =









ln

(

1−
z̃

z10

)

−b(θ)









1/a(θ)

. (2)

Formal differentiation of (2) with respect to time gives the ordinary differ-
ential equation

˙̃z = −a(θ)b(θ)1/a(θ)(z10 − z̃)

(

ln

(

1−
z̃

z10

))1−
1

a(θ) . (3)

In a similar manner, using the second equation in (1) one gets

ż4 = −ã(θ)b̃(θ)1/ã(θ)(z10 − z̃ − z4)

(

ln

(

1−
z4

z10 − z̃

))1−
1

ã(θ)
−

z4 ˙̃z

z10 − z̃
. (4)

and then the problem (1) is equivalent to the initial-value ODEs










































































˙̃z = −a(θ)b(θ)1/a(θ)(z10 − z̃)

(

ln

(

1−
z̃

z10

))1−
1

a(θ) H(θ − FPf
)H(FPs − θ),

ż4 =






−ã(θ)b̃(θ)1/ã(θ)(z10 − z̃ − z4)

(

ln

(

1−
z4

z10 − z̃

))1−
1

ã(θ)
−

z4 ˙̃z

z10 − z̃






×

×H(θ −Bf )H(Bs − θ),

ż5 =

(

d

dt

(

(z10 − z̃ − z4)

(

1−

(

θ −Mf

Ms −Mf

)n)))

H(θ −Mf )H(Ms − θ),

z̃(t1) = z4(t1) = z5(t1) = 0,

(5)

where H denotes the heaviside step function.
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2.2. Thermomechanical modeling
We assume small deformations and consider the balance law of momen-

tum without inertial term together with the balance of internal energy as

− div σ = 0, (6)

̺ė+ div q = σ : ε(u̇) + h, (7)

which are essential to determine the displacement u, the stress tensor σ and
the temperature θ. Here ̺ is the mass density, q is the heat flux, e the specific
internal energy, ε(u̇) = 1

2
(∇u̇ +∇u̇T ) the symmetric part of the strain rate

tensor and h the external heat source. Further, we assume that the total
strain ε(u) can be additively decomposed in an elastic part εel, a thermal
part εth, and a TRIP part εtrip (cf. [7] for details), i.e.

ε(u) = εel + εth + εtrip. (8)

We describe the thermal strain as the thermal expansion produced by
density changes, it is

εth =

(

(

̺0(θref )

̺(θ, z)

)
1
3

− 1

)

I.

where ̺0(θref ) stands for the homogenous measured density of the initial
phase configuration z0(t0) at reference temperature θref and we make a mix-
ture ansatz for the density as

̺(θ, z) =
5
∑

i=0

zi̺i(θ), (9)

where ̺i(θ) is the homogenous temperature-dependent density of the phase
zi at temperature θ. Moreover the thermal part εth can be subsequently
decomposed in an isothermal phase transition effect at reference temperature
θref and a thermal expansive part without phase transitions, i.e.

εth ≈

(

(

̺0(θref )

̺(θref , z)

)
1
3

− 1

)

I +
5
∑

i=0

ziαi(θ)(θ − θref )I

≈ −
1

3

(

̺(θref , z)

̺0(θref )
− 1

)

I +
5
∑

i=0

ziαi(θ)(θ − θref )I

= −
1

3

5
∑

i=0

zi
(

̺i(θref )

̺0(θref )
− 1

)

I +
5
∑

i=0

ziαi(θ)(θ − θref )I,

(10)
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here αi(θ) is the linear thermal expansion coefficient of the phase zi where
we assume the density ̺i(θ) to be expressed as

̺i(θ) ≈ ̺i(θref )
(

1 + αi(θ)(θ − θref )
)−3

. (11)

The model of transformation induced plasticity (TRIP) applied only dur-
ing the cooling process is based on Franitza-Mitter-Leblond proposal (cf. [2],
[3], [9] and [16]). The corresponding equation for the case of multi-phase
formations reads:










εtrip(t) = 0, t ≤ t1

ε̇trip(t) =
3

2
σ∗

5
∑

l=2

Kgj
l

(

θ(t), zl(θ(t), t)
) dφl(x)

dx

∣

∣

∣

∣

zl(θ(t),t)

żl(θ(t), t), t1 ≤ t ≤ t2

(12)
where

σ∗ = σ −
1

3
trσI (13)

is the stress deviator, Kgj
l ∈ C(R× [0, 1]) the respective Greenwood-Johnson

parameter possibly depending on θ, zl(l = 2, · · · , 5), t and φl ∈ C[0, 1] ∩
C1(0, 1) the monotone saturation function with φl(0) = 0, φl(1) = 1. Here
we assume volume conservation for the TRIP deformation, i.e.

tr(εtrip) = 0. (14)

According to (8) and to Hooke’s law

σ = Cεel, (15)

with C being the elastic tensor we obtain

σ = C(ε(u)− εth − εtrip). (16)

For isotropic materials we introduce the commonly used Lamé coefficients λ,
µ and the compression modulus K = λ+ 2

3
µ to get the expressions of stress

tensor for isotropic materials

σ = λ div uI + 2µε(u)− 3Kεth − 2µεtrip. (17)

Substituting (17) into (13), we obtain

σ∗ = (λ−K)divuI + 2µε(u)− 2µεtrip.
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In the equation of internal energy, Fourier’s law gives

q = −k∇θ, (18)

with k the thermal conductivity.
To derive a constitutive relation for the internal energy e we introduce

the Helmholtz-free energy Φ and the entropy s which are related by the
thermodynamic identity

e = Φ(εel, θ, z1, · · · , z5) + θs. (19)

With this definition, and following the ideas in [7, Section 2.3.2], we can
obtain the thermo-mechanical equation for the heating process (without any
TRIP effects) as

̺ė = ̺cεθ̇ + σ : ε̇el + LAż
1, (20)

and for the cooling process as

̺ė = ̺cεθ̇ + σ : ε̇el − (LF ż
2 + LP ż

3 + LB ż
4 + LM ż

5), (21)

where cε is the specific heat capacity and the constants LA LF , LP , LB, and
LM denote the latent heats of the Z0−austenite, austenite-ferrite, austenite-
pearlite, austenite-bainite, and austenite-martensite phase changes, respec-
tively.

Inserting the above expressions (20) and (21) into (7), and using equations
(8) and (18) we obtain the equations describing the heating process

̺cεθ̇ − div(k∇θ) = −LAż
1 + σ : ε̇th + h (22)

and the cooling process

̺cεθ̇ − div(k∇θ) = LF ż
2 + LP ż

3 + LB ż
4 + LM ż

5 + σ : (ε̇th + ε̇trip). (23)

The mechanical dissipation is given by

σ : (ε̇th + ε̇trip) = σ : ε̇th + σ : ε̇trip (24)

with (cf. (10))

σ : ε̇th

=

[(

5
∑

i=0

ziαi(θ) + (θ − θref )
5
∑

i=0

ziαi
θ

)

θ̇ + (θ − θref )
5
∑

i=0

żiαi(θ)

−
1

3

5
∑

i=0

żi
(

̺i(θref )

̺0(θref )
− 1

)

]

× trσ

(25)
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where (cf.(10), (14), (17))

trσ = 3K div u− 9K(θ − θref )
5
∑

i=0

ziαi(θ) + 3K
5
∑

i=0

zi
(

̺i(θref )

̺0(θref )
− 1

)

(26)

and

σ : ε̇trip =
3

2
|σ∗|2

5
∑

l=2

Kgj
l (θ(t), z

l(θ(t), t))
dφl(x)

dx

∣

∣

∣

∣

zl(θ(t),t)

żl(θ(t), t). (27)

Based on (17) the thermomechanical equations (6) and (23) during cooling
process can be reformulated as a coupled problem using a differential matrix
operator A in the form

A

(

u
θ

)

= R(θ, u, z, ż) (28)

with

A :=





−µ△− (λ+ µ) grad div 3K div
5
∑

i=0

ziαi(θ)PI

f1(θ, z, ż) div (̺cε + f2(θ, u, z, ż))∂t + f3(θ, u, z, ż)Pi −∇ · k∇



 ,

(29)

where the functions f1, f2 and f3 are the remainders obtained from the above
equations, the operators PI , Pi are defined as

PI(θ) := θI, (30)

Pi(θ) := θ, (31)

and R(θ, u, z, ż) is the corresponding right-hand side.
The main differences between the model presented here and the one in [7]

is our approach for the TRIP modeling based on [3] and the decomposition
of the thermal expansion in terms of density changes according to equation
(10). This decomposition makes possible the implicit coupling between the
temperature and the mechanical effects through thermal expanssion.
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3. Simulations of the quenching process for the steel 42CrMo4

This section presents the simulation setting and some results of the quench-
ing simulation applied to a gear component made of steel 42CrMo4. The
model presented in Section 2 has been implemented on the toolbox pdelib
[15] developed and maintained at WIAS-Berlin.

The simulation of the cogwheel has been performed making use of the
inherent symmetries of the geometry constructed using the parameters as
given in Table 1 and Figure 1. The simulation domain has been reduced
from the complete piece to only one fourth of a tooth, which for the 21
teeth1 means a total reduction of the simulation volume by a factor 84. The
periodic geometry used for the simulations is shown in Figure 2.

Parameter Value

Module m 2.00 [mm]
Pitchdiameter d 42.00 [mm]
Outside diameter D 47.75 [mm]

Pressure angle θ̂ 20.00 [◦]
Face width w 8.00 [mm]
Helix angle ψ 0.00 [◦]
Gear bore diameter b 16 [mm]
Gear total surface a ca. 25.00 [cm2]

Table 1: Characteristic values for the simulated cogwheel.

In order to perform a correct implementation of the component’s geome-
try and properties, appropriate boundary conditions are required for the cal-
culation of temperature, phases, and mechanical effects. The discrete system
resulting from time and FEM discretization also includes the bi-directional
coupling from temperature and mechanical deformation in the form presented
in Section 2 (cf. equations (28)–(29)).

The next parts of this section are devoted to the description of the proper
boundary conditions for the thermomechanical quenching problem, the math-
ematical weak formulation of the problem and its discretization, the material
properties used for 42CrMo4, the initial values for the simulation and finally
some numerical results on the evolution during the simulation.

1The number of teeth is defined as the ratio N = d/m.
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Figure 1: Definition of some parameters from Table 1.

3.1. Boundary conditions

In general, the thermal and mechanical boundary conditions of a domain
Ω must be independently defined. For the mechanical boundaries, the bound-
ary conditions might be set in terms of displacements, strains or stresses. The
most common case is to define boundaries with predefined displacement or
acting forces, i.e. split the mechanical boundaries into a part Γp where a
pressure p is applied onto the surface of the boundary, and a part Γu where
the deformation is fixed as û (including the case of fixed boundary). The
mechanical boundary conditions on ∂Ω = Γp ∪ Γu can be set as

σijνj = p, on ∂Γp, (32)

u = û, on ∂Γu. (33)

For the case of the gear component we are interested in, the computations
can be simplified by reducing the domain to a fourth of a tooth (cf. Figure 2).
The reduction is obtained by considering the existent workpiece symmetries
and using the corresponding constraints into the displacements’ boundary
conditions. The simulation geometry is obtained out of a single tooth from
the 21 identical teeth. From this single cog, we consider only the fourth
resulting from a radial cut from the middle of the tip towards the center of
the gear, and another cut in traversal direction to the gear, slicing it at the
half of its face width.

In this sense, outer faces in the computational domain do not necessarily
represent outer faces in the real cogwheel geometry. The different nature
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of the outer faces can be produced by considering a set of five different
boundaries to form the complete boundary of Ω as Γ = Γ1∪Γ2∪Γ3∪Γ4∪Γ5.
The symmetry planes correspond to the planes z = 0 at Γ5, y = 0 at Γ4 and
the oblique plane Γ2.

Figure 2: Computational domain Ω obtained as one fourth of a tooth.

According to Figure 2, the boundary Γ1 corresponds to the real outer
faces of the cogwheel and here we assume the boundary to be free of any
acting force on them (p is zero according to the equation (32)). Another
outer cogwheel boundary is Γ3 and we assume the component as fixed from
this side (û = (0, 0, 0) in equation (33)).

The other three boundaries correspond to inner parts of the real cogwheel
geometry and must be included as symmetric cuts in the simulation domain.

For example, for the symmetry plane corresponding to the vertical cut
at z = 0 (i.e. the boundary Γ5), the z component of the displacement must
equal zero. If we consider the existence of a neighboring domain Ω̃ forming
the symmetric counterpart of the domain Ω and sharing the boundary Γ5,
the deformation of the symmetric boundary must be equal to zero in the or-
thogonal direction to this boundary. A similar idea supports the statement
that the changes (space derivatives) in the components x and y of the de-
formation u must be also zero, as any positive (negative) value would mean
a negative (positive) value in the symmetric domain, causing the strain and
stress tensors to have singularities in form of jumps at the symmetry plane
Γ5. These two ideas for Γ5 can be written in the form uz = 0, ∇ux · ~n5 = 0
and ∇uy · ~n5 = 0, where the superscripts on the deformation variable rep-
resent its three components, i.e.u = (ux, uy, uz) and ~n5 the normal to the
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surface Γ5.
Following similar ideas for the symmetry planes Γ2 and Γ4, the complete

set of boundary conditions for the balance law of momentum (6) read























































































σ · ~n1 = 0, on Γ1

u · ~n2 = 0, on Γ2

∇uz · ~n2 = 0, on Γ2

∇(u · ~n⊥

2 ) · ~n2 = 0, on Γ2

u = 0, on Γ3

u · ~n4 = 0, on Γ4

∇ux · ~n4 = 0, on Γ4

∇uz · ~n4 = 0, on Γ4

u · ~n5 = 0, on Γ5

∇ux · ~n5 = 0, on Γ5

∇uy · ~n5 = 0, on Γ5

(34)

where each vector ~ni represents the normal to the surface Γi and ~n
⊥
2 is the

direction on the surface Γ2 which is orthogonal to both ~n2 and the z-direction.
Particularly according to our selected Cartesian coordinate system we obtain
the vectors

~n4 = (0 1 0)T , ~n5 = (0 0 − 1)T ,
~n2 = (nx

2 ny
2 0)T , ~n⊥

2 = (nx
s ny

s 0)T
(35)

with nx
2n

x
s +n

y
2n

y
s = 0. The values of the components nx

2 and ny
2 can be easily

obtained by using the value of the plane-to-plane angle between Γ2 and Γ4

which is equal to

φ =
1

2
·
360◦

d/m
≈ 8.5714◦. (36)

The boundary conditions for the heat equation are much simpler, as the
temperature is a scalar unknown and there are only two types of boundaries:
the ones which have a thermal flow during quenching and the ones considered
as symmetry planes at which the thermal flow must be assumed to be zero.
The heat equation (23) has then the boundary conditions

{

−k∇θ · ~n1 = δ(θ − θext), on Γ1

−k∇θ · ~ni = 0, on Γi(i = 2, · · · , 5)
(37)
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where θext is the temperature of the cooling solution being sprayed at the
component to quench it.

3.2. Weak formulation and Discretization

Having in mind all previous boundary conditions we introduce the weak
formulation of the problems (6) and (23):

Find θ(t) ∈ H1(Ω) and u(t) ∈ Xu with

Xu := {ϕ ∈ (H1(Ω))3; ϕ · ~n2|Γ2 = 0, ϕ · ~n4|Γ4 = 0, ϕ · ~n5|Γ5 = 0, ϕ|Γ3 = 0}
(38)

such that
∫

Ω

σ · ∇ϕdx =0,
∫

Ω

̺cεθ̇ψdx+

∫

Ω

k∇θ · ∇ψdx =

∫

Ω

(LF ż
2 + LP ż

3 + LB ż
4 + LM ż

5)ψdx

+

∫

Ω

(σ : (ε̇th + ε̇trip) + h)ψdx

(39)

for all ϕ ∈ Xu, ψ ∈ H1(Ω) and a.e. t ∈ [t1, t2).

Remark. Based on the boundary conditions (34) and the formula for
integration by parts, it is easy to verify that

∫

Ω

−(div σ) · ϕdx =

∫

Ω

σ : ε(ϕ) = 0 (40)

due to the absence of any stresses in orthogonal direction at any domain
boundary.

Allowing for variable time-step sizes let M1,M2 ∈ N be fixed, t0 = t0 <
t1 < · · · < tM1 = t1 < tM1+1 < · · · tM2 = t2 be a partition of interval
[t0, t2] and △tm = tm − tm−1. Since we consider here the cooling process
let M1 < m ≤ M2. Define zim (i = 0, · · · , 5) as an approximation of the
phases’ volume fraction at time tm. The phases zim can be calculated as
the discrete solutions of the ODE-system in (5) (this can be performed by
e.g. an explicit-Euler method on then system). Similarly, let um := u(tm)
and θm := θ(tm).
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Figure 3: Two different views of the domain discretization using tetrahedral elements.
The different boundaries are labeled according to the equations in (34).

For the spatial discretization of the PDEs we apply the Finite Element
method. We choose a conforming triangulation of Ω (cf. Figure 3) and then
use piecewise polynomial Lagrange Finite Elements φ for the definition of
the corresponding FE-space Xu

h according to Xu.
More precisely, let NΓ1 , NΓ2 , NΓ4 , NΓ5 , NΩ, NΩ/Γ denote sets of numbers

which indicate degrees of freedom (in linear case also the vertices) of Γ1,
Γ2, Γ4, Γ5, all degrees of freedom, and the interior discrete points of Ω,
respectively. Then we can write the discrete space Xu

h as the direct sum of
the five subspaces for the sets of degrees of freedom as

Xu
h := U1 ⊕ U2 ⊕ U4 ⊕ U5 ⊕ Uin (41)
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where

U1 := span











φi

0
0



 ,





0
φi

0



 ,





0
0
φi











i∈NΓ1

, (42)

U2 := span











nx
s

ny
s
φl

φl

0



 ,





0
0
φl











l∈NΓ2

, (43)

U4 := span











φj

0
0



 ,





0
0
φj











j∈NΓ4

, (44)

U5 := span











φk

0
0



 ,





0
φk

0











k∈NΓ5

, (45)

Uin := span











φs

0
0



 ,





0
φs

0



 ,





0
0
φs











s∈NΩ/Γ

. (46)

The exact solutions θm, um will be approximated as linear combinations of the
basis of Vh := span{φi}i∈NΩ

⊂ H1(Ω) and Xu
h respectively, more precisely,

θm ≈
∑

i∈NΩ

T i
mφi, (47)

um ≈
∑

i∈NΩ



U1,i
m





φi

0
0



+ U2,i
m





0
φi

0



+ U3,i
m





0
0
φi







 (48)

where

U1,i
m = 0 for all i ∈ NΓ3 , (49)

U2,i
m = 0 for all i ∈ NΓ3 ∪NΓ4 , (50)

U3,i
m = 0 for all i ∈ NΓ3 ∪NΓ5 , (51)

n1
sU

2,i
m = n2

sU
1,i
m for all i ∈ NΓ2 . (52)

In order to get a numerical solution, we introduce the time-discrete version
of the system (28)–(29) as

Am−1

(

um
θm

)

= Rm−1, (53)
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where

Am−1 =











−µ△− (λ+ µ) grad div 3K div
5
∑

i=0

zim−1α
i(θm−1)PI

f1m−1 div (̺m−1cεm−1 + f2m−1)
1

△tm
+ f3m−1Pi −∇ · km−1∇











.

(54)

the right hand side is

Rm−1 = R

(

θm−1, um−1, zm,
zm − zm−1

∆tm

)

+

(

0

(̺m−1cεm−1 + f2m−1)
1

∆tm
θm+1

)

,

(55)
and the phase fractions correspond to the previously computed values using
the temperature evolution up to the previous time step.

Let Tm,Um be the corresponding coefficient vectors of (47)–(48), then
applying Galerkin’s method to the time discrete system (53)–(55) we can
assemble the global matrix Am−1 using boundary conditions (34), (37) and
(49)–(52) to obtain a set of linear equations

Am−1

(

Um

Tm

)

= Rm−1. (56)

The solution of the equations for the phase fractions as well as the coupled
system of equations (56) give the values of the discretized temperature and
the deformation at the time tm. This is done for all time steps in the complete
time interval [t1, t2].

3.3. Material parameters for 42CrMo4

The numerical simulations using the geometry in Figure 3 are carried out
on a cogwheel made of steel 42CrMo4, which has a chemical composition
according to Table 2.

C Si Mn P S Cr Ni Mo Sn Al
0.431 0.301 0.707 0.019 0.13 1.003 0.098 0.197 0.013 0.021

Table 2: Chemical composition of the steel 42CrMo4 (taken from [11]).

All material parameters throughout this paper have been provided by the
IWT (Stiftung Institut für Werkstoffstechnik Bremen, Germany) and some
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of them are taken from the reference [11] if not specified otherwise. The
following list presents all used parameters as implemented in the numerical
simulation:

• Reference temperature: θref = 20◦C

• External temperature: θext = 20◦C

• Reference density, [kg/m3]:

̺0ref ̺1ref ̺2ref ̺3ref ̺4ref ̺5ref
7820.7 8037 7825 7825 7782 7783

The reference density of the initial phases’ mixture z0 has been obtained
by assuming a composition of the material with 90% ferrite-pearlite and
10% bainite volume fractions. These fractions are used as weights to
obtain ̺0ref =

∑5
i=1 ̺

i
ref . The resulting mixed density coincides with

the measured density for our steel 42CrMo4.

• Thermal expansion coefficient [10−6 K−1]:

α0(θ) α1(θ) α2(θ) α3(θ) α4(θ) α5(θ)
14.5 23.3 14.5 14.5 14.5 14.5

• Specific heat capacity cε(θ) [J/kgK]:

This material constant has been approximated to experimental data by
one cubic polynomial for low temperatures, a linear polynomial for high
temperatures, and a series of linear interpolations for the intermediate
temperatures as

cε(θ) =







aθ̃3 + bθ̃2 + cθ̃ + d for θ ≤ 706.8◦C,

I(θ̃) for 706.8◦C < θ < 786.8◦C,

eθ̃ + f for θ ≥ 786.8◦C,

where θ̃ represents the non-dimensional temperature θ̃ = θ/◦C. The
polynomial coefficients are given as
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Parameter Value [J/KgK]

a 1.10 E-8
b 3.45 E-4
c 4.94 E-1
d 4.00 E+2
e 1.55 E-1
f 4.73 E+2

and I represents the linear interpolation operator for the intermediate
temperatures with the points

θ̃ 706.8 786.8
cε [J/kgK] 973 595

• Heat conductivity, [W/mK]

k(θ, z) =







(

−0.000024θ̃2 − 0.000978θ̃ + 43.275917
)

W
mK for θ < 810◦C,

(

0.008148θ̃ + 20.211620
)

W
mK for 810◦C ≤ θ.

• Lamé coefficients [kg/m s2]:

λ = 1.07× 1011, µ = 6.88× 1010

• Heat transfer coefficient: δ = 12× 103 W
m2K

• Parameters for the phase transitions according to equations (1) and
(5), mainly taken from [11].

Critical temperatures for the activation of phase transformations

FPs FPf
Bs Bf Ms Mf

750◦C 580◦C 600◦C 140◦C 340◦C 140◦C

Parameter b(θ) = 10c+c1θ+c2θ2+c3θ3 where

c c1 c2 c3
-309.075 1.45 -0.00227 0.000001175

Parameter a(θ) = d+ d1θ + d2θ
2 + d3θ

3 where

d d1 d2 d3
37.44 -0.238 0.000474 -0.000000295
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Parameter b̃(θ) = 10c̃+c̃1θ+c̃2θ2+c̃3θ3 where

c̃ c̃1 c̃2 c̃3
-7.763 0.0168 0.000001078 -0.0000000253

Parameter ã(θ) = d̃+ d̃1θ + d̃2θ
2 + d̃3θ

3 where

d̃ d̃1 d̃2 d̃3
41.365 -0.222 0.000398 -0.000000232

Parameter n = 2.5

• Latent heat [MJ/m3]:

LA LF LP LB LM

652 652 652 652 326

• TRIP parameters according to equation (12):

Greenwood-Johnson Parameter

Kgj
l = 5.2 · 10−11 Pa−1 (l = 2, · · · , 5).

Saturation function: Identity function.

3.4. Initial values

The initial values z1(t1), u(t1), θ(t1) to use in the simulation of the cooling
process need to be obtained experimentally or through a simulation of the
heating process. The latter can be performed by solving the coupled system
of equations (5), (6), and (22) with an appropriate external heat source
h. In the case of induction hardening, this thermal source consists of the
contribution of the Joule heat.

Since we consider here only the simulation of the quenching process, we
use initial values for z1(t1) and θ(t1) taken from a heating simulation cali-
brated for the inductive heating of the same component2.

Figure 4 shows the values of temperature on the three-dimensional sim-
ulation domain (cf. Figures 2 and 3). The temperature corresponds to the
final stage after inductive heat with high frequency has been introduced into
the workpiece. The shown deformation is an effect of thermal expansion

2The simulations presented here make use of the heating results provided by our cooper-
ation partner WIAS. The provided data include the component temperature and austenite
profile.
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Figure 4: Initial temperature θ(t1) plotted on the deformed geometry. The deformation
(scaled by a factor of 40) results from the thermal expansion due to temperature increase.

through temperature change with respect to the reference temperature. The
deformation in the piece has been scaled by a factor of 40 to improve its
visualization.

Figure 5: Initial austenite phase fraction z1(t1) plotted on the deformed geometry.

Figure 5 shows the initial state of austenite, being transformed from z0

during the prior heating process. The red colored area represents the volume
formed by 100% austenite and its shape depends on the parameters during
the inductive heating. Given the temperature and initial state of the different
phases, the equations (6) and (12) can be solved to obtain the corresponding
deformation, strain, and stress. Figure 6 shows the deformed geometry and
the norm of the deformation (color scale). The deformation has its largest
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Figure 6: Computed norm of the initial deformation ||u(t1)||L2(Ω).

values in the area where the temperature has the largest values as a direct
effect of the thermal expansion.

3.5. Numerical results

The simulation based on the material data and initial values from Sections
3.3 and 3.4 computes the discrete solutions using the system in equation (56).
Table 3 shows the computational expenses to get the results presented below,
using the tetrahedral discretization of the geometry as displayed in Figure 3.

Processor: Intel Core i7-2600, 3.4 GHz
Installed RAM: 16.0GB
Total computation time: ca. 26 h
Mesh nodes: 6514
Tetrahedral elements 32246
Number of time steps: 11000

Table 3: Computational expenses.

For the quenching simulation, it is clear that the temperature should
decrease, producing changes also in the deformation and the phases. Figure
7 shows the progressive temperature values on the side view of the deformed
geometries for five different simulated times. In the plots from Figure 7 it
can be observed how the very hot areas cool down in less than one second,
getting homogeneous values close to the reference temperature for an elapsed
time of 2.4 seconds.
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The contraction of the component can also be observed in these plots. The
strong deformation on the outer areas of the cogwheel disappears and leaves
some deformed areas close to the outer corners of the component. Although
at the beginning the workpiece geometry has a rather homogeneous expanded
volume at the tooth tip due to the high temperature, the final shape presents
some more localized distortion effects, created by the change in densities due
to phase transformations and the inelastic TRIP effects.

From the practitioner’s point of view, the most important transformation
is the change from austenite into martensite, as the martensitic content will
determine the hardness of the component after the heat treatment process is
finished.

This developement is presented in Figure 8, where the evolutions of both
phase fractions are presented in parallel. In these plots, it can be observed

Figure 7: Temperature evolution for five different simulation times: (a) t = 0 (initial
state), (b) t = 0.24s, (c) t = 0.84s, (d) t = 2.4s, (e) t = 11s.
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how the austenite content gradually disappears, first in the areas close to the
component corners (these are also the areas with the fastest heat outflow)
and later in the not so close areas. The opposite occurs with the martensitic
phase, being inexistent at the beginning and becoming the dominant phase in
the areas close to the corners of the component. Note that all the times shown
in Figure 8 correspond to the first second of the quenching process. After
this time nothing else is changed, as the minimal activation temperature of
martensite has already been reached (cf. equation (5)).

The final deformation of the domain corresponds to the typical volume
growth in areas where the austenite phase is transformed into martensite,
changing the density to a lower value (cf. material parameters in Section
3.3) and producing the increment in volume.

Much less important is the evolution of ferrite, pearlite and bainite, as
they do not appear in such a fast cooling process. The results in Figure 9 con-
firm this, showing the final states for these phase fractions. They are all far
from reaching any significant amount, so that they can be considered as non

Figure 8: Comparison of austenite and martensite evolutions at different simulation times:
(a) t = 0 (initial state), (b) t = 0.24s, (c) t = 0.38s, (d) t = 0.5s, (e) t = 0.98s.
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existent. Their evolution might become important for different temperature
evolutions and we present them here only for completeness.

Figure 9: Volume fraction of ferrite+pearlite (left) and bainite (right) at simulation time
t = 11s (end state). The maximal volume fracion of ferrite+pearlite is 0.041% and of
bainite 0.185%.

Figure 10: Norm of displacement at t = 11s (end state) for the simulation including TRIP
simulation (left) and the simulation without it (right).

One important issue during the implementation of the simulation was
whether the TRIP effect significantly influences the results or not. For this
reason, the simulation was carried out two times, with and without consid-
ering this part of the model.
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Figure 11: Equivalent (von Mises) stress at t = 11s (end state) for the simulation including
TRIP simulation (left) and the simulation without it (right).

The results of deformation and stress are shown in Figures 10 and 11.
It is obvious that both the final deformation and the stress present different
results in the simulations. Regarding the von Mises stress, the model with
TRIP seems to have a smaller area affected by large stresses. The stress
distributions at the end of the simulations are also quantitatively different,
giving maximum values of 461 MPa and 816 MPa for the models with and
without TRIP, respectively. Note that the stress value for the model without
TRIP can be by far over the yield stress for the 42CrMo4 steel, with values
around the 600 MPa.

4. Conclusions

A thermomechanical model for induction surface hardening including oc-
curring phase transitions that produce the hardening effect has been inves-
tigated. In the simulations of cooling process presented here, owing to high
cooling rates most of the austenite is transformed to martensite and the for-
mations of ferrit, perlit and bainite are negligible (always less than 0.2%).
Concerning the effect of TRIP, a comparison has shown that the consider-
ation of TRIP produces significant differences in the results and therefore
cannot be neglected.

Although the differences in the models with and without TRIP produce
different results, it is still not clear if the TRIP is the only inelastic term to
be considered, as also the use of a model for classical plasticity might be of
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interest.
Since only the cooling process has been simulated, the consideration of

efficient solvers for the heating process, i.e. coupled problem of Maxwell’s
equation, heat equation and deformation behavior under consideration of
phase transformations is an important direction of further research. An op-
tion would be to obtain a heat source from the electromagnetic simulation
and then use it for a complete thermomechanical simulation where the heat-
ing and quenching processes will be computed together. The simulation of
the heating process would also allow the consideration of inelastic effects ap-
pearing during the temperature increase, either through phase changes or
classical plasticity effects.
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Symbols

θ temperature
θref reference temperature
θext external temperature
̺iref density of zi(i = 0, . . . , 5) at θref
̺(θ, z) density
cε(θ, z) specific heat
k(θ, z) heat conductivity
q heat flux
h heat source
δ(θ, z) heat transfer coefficient
u displacement
ε(u) = 1

2
(∇u+∇uT ) strain tensor

εel elastic strain
εth thermal strain
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εtrip TRIP strain
σ stress tensor
αi(θ) thermal expansion coefficient of phase zi

λ, µ Lamé coefficients
K = λ+ 2

3
µ bulk modulus

z = (z0, z1, . . . , z5)T vector of phases
LA z0–austenite latent heat
LF austenite–ferrite latent heat
LP austenite–pearlite latent heat
LB austenite–bainite latent heat
LM austenite–martensite latent heat
FPs ferrite and pearlite start temperature
FPf ferrite and pearlite end temperature
Bs bainite start temperature
Bf bainite end temperature
Ms martensite start temperature
Mf martensite end temperature

Kgj
l Greenwood-Johnson parameter
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[13] R. Schröder: Untersuchung zur Spannungs- und Eigenspannungsausbil-
dung beim Abschrecken von Stahlzylindern. Dissertation, Universität Karl-
sruhe, 1985.
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