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Abstract

This work deals with mathematical modeling of processes involved in the quenching process of
steel. It is the aim to provide a comprehensive model of thermo-elasto-plasticity with phase
transitions in steel for small deformations, which integrates the complex behavior of steel
materials in general models of thermo-elasto-plasticity and deals with the modeling of the
mathematical problem of linear thermo-elasto-plasticity, taking into account phase transitions
and transformation-induced plasticity. Moreover, the qualitative behavior of the solution is
illustrated for the Jominy-End-Quench-Test in a simple numerical simulation.

Kurzfassung

Diese Arbeit befasst sich mit der mathematischen Modellierung von Abschreckprozessen bei
Stahlbauteilen. Das Ziel ist es, ein Gesamtmodell für kleine Deformationen bereitzustellen,
welches das komplexe physikalische Materialverhalten von Stahl in allgemeinere Modelle der
Thermo-Elasto-Plastizität einbindet und somit das mathematische Problem der linearen Thermo-
Elasto-Plastizität unter Berücksichtigung von Phasentransformationen und Umwandlungsplas-
tizität beschreibt. Darüberhinaus ist das qualitative Lösungsverhalten für ein Beispielproblem
anhand des Jominy-End-Abschreck-Tests dargestellt.
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1 Introduction

Today, steel is one of the most common materials in industry. The world steel production,
with more than 1.3 billion tons produced annually, takes the second place behind cement.
Steel and iron materials are used in various areas, very often with high quality requirements
according geometry, structure, surface finish, hardness and other properties of the components
for questions of production and processing of modern steels. This creates a major challenge for
the prediction of the material behavior, i.e. stress, strain and phase composition.
The modeling and the simulation of essential effects can help to gain a deeper understanding
of the material behavior. An important goal is to minimize the distortion at the end of the
production process, i.e. the unwanted or undesirable deviation from the norm geometry.
Controlling distortion in the manufacturing process, especially in heat treatment processes of
steel, remains a complex problem even today for the significant distortion potential of steel
workpieces, and the costs of compensating distortion failures of wrought component parts are
considerably large. Therefore it is a major interest to understand the causes of distortion in
every production step in detail, cf. [HKLM02, WBBD12].
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1.1 Steel

Steel is an iron-carbon alloy with a carbon content between 0.002% and 2.1% by weight. It is
(in the solid state) a polycrystalline material. Macroscopic phenomena in steel are the possible
solid-solid phase transformations, which are strongly influenced by the history of the temperature
and the carbon content (cf. e.g. [Dah93, WW04, BT06]). Phase transitions, which occur during
the heat treatment of steel materials, e.g. heating and quenching, are connected with volume
changes and heat effects. This results in a time- and temperature-dependent stress distribution
and deformation, which are crucial for the result of heat treatment processes.
Another important phenomenon is the transformation-induced plasticity (TRIP) with appears
in connection with phase transformations. TRIP already occurs under deviatoric stresses and
leads to permanent deformation at relatively low stress, even if the yield stress of the softer
phase is not reached. This effect cannot be explained by classical plasticity at the macroscopic
level of modeling (cf. e.g. [Mit87, FST96, Fis97, FRW+00, DL06, DLZ06]).

1.2 Heat treatment processes

The condition in which workpieces and tools made of steel are processed fulfills rarely the needs
arising from the intended purpose. Therefore, it is necessary to change the condition of the
steel material, e.g. by heat treatment, in order to modify the material properties w.r.t. the
different conditions needed in the specific application (cf. e.g. [Hor92, Koh94] for details). Such
hardening treatments set up large internal strains in the metal and cause distortion of steel
components during the production process.

1.3 Literature review: Coupled models for material behavior of steel

Some references that exist associated with the problem of interest are given afterwards. More
detailed information are given in [Boe12a].
For coupled models dealing with the material behavior of steel there exists literature in a smaller
scale. Problems of thermo-elasticity are treated in [Wei09], modeling of elasto-plastic problems
can be found in [Pal98, Lub02]. In connection with phase transitions a thermo-plastic problem is
discussed in [DB04a] and the coupling with an elasto-plastic problem can be found in [DB04b]. In
[IW85] stress, temperature and phase transitions are coupled. TRIP and plasticity are considered
in [TP06]. Coupled models of thermo-elasto-plasticity with phase transitions and TRIP are
discussed in [WB03, WBS05, WBT11] for small deformations. An important contribution to the
modeling of thermo-elasto-plasticity with phase transitions and TRIP of the material behavior
of steel and the basis of this work are [WBH08, WBMS11]. In [MWSB12] a corresponding
model is formulated within a thermodynamic framework at large strains. Coupled models that
neglect the classical plasticity are discussed in e.g. [WBS04, WB06, WBS06, WBB07]. For such
models dimensional analysis (cf. [WBF08]), carbon diffusion (cf. [WABM06]) and creep (cf.
[WB10, BWD+11]) are investigated.

1.4 Scope

This work is concerned with mathematical modeling of thermo-elasto-plasticity with phase
transitions in steel of processes involved in the quenching process of steel workpieces. Therefore,
it is positioned in the overlap of two scientific disciplines: applied mathematics and materials
science. The considered physical processes are heat conduction, phase transformations, thermo-
elasticity, classical plasticity and TRIP.
Stress- and strain-dependent phase transformations, TRIP and its interactions with classical
plasticity are important phenomena of both theoretical and practical interest in the material
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behavior, as they may cause distortion of steel work-pieces. Therefore the idea came up to
integrate the complex behavior of steel materials (especially the phase transformations and
TRIP) in general models of thermo-elasto-plasticity as a prototypical example for heat treatment
processes of steel components (cf. [WBH08, WBMS11] for instance). The steel is assumed as a
co-existing mixture of its phases (or components), while diffusion processes are not considered
in this work. Usually, diffusion of the phases is not designated in macroscopic models and
the (macroscopic) carbon diffusion is primarily interesting in order to investigate special heat
treatment processes, like carburizing (or carbonization, cf. [Lie09]). In this case, the model has
to be extended by adding an equation describing the carbon concentration (cf. [WABM06] for
an ansatz).
The main objective of this work is the formulation of a (mathematical) model of TRIP and
their interaction with classical plasticity in the framework of small deformations. To sum up,
the results provide a theoretical basis for further mathematical investigation or the efficient
implementation of numerical algorithms suitable for real-world applications.

1.5 Outline

After the introduction in the first section, the modeling and the simulation are contained in
sec. 2 and sec. 3, followed by a discussion and outlook in the last section. In sec. 1, some
citations for well-known models for material behavior of steel are provided. The aim of sec. 2
is to formulate the model of linear thermo-elasto-plasticity with phase transitions and TRIP,
describing the material behavior of steel in the context of macroscopic continuum mechanics and
to discuss the capabilities. Due to the possible interaction (coupling) of transformation-induced
and classical plasticity, the usual approach in plasticity without phase transformations has to
be modified substantially. Numerical simulations of the fully coupled problem are illustrated in
sec. 3 via the Jominy-End-Quench-Test.

2 Modeling of material behavior of steel

This section deals with the formulation of a complex (macroscopic) model of the material
behavior of steel including specific phenomena like stress-dependent phase transitions, TRIP
and the possible interaction with classical plasticity developed in [WBH08, WBMS11] for small
deformations.

2.1 Governing equations

A material body will be identified with its reference configuration Ω ⊂ R
3. In the framework of

small deformations we have the well-known balance equations for linear momentum and energy:

ρ0
∂2u

∂t2
− div(σ) = f ,(1)

ρ0
∂e

∂t
+ div(q) = σ :

∂ε

∂t
+ r.(2)

Moreover, the second law of thermodynamics is applied in the form of the Clausius-Duhem
inequality:

−ρ0
∂ψ

∂t
− ρ0η

∂θ

∂t
+ σ :

∂ε

∂t
− 1

θ
q · ∇θ ≥ 0.(3)

The relations (1) – (3) have to be fulfilled in the space-time domain Ω×]0, T [, T ∈ R. The
notations are standard: ρ0 – bulk density in the reference configuration, i.e. for t = 0, u –
displacement vector, ε – (linearized) Green strain tensor, θ – absolute temperature, σ – Cauchy
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stress tensor, f – volume density of external forces, e – mass density of internal energy, q – heat
flux, r – volume density of heat supply, ψ – mass density of free (or Helmholtz) energy, η – mass
density of entropy. Note the relations:

ε = ε(u) :=
1

2

(

∇u+∇uT
)

, u = (u1, u2, u3)
T and(4)

ψ := e− θη.(5)

2.2 Phase transitions

The evolution of phase fractions is given by the ODEs

∂pi
∂t

= γi
(

p, θ,
∂θ

∂t
,σ, ξ

)

(i = 1, . . . ,m) (m ≥ 2)(6)

In general, the phase evolution may depend on internal variables labeled by ξ. Here, p denotes
(p1, . . . , pm). Moreover, the phase (mass) fractions pi of the ith phase (i = 1, . . . ,m) have to
fulfill the subsequent balance and non-negativity relations

m
∑

i=1

pi = 1, pi ≥ 0 for i = 1, . . . ,m(7)

which implies
∑m

i=1 γi = 0. More detailed information are given in sec. 2.10.

2.3 Decomposition of the strain tensor

As usual in the theory of small deformations (using geometric linearization), the linearized
Green strain tensor ε is decomposed into the following three components

ε = εte + εtrip + εcp,(8)

where εte – thermoelastic strain (including (isotropic) density variations due to temperature
changes and phase transformations), εtrip – (non-isotropic) strain due to TRIP and εcp –
strain due to (classical) plasticity. Because of the two mechanisms for plasticity (interaction
between classical plasticity and TRIP), the considered model is an concrete example of a so-
called two-mechanism model (cf. [WT08, WBT10, Säı11, WBT11] for multi-mechanism models).
Sometimes, εte is also split up into a pure elastic part, a pure thermal part and a part only due to
phase changes. Viscosity and creep effects are not taken into account. In principal, they could be
considered analogously with some modifications (cf. e.g. [WB10, BWD+11, KBW12, WBBK12]).
As usual, the inelastic strains are assumed to be volume-preserving, i.e.

tr(εtrip) = 0 =⇒ εtrip = ε∗trip and tr(εcp) = 0 =⇒ εcp = ε∗cp.(9)

We remark that classical plasticity and TRIP act by the stress deviator on the deformation.
For later on, the accumulated plastic and TRIP strain are given via:

scp :=

∫ t

0

√

2

3

∂εcp
∂τ

:
∂εcp
∂τ

dτ and strip :=

∫ t

0

√

2

3

∂εtrip
∂τ

:
∂εtrip
∂τ

dτ.(10)
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2.4 Thermo-elasticity relation

The material law (11) is a generalization of the so-called Duhamel-Neumann’s law (or generalized
Hooke’s law) of the classical (linear) thermo-elasticity for isotropic bodies, cf. e.g. [WBH08,
WBMS11]. The last term in (11) takes the density changes as a result of phase transitions
into account. In order to separate this part from the thermal expansion, the phase densities
appear at the initial temperature. The stress tensor σ and the thermoelastic part εte of the
strain tensor are connected by the law of thermo-elasticity taking density changes due to phase
transformations into account:

σ = 2µε∗te +Ktr(εte)Id− 3Kα (θ − θ0) Id−K
m
∑

i=1

(

ρ0
ρi(θ0)

− 1

)

piId,(11)

where µ – shear modulus, K – compression (bulk) modulus, Kα := Kα – modulus taking
compression and linear heat-dilatation of the bulk material into account, ρi(θ0) – density of the
ith phase phase at initial temperature θ0, i.e. at t = 0. The deviator ε∗te := εte − 1

3tr(εte)Id can
be written as ε∗te = ε∗ − εtrip − εcp, using (8). Alternatively, the last two terms in (11) may be
written as a sum

1

3

ρ0 − ρ(θ)

ρ0
Id = α (θ − θ0) Id +

1

3

ρ0 − ρ(θ0)

ρ0
Id,(12)

where ρ(θ) – current density related to the current temperature using (7) and a mixture rule for
density, cf. [WBD03]. The stress in (11) can be alternatively defined by using Young’s modulus
and Poisson’s ratio or the Lamé constants instead of using bulk and shear modulus. We have

λ := K − 2µ

3
, ν :=

3K − 2µ

2(3K + µ)
, E :=

9Kµ

3K + µ
,(13)

where λ – Lamé’s first coefficient, ν – Poission’s ration and E – Young’s modulus.

2.5 Plasticity

Using the von Mises criterion (cf. [LC90, Lem01] for generalizations), the material behavior is
constrained by

F (σ,Xcp, R0, R) :=

√

3

2

(

σ∗ −X∗

cp

)

:
(

σ∗ −X∗

cp

)

− (R0 +R) ≤ 0,(14)

which is a restriction on the deviator of the effective stress σ∗−X∗

cp. The notations are: F – yield
function, σ – stress deviator, Xcp – back-stress associated with plasticity (with tr(Xcp) = 0, cf.
e.g. [WBT10] for details), R0 – initial radius of the yield sphere in the stress space (or initial
yield stress), R – its possible increment due to isotropic hardening. The evolution of the plastic
strain εcp is governed by the flow rule:

∂εcp
∂t

= Λ
(

σ∗ −X∗

cp

)

,(15)

where the plastic multiplier Λ has to fulfill

Λ = 0, if F (σ,Xcp, R0, R) < 0 and(16)

Λ ≥ 0, if F (σ,Xcp, R0, R) = 0 (yield condition).(17)

Thus, plastic deformation is only possible, if the yield condition (17) is fulfilled. The relation
(15) – (17) is equivalent to a variational inequality, cf. sec. 2.12.
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2.6 Transformation-induced plasticity (TRIP)

Phase transformations under non-vanishing deviatoric (non-isotropic) stress yield a permanent
deviatoric deformation which cannot be described by classical plasticity at the macroscopic level.
It is assumed that TRIP has no yield condition and that its evolution can be described by

∂εtrip
∂t

= b
(

σ∗ −X∗

trip

)

,(18)

where Xtrip – back-stress associated with TRIP (with tr(Xcp) = 0, cf. e.g. [WBT10] for details)
and b ≥ 0 depends essentially on the phase evolution. One proposal for TRIP in the multi-phase
case (based on the Franitza-Mitter-Leblond ansatz, cf. e.g. [WBS09]) is:

b =
3

2

m
∑

i=1

κi
∂φi
∂pi

(pi)max

{

∂pi
∂t
, 0

}

(19)

where κi – Greenwood-Johnson parameter (may depend on temperature and stress direction, cf.
e.g. [WBH08]) and φi ∈ C0,1([0, 1]) ∩ C1(]0, 1[) – saturation function of the ith phase satisfying

κi ≥ 0, φ(0) = 0, φ(1) = 1,
∂φi
∂pi

(p) ≥ 0 f.a. 0 < p < 1.(20)

The function φi describes the dependence of the transformed phase fraction pi on the strain due
to TRIP. Cf. sec. 2.11 for an equivalent formulation of (18).

Remark 1 (Proposals for saturation functions). There are various proposals for saturation
functions in the literature (cf. [WBDL03]), partially based on experiments, partially derived
from theoretical considerations:

φ(p) = p (Tanaka),

φ(p) = p(2− p) (Desalos, Denis),

φ(p) = p(1− ln(p)) (Leblond),

φ(p) = p(3− 2
√
p) (Abrassart).

2.7 Isotropic and kinematic hardening

For further investigations, it is very useful to get more information about the isotropic hardening
variable R. The following ansatz is suggested in [WBH08, WBMS11]:

R(t) = γcp

(

scp(t)−
∫ t

0

βcp
γcp

R
∂scp
∂s

(s) ds

)

(21)

as well as the linear ODE (differentiating (21))

∂R

∂t
= γcp

∂scp
∂t

−
(

β
∂scp
∂t

−
∂γcp
∂t

γcp

)

R.(22)

Clearly, the solution of the ODE (22) (for the initial value R(0) = 0) reads as

R(t) = γcp

∫ t

0

∂scp
∂s

exp

(

−
∫ s

0
βcp

∂scp
∂τ

dτ

)

ds.(23)

Moreover, one gets the following estimate

0 ≤ R = R(t) ≤ γcp
min(βcp)

(

1− exp
(

−min(βcp)scp
)

)

.(24)
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In general, the parameters βcp and γcp depend on the temperature and the phase fractions.

Therefore, R is a slope of scp for constant βcp and γcp, i.e. R =
γcp
βcp

(

1− exp
(

− βcpscp
)

)

. The

curve R has its decline γcp and its saturation value is
γcp
βcp

. Besides this, R is an increasing func-

tion of scp, as one expects in isotropic hardening (cf. [WBH08]): 0 ≤ R ≤ γcp
βcp

, 0 ≤ ∂R
∂t

≤ γcp
∂scp
∂t

.

The general model leads to the following equations for the back-stresses, cf. [WBH08, WBMS11]:

Xcp(t) = ccp

(

εcp −
∫ t

0

acp
ccp

Xcp
∂scp
∂s

ds

)

+ cint

(

εtrip −
∫ t

0

atrip
ctrip

Xtrip
∂strip
∂s

ds

)

,(25)

Xtrip(t) = cint

(

εcp −
∫ t

0

acp
ccp

Xcp
∂scp
∂s

ds

)

+ ctrip

(

εtrip −
∫ t

0

atrip
ctrip

Xtrip
∂strip
∂s

ds

)

.(26)

These relations may be understood as generalizations of the well-known Armstrong-Frederick
equations in plasticity (cf. [LC90, JK96, Hau02]). For a constant coefficient ccp and without
TRIP, from (25) follows the classical Armstrong-Frederick equation for non-linear hardening:

∂Xcp

∂t
= ccp

∂εcp
∂t

− acpXcp
∂scp
∂t

.(27)

In a similar manner, for constant ctrip and without classical plasticity, from (26) follows an
analogon for TRIP

∂Xtrip

∂t
= ctrip

∂εtrip
∂t

− atripXtrip
∂strip
∂t

.(28)

For a given evolution of θ, p, εcp and εtrip (and therefore scp and strip), (25) and (26) are
a coupled system of Volterra integral equations with a unique solution (Xcp, Xtrip) (in the
class of continuous functions under suitable conditions). It is well-known, that in the case of
purely classical plasticity the Armstrong-Frederick equation (27) leads to a bounded back-stress
for given εcp (saturation effect, cf. e.g. [WBH08]). A similar result for the case of coupled
back-stresses Xcp and Xtrip is not obvious. For constant ccp, cint, ctrip, the differentiation of
(25) and (26) yields the following coupled system of ODEs

∂Xcp

∂t
= ccp

∂εcp
∂t

− acpXcp
∂scp
∂t

+ cint
∂εtrip
∂t

− cintatrip
ctrip

Xtrip
∂strip
∂t

,(29)

∂Xtrip

∂t
= cint

∂εcp
∂t

− cintacp
ccp

Xcp
∂scp
∂t

+ ctrip
∂εtrip
∂t

− atripXtrip
∂strip
∂t

.(30)

This linear system of ODEs has a unique solution (for given evolution of εcp and εtrip). Using
the results from the theory of ODEs, one obtains the following results:

Lemma 1 (Boundedness of the back-stresses). Under the assumptions ccp, cint, ctrip, acp, atrip
are constant, acp, atrip > 0 and c2int < ccp ctrip the back-stresses are bounded

|Xcp(x, t)| ≤ c <∞, |Xtrip(x, t)| ≤ c <∞ f.a. (x, t) ∈ Ω×]0, T [

and

‖σ∗ −X∗

cp‖ ≤ c <∞, ‖σ∗‖ ≤ c <∞, ‖σ∗ −X∗

trip‖ ≤ c <∞, ‖ε∗te‖ ≤ c <∞.

These results can also be obtained in case of general acp, atrip, ccp, cint and ctrip. The
global boundedness of Xcp, Xtrip, R, σ

∗ and ε∗te (uniformly w.r.t. εcp, εtrip, scp and strip) is
an important consequence of the general nonlinear hardening. In contrast to this, the case
acp = atrip = βcp = 0 leads to a linear relation between Xcp, Xtrip, εcp, εtrip, R and scp. Thus,
the model has an unbounded growth of the hardening variables for unbounded growing strains
in this case. Moreover, the stress deviator might be growing unbounded, too.
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Remark 2. The hardening variable R and the back-stresses Xcp and Xtrip can be obtained as
internal variables in a thermo-mechanical framework. R is a scalar having the character of
a stress. The quantities Xcp, Xtrip, and R may be considered as thermodynamic forces (cf.
[WBH08] for details).

2.8 Initial and boundary conditions

Finally, the following initial conditions f.a. x in Ω are assumed:

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), θ(x, 0) = θ0(x),(31)

εtrip(x, 0) = 0, εcp(x, 0) = 0, ξ(x, 0) = ξ0(x),(32)

p(x, 0) = p0(x)(33)

with

m
∑

i=1

p0i = 1, p0i ≥ 0 for i = 1, . . . ,m.(34)

Furthermore, boundary conditions for u and θ have to be added. There are mixed boundary
conditions for u assumed:

u = 0 f.a. points in Γ1, σ · νΓ2
= 0 f.a. points in Γ2,(35)

where Γ1 and Γ2 are mutually disjoint parts of the boundary of Ω s.t. meas(Γ1) > 0 and Γ1 is
closed and νΓ2

is the outward unit normal vector on Γ2 (this case without any boundary load is
important e.g. in heat treatment processes, where no load is applied on the surface). Let the
temperature fulfill the Robin condition

−λθ
∂θ

∂νΓ
= δ (θ − θΓ) on ∂Ω×]0, T [,(36)

where λθ – heat conductivity, δ – heat-exchange coefficient, θΓ – temperature of the surrounding
medium and νΓ – outward unit normal vector to the boundary ∂Ω.

2.9 Complete model of material behavior

Modeling the relevant interactions between temperature, mechanical behavior and phase tran-
sitions leads to an initial boundary value problem (IBVP) for a system of coupled nonlinear
partial and ordinary differential equations and inequalities for the time and space-dependent
temperature, displacement and phase fractions. Summarizing all the model equations needed to
describe the evolution of displacement, temperature and phase fractions leads to the following
IBVP: Find the displacement u : Ω× [0, T [→ R

3 s.t.

ρ0
∂2u

∂t2
− 2 div

(

µε(u)
)

− grad
(

λdiv(u)
)

+ 3grad
(

Kα(θ − θ0)
)

+

+ grad

(

K
m
∑

i=1

(

ρ0
ρi(θ0)

− 1

)

pi

)

+ 2div
(

µεtrip
)

+ 2div
(

µεcp
)

= f in Ω×]0, T [,

the temperature θ : Ω× [0, T [→ R s.t.

ρ0ce
∂θ

∂t
− div

(

λθ∇θ
)

= (σ −Xcp) :
∂εcp
∂t

+ (σ −Xtrip) :
∂εtrip
∂t

+

9



+ θ
∂σ

∂θ
:
∂εte
∂t

+ θ
∂Xcp

∂θ
:
∂εcp
∂t

+ θ
∂Xtrip

∂θ
:
∂εtrip
∂t

+ ρ0

m
∑

i=2

Li
∂pi
∂t

+ r in Ω×]0, T [

and the phase fractions p : Ω× [0, T [→ R
m s.t.

∂p

∂t
= γ

(

p, θ,
∂θ

∂t
, tr(σ),σ∗ : σ∗

)

in Ω×]0, T [

including the relations (4), (8), (14) in combination with (23) and

∂εcp
∂t

= Λ
(

σ∗ −X∗

cp

)

, Λ ≥ 0 for F = 0 and Λ = 0 for F < 0 in Ω×]0, T [,

∂εtrip
∂t

=
3

2

(

σ∗ −X∗

trip

)

m
∑

i=1

κi
∂φi
∂pi

(pi)max

{

∂pi
∂t
, 0

}

in Ω×]0, T [,

∂Xcp

∂t
= ccp

∂εcp
∂t

− acpXcp
∂scp
∂t

+ cint
∂εtrip
∂t

− cintatrip
ctrip

Xtrip
∂strip
∂t

in Ω×]0, T [,

∂Xtrip

∂t
= cint

∂εcp
∂t

− cintacp
ccp

Xcp
∂scp
∂t

+ ctrip
∂εtrip
∂t

− atripXtrip
∂strip
∂t

in Ω×]0, T [

as well as initial values (31) – (33) and boundary values (35) – (36).

In [WBH08] (cf. also [MWSB12]) was proven that

Lemma 2 (Thermo-dynamic consistency). The presented bulk model is thermo-dynamic con-
sistent, i.e. the dissipation inequality (3) is fulfilled (under reasonable assumptions).

Remark 3. As in the theory of linear thermo-elasticity for small deformations commonly accepted,
one obtains (cf. e.g. [JR00]) the following approximation of the thermo-mechanical dissipation

θ
∂σ

∂θ
:
∂εte
∂t

= −3Kα θ0 div

(

∂u

∂t

)

,(37)

where θ0 denotes a (constant) reference temperature close to the actual temperature. Further-
more, the material parameters are assumed to be real constants.

2.10 General model for phase transitions in steel

Isothermal diffusive transformations are well described by the Johnson-Mehl-Avrami-Kolmogorov
kinetics (cf. e.g. [WBB07]) and models for martensitic transformation are based on the Koistinen-
Marburger equation (cf. [KM59]), but there are some essential open questions in modeling the
non-isothermal transformation and phase transformations under stress. In [WBB07] one can
find a good description of a phenomenological model for phase transformations, but there are
a lot of proposals for modifications and generalizations of phenomenological models for phase
transformations, cf. e.g. [LMDD85, Vis87, FBTO94, Höm95, MS02, WBS03, AGC04, BHSW04].
In this section, (6) is specialized in order to obtain applicable models for phase transformations
for multi-phase simultaneous and consecutive reactions. In the context of macroscopic modeling,
we consider steel as a coexisting mixture of m (m ≥ 2) phases (or constituents), which differ
in their micro-structure and have different material parameters. These phases are assumed to
be continuously distributed in the model, so that the steel appears as a co-existing mixture of
its phases (or components), while diffusion processes (of the phases) are neglected, i.e. they
stay at their original places of formation. Moreover, we do not consider carbon diffusion, cf.
[WABM06].
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The considerations below are not only valid for phase transformations in steel, but also for
general (chemical or other) reactions in coexisting mixtures without diffusion of the constituents.
The following general model for phase transformations in steel is proposed in [WBB07]. The
change of pi in favor of pj can be described by the transformation law

∂pi
∂t

= −
m
∑

j=1

aijH(pi)H(p̄ij − pj)Gij +
m
∑

j=1

ajiH(pj)H(p̄ji − pi)Gji, i = 1, . . . ,m.(38)

where H – Heaviside function, p̄ij – the equilibrium fraction (maximal possible fraction) p̄i of the
ith phase (p̄ij = 0 if the phase transformation does not occur), Gij a switch function, taking into
account that the transformation of the ith phase into the jth phase (for i 6= j, i, j = 1, . . . ,m,
abbr.: i→ j) takes place during a defined temperature interval and −aij – transformation rate
for the transformation i→ j . We specify the aij :

aij := (eij(θ, ξ) + pj)
rij(θ,ξ) (p̄ij − pj)

sij(θ,ξ)gij(θ, ξ)hij

(

∂θ

∂t

)

for i, j = 1, . . . ,m.(39)

The parameters eij , rij , sij and gij have to fulfill eii = rii = sii = gii = 0 for i = i, . . . ,m and

eij ≥ 0, rij ≥ 0, sij ≥ 0, gij ≥ 0, hij ≥ 0 f.a. admissible arguments.

Remark 4 (Leblond-Devaux proposal). A simple specialization of (38) consists of

∂pi
∂t

= −µijpi,(40)

where the non-negative µij may depend on the same arguments as aij in (39). This means that
the decomposition rate of i into j is proportional to the fraction of i available for decomposition.
In case of only two present phases this leads to

∂p1
∂t

= −µ12p1, p1(0) = p0 and
∂p2
∂t

= µ12 (p̄12 − p2) , p2(0) = 0(41)

for the forming phase (p̄12 = 1), which is a special case of the Leblond-Devaux proposal. Leblond
and Devaux suggested applying the linear approach to martensitic transformation as well. Due
to Koistinen and Marburger (cf. e.g. [WBDH08] and generalizations of (42) in [WFL07]), the
martensite fraction forming from a given (austenite) fraction p1 at the temperature θ less than
the martensite start temperature θms reads as

p̄12(θ) = p1 (tms)

(

1− exp

(

−θms − θ

θm0

))

.(42)

2.11 Equivalent formulation of TRIP

Due (8) and (11) the following relations hold:

σ∗ = 2µ ε∗te = 2µ
(

ε∗(u)− εtrip − εcp
)

and tr(σ) = 2µ tr(ε(u)) = 2µ div(u).(43)

Now, the problem (18), (32)1 can be formulated as an equivalent initial value problem:

ε′trip(t) = b(t)
(

2µ ε∗(u(t))− 2µ εcp(t)−X∗

trip

)

− 2µ b(t)εtrip(t), t ∈]0, T [(44)

εtrip(0) = 0(45)

where b is defined as in (19) and X∗

trip is the solution of (26). Therefore, the solution reads as

εtrip(t) =

∫ t

0
b(s) exp

(

−
∫ t

s

2µ b(τ) dτ

)

(

2µ ε∗(u(s))− 2µ εcp(s)−X∗

trip

)

ds(46)

for t ∈ [0, T [.
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2.12 Equivalent formulation of plasticity

For further mathematical investigation it is convenient to reformulate the described model,
using a variational inequality (or rather a differential inclusion) in order to characterize the
plastic deformation. The following (original) problem is to find the strain εcp : Ω× [0, T [→ R

3×3
sym

with tr(εcp) = 0, s.t.

∂εcp
∂t

(x, t) = Λ
(

σ∗(x, t)−X∗

cp(x, t)
)

, (x, t) ∈ Ω×]0, T [,(47)

εcp(x, 0) = 0, x ∈ Ω,(48)

where the plastic multiplier Λ has to fulfill (16) – (17) f.a. σ ∈ R
3×3
sym with F (σ,Xcp, R0, R) ≤ 0.

The plastic multiplier can also be expressed as Λ = 3
2(R0+R)

∂scp
∂t

, cf. [WBMS11]. Taking (47),

(16) – (17) and the yield function (14) into account, (47) can be reformulated as

∂εcp
∂t

=
2

3
Λ(R0 +R)

∂F

∂σ
(σ,Xcp, R0, R) = Λ̃

∂F

∂σ
(σ,Xcp, R0, R)(49)

with a new multiplier Λ̃. This reformulation is often called ‘normality rule’, cf. [Mau92, Lub06].
We define F : R

3×3 × R
3×3 × R × R → R via (14) for given Xcp and for given constants

R0, R ∈ R
+. The set of all admissible σ is convex (cf. [HR99]). We define

(50)
KF :=

{

τ ∈ R
3×3
sym, tr(τ ) = 0 : F (τ ,Xcp, R0, R) ≤ 0

}

,

K :=
{

τ ∈ [L2(Ω)]9 : τ (x) ∈ KF f.a.a. x ∈ Ω
}

.

Remark 5 (Time- or parameter-dependent K). Due to the general time-dependence of R0 and
R, the set of admissible stresses varies in time, when considering a time-dependent process (cf.
e.g. [HR99, HWR05, WBH08]). In [Mac92, CR06, BFM11] the yield function depends explicitly
on the temperature. Therefore one defines F via

(51)

F (τ ,Xcp, R0, R; θ, t) :=

√

3

2

(

σ∗ −X∗

cp

)

:
(

σ∗ −X∗

cp

)

−
(

R0 +R(θ, t)
)

,

KF (θ, t) :=
{

τ ∈ R
3×3
sym, tr(τ ) = 0 : F (τ ,Xcp, R0, R; θ, t) ≤ 0

}

,

K(θ, t) :=
{

τ ∈ [L2(Ω)]9 : τ (x) ∈ KF (θ, t) f.a.a. x ∈ Ω
}

.

In general, the function R is not monotone and therefore, the set of space- and time-dependent
functions generated by K (i.e. all L2-functions with values in K f.a.a. t ∈ [0, T [) is in general
not convex.

The constraint in (47) – (48) resp. (16) – (17) is non-linear. An adequate tool for dealing
with non-linear constraints for equations is a variational inequality (cf. e.g. [HR99]). Based on
the identity A∗ : B∗ = A∗ : B = A : B− 1

3tr(A)tr(B) for A,B ∈ R
9, the relations (47) – (48),

(17) and (14) are equivalent to the variational inequality

∂εcp
∂t

:
(

τ − σ
)

≤ 0 in Ω×]0, T [(52)

f.a. τ ∈ R
9 with τ = τ T and F (τ ,Xcp, R0, R) ≤ 0, where σ has to fulfill (14).

Lemma 3. The set K is nonempty and convex.

Proof. Since R0 > 0 and R ≥ 0, one concludes that 0 ∈ KF . Hence, K is nonempty. Further-
more, let σ, τ ∈ K and λ ∈ [0, 1]. Obviously, tr(λσ + (1− λ)τ ) = 0 for tr(σ) = tr(τ ) = 0 and
λσ + (1 − λ)τ = (λσ + (1 − λ)τ )T for σ = σT and τ = τ T . Moreover, the convexity of the
function F completes the proof.
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Theorem 1 (Main result: Equivalent formulation of plasticity). For fixed Xcp, R0 and R let
F = F (σ) be a convex function R

3×3 → R, which is differentiable in R
3×3 \ {0} and fulfills

F (0) < 0. Moreover, let ∂F
∂σ

(τ ) 6= 0 f.a. τ ∈ R
3×3 with τ = τ T and F (τ ) = 0. In addition, let

σ∗(0) ∈ K. Assume (14) and (50) are given. Then, the normality rule (49) and the variational
inequality (52) are equivalent.

Proof. The proof of the main theorem is divided into two parts:

1. The normality rule (49) implies the variational inequality (52). Equation (52) is ob-
viously fulfilled for Λ = 0. For Λ > 0 it follows F (σ,Xcp, R0, R) = 0 and therefore

∂F
∂σ

(σ,Xcp, R0, R) =
3(σ∗

−X
∗

cp)
2(R0+R) 6= 0. Thus,

∂εcp
∂t

and ∂F
∂σ

are parallel and have the same

orientation. Because of the convexity of KF , it follows
∂εcp
∂t

:
(

τ ∗ − σ∗
)

≤ 0 in Ω×]0, T [
f.a. τ ∈ R

3×3 with τ = τ T and F (τ ) ≤ 0, which is equivalent to (52).

2. On the other hand, the variational inequality (52) implies the normality rule (49). If

F (σ,Xcp, R0, R) < 0, then it follows σ∗ ∈ Int(KF ) and (52) implies
∂εcp
∂t

= 0 = Λ̃ ∂F
∂σ

with Λ̃ = 0, compatible with (17). Let F (σ,Xcp, R0, R) = 0. Hence, σ∗ ∈ ∂KF . Putting

τ = σ + v with v : ∂F
∂σ

≤ 0 s.t. F (σ,Xcp, R0, R) ≤ 0 in (52) we have
∂εcp
∂t

: v ≤ 0 f.a. v

with v : ∂F
∂σ

≤ 0. Therefore,
∂εcp
∂t

and ∂F
∂σ

are parallel and have the same orientation. Thus,
(49) is valid.

As a result of the re-formulation via a variational inequality, the plastic multiplier is excluded.
If σ fulfills (14) with a strong inequality, than (52) leads to

∂εcp
∂t

= 0, i.e. there is no plastic
deformation. If no plastic deformation occurs, the model of ‘thermo-elasticity with phase
transitions and TRIP without classical plasticity’ (cf. e.g. [Boe07, Ker11, Boe12b]) is directly
applicable. The (mathematical) problem of perfect plasticity is e.g. discussed in [ER04].

In order to prepare further mathematical investigations, one can reformulate the variational
inequality as a differential inclusion. This approach is also used in [ASS01] for instance. There
are at least two possibilities when dealing with the variational inequality (52). Either one can

exclude
∂εcp
∂t

via σ∗ or vice versa.

1. Eliminating σ in the variational inequality: Using (8) and (43) one rewrites (52). This
leads to a new variational inequality for ε∗te. For convenience we denote η := ε∗te. Thus,
we look for a function η : Ω× [0, T [→ R

9, s.t.

(53)

tr(η) = 0, F (2µη,Xcp, R0, R) ≤ 0

∂η

∂t
:
(

τ − η
)

≥
(

ε∗
(

∂u

∂t

)

− ∂εtrip
∂t

)

:
(

τ − η
)

f.a. τ ∈ R
3×3
sym with τ = τ T , tr(τ ) = 0 and F (2µ τ ,Xcp, R0, R) ≤ 0. Based on (8) and (43),

εte is given by εte = η + 1
3tr(ε(u))Id. Moreover, it holds

εcp = ε∗(u)− εtrip − η and
∂εcp
∂t

= ε∗
(

∂u

∂t

)

− ∂εtrip
∂t

− ∂η

∂t
.(54)

2. Eliminating εcp in the variational inequality: This approach is similar to the idea in [DL76].
In this particular situation one gets from (8) and (43) (for constant µ)

∂εcp
∂t

= − 1

2µ

(

∂σ∗

∂t

)

+ ε∗
(

∂u

∂t

)

− ∂εtrip
∂t

(55)
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Therefore, the inequality (52) reads as

1

2µ

(

∂σ∗

∂t

)

:
(

τ − σ
)

− ε∗
(

∂u

∂t

)

:
(

τ − σ
)

+
∂εtrip
∂t

:
(

τ − σ
)

≥ 0(56)

f.a. τ ∈ R
9 with τ = τ T and F (τ ,Xcp, R0, R) ≤ 0, where σ has to be symmetric and to

fulfill the constraint F (σ,Xcp, R0, R) ≤ 0. Note, that only in the special case without

influence of εcp on εtrip, one can exclude
∂εtrip
∂t

from (56) without any return of εcp after

substituting
∂εtrip
∂t

in (56). But, in the case of hardening, one re-imports εcp via the
back-stress relations. That is why this approach seems to be inconvenient.

Remark 6 (Definition of a weak formulation of the variational inequality). The weak formulation
of the variational inequality reads as: Find η ∈W 1,2(0, T ; [L2(Ω)]9) with η(t) ∈ K f.a.a. t ∈]0, T [
s.t.

∫

Ω

∂η

∂t
(t) :

(

σ − η(t)
)

dx ≥
∫

Ω

(

ε∗
(

∂u

∂t
(t)

)

− ∂εtrip
∂t

)

:
(

σ − η(t)
)

dx(57)

f.a. σ ∈ [L2(Ω)]9 with tr(σ) = 0, σ = σT and F (2µσ,Xcp, R0, R) ≤ 0. The idea to tackle this
problem is to use solution methods for solving parabolic variational inequalities, cf. e.g. [Nau84].

Let χK : [L2(Ω)]9 → R ∪ {+∞} be the indicator function on K, i.e. χK(u) = 0 if u ∈ K

and χK(u) = +∞ if u /∈ K. The variational inequality (52) can be rewritten as a differential

inclusion
∂εcp
∂t

∈ ∂χK(σ), cf. [Zei85] for details. Using (56) and this differential inclusion
(2µ is a positive multiplier), (47) – (48) and (17) are equivalent to find the stress deviator
σ∗ : Ω× [0, T [→ R

3×3
sym, s.t.

∂σ∗

∂t
(t) + ∂χK(σ∗(t)) ∋ 2µ

(

ε∗
(

∂u

∂t
(t)

)

− ∂εtrip
∂t

(t)
)

f.a.a. t ∈]0, T [(58)

σ∗(0) = σ∗

0 := 2µε∗(u0).(59)

This leads to the theory of differential inclusions and/or evolution equations of subgradient type,
cf. e.g. [Wat73, Ken75, Bar76, Ken77, Pap90, Ahm92, Pap95].

3 Numerical Examples

In this section some numerical simulations with realistic material data are presented to demon-
strate the distortion effect of metallurgical phase transitions in the context of small deformations
(for large deformations cf. e.g. [MWSB12]).

3.1 Description of the setting

In order to show phase induced thermo-mechanical effects, we implement the presented model
in COMSOL Multiphysics®, cf. e.g. [Zim06] and simulate the Jominy-End-Quench-Test. The
Jominy-End-Quench-Test is a standard test to determine the hardenability of steels. Moreover, it
is useful for simulation testing. Here, it is used to test the thermo-mechanical model with phase
transitions and TRIP and to illustrate the results (cf. e.g. [Höm96, Höm97, HLHM04, NKSF05]).
The heat treatment process for most steels involves heating the alloy until austenite forms, then
cooling it so rapidly that the transformation into martensite occurs almost immediately. The
presence of two (or more) phases leads to plastic deformation due to the volume differences in
the phases. There are situations, where classical plasticity is negligible and TRIP is the decisive
factor, cf. e.g. [WBS09]. For a sufficiently high cooling rate, i.e. close to the quenched boundary
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parts, where the temperature descends very quickly, austenite is transformed into the hard phase
martensite, whereas a slower temperature change, e.g. in the interior of a big workpiece, causes
usually softer phases like ferrite, pearlite or bainite to grow. A correlation of the temperature
change and the phase transformation can be obtained from the time-temperature-transformation
diagram. Due to the fact that the product phases (e.g. pearlite and martensite) have different
thermal expansion (different (lower) densities in comparison with austenite), their formation
influences the deformation of the workpiece.
In order to avoid technicalities, we consider only the cooling of a steel specimen from high
temperature phase austenite with fraction pA to one product phase (martensite) with phase
fraction pM . This applies for instance in martensitic hardening of eutectoid carbon steel.

3.2 Literature review: Numerical simulation for thermo-mechanical models

In this section some references connected with the problem of interest are collected. For the
implementation of algorithms in elasto-plasticity there exist some literature, cf. e.g. [SH98,
Mah99]. Simulation of steel quenching process using a multi-phase transformation model is
discussed in [RFF01] and a finite element analysis of coupled thermo-inelastic problem with
phase transformation is given in [IW82]. A adaptive finite element simulation of a model for
TRIP in steel are presented in [SWB03, SSM+06].
Adaptive finite element methods with ALBERTA (cf. e.g. [SS05]) are investigated in the work
of [Suh10] for numerical simulations, concerning analysis of distortion for workpieces with and
without phase changes. Throughout the thesis a mathematical model for steel quenching is
introduced, a numerical scheme is developed and in simulations for conical rings it is shown that
the model is in accordance with the reality. Numerical treatment of models including phase
transitions, transformation-induced and classical plasticity is rarely found in the literature so
far. A semi-implicit numerical scheme is derived for both models. In order to identify the model
parameters for the more complex hardening model an optimization procedure is developed.
The papers [CHK07, HK09] and the thesis [Ker11] are concerned with thermo-mechanical
modeling and numerical treatment of metallurgical phase transitions in steel during quenching.
Their quasi-static model is similar to the presented model without the inertia term, without
classical plasticity and with pure zero boundary conditions, but it still captures the effect
of TRIP. The implementation is done within the finite element framework provided by the
WIAS-toolbox p∂elib (cf. [FKL98]) using a semi-implicit approach for time-stepping. The
resulting code is applied to investigate the effect of inhomogeneous quenching strategies of roller
bearing rings. Moreover, a strategy for distortion compensation by means of a gradient method
obtained from optimal control theory is introduced.
A semi-implicit algorithm (predictor-corrector approach based on [SH98]) for incorporating the
interaction between (classical) plasticity and TRIP in steel is developed in [WBMS11]. Contrary
to the usual elasto-plasticity, the underlying model of material behavior of steel is far more
complex. A special application of this approach for small and large deformations in SIMULIA
Abaqus FEA® is provided in [MWSB12].

3.3 Numerical Implementation

The objective is to simulate the quenching process of a steel specimen. We consider a two-
dimensional cross-section (due to rotation symmetry) of a steel cylinder made of the eutectoid
carbon steel 100Cr6 of dimension 100mm × 25mm and infer specific cooling to obtain corre-
sponding phase distribution. We assume the specimen to be the closure of a Lipschitz domain
Ω. As mentioned above, we consider only the cooling and not the preliminary heating process.
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(a) Photo from [Lie05]. (b) Scheme from [HLHM04].

Figure 1: Jominy-End-Quench-Test.

Therefore we assume a sufficiently high, homogeneous initial temperature and complete austeni-
tization. Moreover, we distinguish between the reference and the initial geometry. Using the
initial value u0(x) = αA (θ0 − θair)x for the displacement, we take this initial thermal expansion
into account. Creep effects and TRIP during the austenitization are not considered.
In the model the workpiece is quenched at the bottom (this corresponds to nonzero Robin
boundary conditions) and it is assumed to be fixed on top. Furthermore, we suppose that
the whole upper boundary part may only shrink horizontally. Moreover, it is assumed to be
thermally insulated. The left and the right edges fulfill Robin boundary conditions as well, but
the cooling rate is considerably lower. The following initial conditions f.a. x in Ω:

u(x, 0) = u0(x), u′(x, 0) = 0, θ(x, 0) = θ0,(60)

p(x, 0) = p0(x), εtrip(x, 0) = 0, εcp(x, 0) = 0(61)

and the mixed boundary conditions for u and for θ

σ · νΓleft
= 0 and −λθ∇θ · νΓleft

= δair
(

θ − θair
)

on Γleft(62)

σ · νΓbottom
= 0 and −λθ∇θ · νΓbottom

= δwater
(

θ − θwater
)

on Γbottom(63)

u = 0 and −λθ∇θ · νΓtop = 0 on Γtop(64)

σ · νΓright
= 0 and −λθ∇θ · νΓright

= δair
(

θ − θair
)

on Γright(65)

are included. We consider only two phases, a parent phase, austenite and a forming phase,
martensite (cf. [DSB83, GZWD00, GTJS01, BHL+06]). This behavior is given by the Leblond-
Devaux model, cf. rem. 4:

p′A(x, t) = −p′M (x, t), pA(x, 0) = 1,

p′M (x, t) = µ
(

p̄M (θ(x, t))− pM (x, t)
)

, pM (x, 0) = 0

for x ∈ Ω, where p1 = pA – austinite phase fraction, p2 = pM – martensite phase fraction,
p0 = (pA(0), pM (0))T , θ – given temperature and p̄M represents the maximal martensitic phase
fraction that can be attained. We use the following Koistinen-Marburger ansatz (cf. (42)):

p̄M (θ) = 1− exp

(

θ − θms

θm0

)

for θ ∈ [θmf , θms] and p̄M (θ) = 0 for θ ∈ [θms, θ0].
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Moreover, we assume f = (0, ρ0g)
T and r = 0. Furthermore, we assume a linear mixture rule

between both phases f.a. material parameters, i.e. the value of a material parameter is calculated
by π = πApA + πMpM , where pA, pM are the austenitic and martensitic phase fraction and πA,
πM are the corresponding material parameters, which are taken from data table 1 for eutectoid
carbon steel 100Cr6. The parameter µ is calculated via the measured data from dilatometer or
Gleeble™ experiments (cf. [HTY09, WBLS05, WBS04]).

Property Unit
Phase

Austenite Martensite

λ Thermal Conductivity W
mm℃ 0.02012 0.04273

ce Specific Heat Capacity J
kg℃ 560.7 501.3

ρ Density kg
m3 7798 7741

E Elastic Modulus MPa 170665 204671
ν Poisson Ratio – 0.3318 0.3556
R0 Initial Yield Strength MPa 173.3 1278.4

α Thermal Expansion Coefficient 10−6

℃ 23.8 10.9

ρ0 Initial Density kg
m3 8041.4

∆Ha−m Transformation Enthalpy J
kg 78520

θ0 Initial Temperature ℃ 850
θair Air Temperature ℃ 22
θwater Water Temperature ℃ 18
θms Martensite Start Temperature ℃ 211
θmf Martensite Finish Temperature ℃ −174
θm0 Koistinen-Marburger Temperature ℃ 93.4

δair Heat Transfer Coefficient (Air) W
m2 K

150

δwater Heat Transfer Coefficient (Water) W
m2 K

3200
κ Greenwood-Johnson Parameter 1

MPa 7 · 10−5

µ Leblond-Devaux Parameter – 5.95
g Gravitational Acceleration m

s2
9.81

Table 1: Average material properties and their units and dimensions, cf. [ADF+08a, ADF+08b,
ŞLH+09, Suh10].

3.4 Simulation results and conclusion

Fig. 2 and fig. 3 demonstrate the process at a sample of time steps. The workpiece is shown at
times t = 0s, 0.2s, 2s, 5s, 10s, 20s, 30s, 40s, 50s and 100s. Colors indicate the temperature in
fig. 2 and the martensite fraction in fig. 3, where blue corresponds to low values and red to high
values of temperature or phase fraction. The background rectangle gives the initial geometry.
The deformation of the workpiece is magnified by a factor of 10.
At time t = 0s, the initially rectangular specimen is completely heated and stress-free, cf.

fig. 2a and fig. 3a. A strong cooling is applied to the bottom, the left and right side is cooled
moderately and there is no heat transfer at the top of the sample. When quenching sets in, we
can observe the shrinking of the quenched area in fig. 2c and fig. 3c. Because of the strong
cooling, the sample contracts more at the left and right bottom vertexes in vertical direction.
After a while, thermoelastic effects may be observed first, i.e. the shrinking due to classical
thermo-elasticity can be observed. After some time, the austenite-martensite-transformation
sets in (cf. fig. 2d and fig. 3d), beginning at the left and right bottom vertexes, where the
temperature has already dropped below the martensite start temperature, i.e. the rapid cooling
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Figure 2: Surface plot: Temperature

effected the growth of martensite in the lower part of the specimen. Martensite has a lower
density and thereby a larger volume and higher expansion than austenite. Therefore the sample
starts to expand in this area. Thus, the transformation pushes the material outward, which
causes a huge bulge in the specimen (cf. fig. 2e – g and fig. 3e – g) and remains until the heat
treatment is completed, cf. fig. 2h and fig. 3h. This corresponds to the observed behavior in
experiments, cf. [HLHM04, NKSF05] for instance.
Fig. 4 shows the influence of different effects of the fully coupled model. Fig. 4a corresponds
with fig. 2h in order to compare the following different scenarios. Fig. 4b (without intrinsic
dissipation), fig. 4c (without inertia term in the momentum balance) and fig. 4e (without TRIP)
show a similar result. The importance of considering the phase transitions and the plastic effects
is shown in fig. 4d (without classical plasticity), fig. 4f (without plasticity) and fig. 4g (without
phases), where the deviation from the fully coupled model in fig. 4a is very big. The simple
thermo-elastic model shown in fig. 4h is even worse.

Figure 3: Surface plot: Martensitic phase fraction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Surface plot: Temperature for different scenarios

4 Discussion and outlook

In this work we introduced and investigated a mathematical model for steel quenching.

Modeling: A further continuation at the level of mathematical modeling would be the connec-
tion of this problem with micro- and meso-investigations (cf. e.g. [Fis90, DSB95] for micro-models
for TRIP), in particular of phase transformations, transformation-induced plastic behavior and
the interaction with classical plasticity, which leads to the method of mathematical homogeniza-
tion (cf. [OSY92, Vis06, Vis08, Sch09, SV10] for homogenization approaches).
Moreover, dimensional analysis could be helpful to reduce the number of key parameters in order
to accomplish qualitative investigations or to prepare approximate calculations (cf. [WBF08]).
In order to investigate special heat treatment processes, like carbonization, the description of
the carbon diffusion would be interesting (cf. ansatz in [WBM06, Hüß07]).
More complex phenomena, like additional inelastic dissipation or non-constant material parame-
ters could be taken into account. The investigation of more general saturation functions (cf.
rem. 1) or more general evolution equations for the phase fractions could also be discussed. Fi-
nally, in the context of heat treatment, (kinematic) hardening, creep (cf. [NA07, BWD+11]) and
damage (e.g. fatigue, ratcheting, friction (cf. [Ell97, ASS99, HSS01, LD05, Cha06, AMM07]))
may be relevant and need to be investigated (cf. [WBBD12]). To describe phase transformations
during the complete heating and cooling process cf. e.g. the ansatz in [SKHZ08]. Moreover,
considering small and large deformations would be interesting as well.

Simulation: The numerical simulation should be extended in order to incorporate additional
forming phases like ferrite and bainite. Moreover, the simulation of other geometries should be
taken into account. Therefore, an complex implementation with real data and the comparison
of the simulation results with experimental data could follow up this work as a larger project
(cf. [Suh10, Ker11]).

Application: The effect of inhomogeneous quenching strategies could be investigated and the
numerical computations should be compared with the experimental results in order to follow up
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the work [CHK07, HK09, Ker11, Boe12a] to some extent. Therefore, a strategy for distortion
compensation by means of a optimization method obtained from optimal control theory has to
be introduced.
Possible extensions are also testing and evaluating models for phase transformations, TRIP
and stress-dependent transformation behavior for under-eutectoid steels with different car-
bon content as well as the evaluation of relevant creep models based on measured data (cf.
[BWD+11, WBBD12]).

In summary, the results give a theoretical basis for further mathematical investigation or
the efficient implementation of numerical algorithms suitable for real-world applications.
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[HLHM04] M. Hunkel, T. Lübben, F. Hoffmann, and P. Mayr. Using the Jominy end-quench
test for validation of thermo-metallurgical model parameters. J. Phys. IV France,
120:571–579, 2004.
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[SWB03] A. Schmidt, M. Wolff, and M. Böhm. Adaptive finite element simulation of a model
for transformation induced plasticity in steel. ZeTeM Reports, Universität Bremen,
2003.

[TP06] L. Taleb and S. Petit. New investigations on transformation-induced plasticity and
its interaction with classical plasticity. Int. J. Plast., 22(110), 2006.

[Vis87] A. Visintin. Mathematical models of solid-solid phase transitions in steel. IMA J.
Appl. Math., 39:143–157, 1987.

[Vis06] A. Visintin. Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity
and of the Prager model of plasticity. Continuum Mech. Thermodyn., 18:223–252,
2006.

[Vis08] A. Visintin. Homogenization of the nonlinear Maxwell model of viscoelasticity
and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh,
138A:1363–1401, 2008.
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[WB03] M. Wolff and M. Böhm. Umwandlungsplastizität bei Stählen im Konzept der
Thermoelasto-Plastizität – modelliert mit dem Ansatz einer Zwischenkonfiguration.
Technische Mechanik, 23(1):29–48, 2003.
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