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NUMERICAL SOLUTION OF THE STEFAN PROBLEM IN LEVEL SET FORMULATION

WITH THE EXTENDED FINITE ELEMENT METHOD IN FENICS

M. JAHN AND T. KLOCK

Abstract. In this article, we consider the Stefan problem as an example for a process with a time-dependent

discontinuity. The problem is modeled in level set formulation and discretized using the extended finite element
method (XFEM) with Heaviside enrichment in combination with Nitsche’s method. For efficiency, a narrow band

approach is used for computing the interface’s velocity based on the Stefan condition as well as maintaining the

level set function. The discretized problem is solved with our XFEM library miXFEM and the associated level set
toolbox, both based upon the FEniCS framework. Our approach is tested by considering different model variants

of the Stefan problem with known analytical solution and numerical results and convergence studies are presented.

1. Introduction

In materials science and applied physics, processes with time-dependent discontinuities are very common.
From a mathematical point of view, the modeling and simulation of these type of problems is very interesting
and challenging. The Stefan problem is a well known example for a such a process. Common approaches to
compute a numerical solution to the Stefan problem are moving mesh methods, see e.g. [1], which are based
on an explicitly defined sharp interface, and enthalpy methods, cf. for example [35], introducing the interface
implicitly by considering the energy balance. Unfortunately, both methods have their drawbacks, see i.a. [9,11,21]
and references therein. In moving mesh methods for example, there is not only a need for a remeshing technique
but performing numerous remeshing steps during the simulation is numerically expensive, too, especially in 3D
situations. Moreover, general situations including topology changes or more complex interfaces and geometries
can not be considered at all. On the other hand, the enthalpy method may lack accuracy near the interface
and numerical issues may arise, if problems with fluid flow and a capillary surface are considered. While there
are some tricks to consider some complex situations by combining both approaches [20], a method utilizing the
advantages of both methods is desirable.

A method which has proven to be very suitable for all kind of problems with arbitrary discontinuities is the
extended finite element method (XFEM), see e.g. [14] for an overview. XFEM is a very flexible approach which
allows for the accurate approximation of functions with strong discontinuities (jumps) and weak discontinuities
(kinks) within elements by enriching the discrete function space(s) with additional basis functions at the interface
location. This location is given by some indicator function whose movement is described by the level set method
so it can move arbitrarily through the computational mesh.

In this article, we consider the Stefan problem in level set formulation and represent the interface by the zero
level set of a signed distance function whose evolution is a-priori unknown and part of the solution. In contrast
to the usual approach which is based on a weak enrichment, cf. i.a. [11, 36], a Heaviside enrichment is used to
enrich the function space locally for the temperature solution. As this type of enrichment generally allows for
jumps in a function, we use Nitsche’s method [29] to enforce internal Dirichlet conditions [12] to get a continuous
temperature distribution. For efficiency, a narrow band is introduced and the level set problem as well as the
interface’s velocity is only computed for this region. Since the signed distance property may get lost during the
evolution of the level set function, a reinitialization method and a mass correction approach are included.

The full problem is decoupled and solved using our previously developed XFEM toolbox miXFEM [19] and
the associated level set toolbox [18] which both base the FEniCS framework [24]. FEniCS is a framework for
the automated solution of PDE problems where a user can specify a problem in a specific language close to
the (discretized) mathematical weak formulation and let the software generate most of the corresponding code
automatically. Our toolboxes enhance the FEniCS framework so that problems with arbitrary time-dependent
discontinuities can be tackled in the same way.

This paper is organized as follows: Starting with the governing equations for the Stefan problem, we give some
brief introduction to the level set method which is a natural approach in XFEM for describing the location and
movement of a discontinuity and, afterwards, state the full coupled problem. Since we use different discretization
methods for the Stefan problem and the level set problem, we dedicate one section to each problem. In Section
3, we derive the time discrete formulation of the Stefan problem and define a weak formulation for each time
step. The spatial discretization is based on Nitsche’s method [29] treating the interface as internal Dirichlet
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boundary [12]. As for the level set problem, we also derive a suitable discrete formulation and, additionally,
introduce an discrete interface representation method as well as techniques to maintain the level set function in
regards to the signed distance property and volume conservation. The level set method is more efficient, if used
on a narrow band. This approach is also presented as well as mechanisms to compute the velocity field for the
interface’s evolution. In Section 5, we provide some information concerning the FEniCS framework, our toolboxes
and the specific implementation. Results for different model examples including a convergence study are given
in Section 6 together with a summary of the most important aspects of this work.

2. Mathematical setting

2.1. The Stefan problem. Let Ω ⊂ Rd, with ∂Ω polygonally, be a fixed domain consisting for t ∈ [t0, tf ] of
two regions Ω1(t) and Ω2(t) that are separated by an interface Γ(t). We assume Γ(t) is sharp and sufficiently
smooth for all t ∈ [t0, tf ] and introduce the normal vector ~n(t,x) to Γ(t) pointing from Ω1 into Ω2.

The temperature field is given by u : Ω× [t0, tf ]→ R with u|Ωi
= ui, i ∈ {1, 2} and its evolution is described

by

(2.1) ρc
∂u

∂t
−∇ · (κ∇u) = f, in Ω1(t) ∪ Ω2(t), t ∈ (t0, tf ).

For simplicity, we choose ρ = 1, as well as c = 1 and only assume that κ|Ωi
= κi may be discontinuous with κi

being piecewise constant in each subdomain1. For the boundary ∂Ω = ΓD ∪ΓN with ΓD ∩ΓN = ∅, the following
conditions are given

u = uD, on ΓD × (t0, tf ],

κ
∂u

∂n̄
= gN , on ΓN × (t0, tf ],

where n̄ denotes the outer normal to ∂Ω. Initially, the temperature distribution in Ω1(t0) ∪ Ω2(t0) is given by

u(·, t0) = u0

and, moreover, we expect the so-called isothermal interface condition

u(·, t) = uΓ on Γ(t)

to hold for all times t ∈ [t0, tf ] and assume

u(·, t) < uΓ in Ω1(t) and u(·, t) > uΓ in Ω2(t).

As for the interface, we initially have

Γ(t0) = {x ∈ Ω : u(x, t0) = uΓ}.
The movement of the interface Γ(t) in time for t > t0 in terms of its normal velocity ~V · ~n is given by

(2.2) [[κ∇u · ~n]] = L~V · ~n on Γ,

with [[·]] denoting the jump that is defined for a function φ by [[φ]] = φ|Ω1
−φ|Ω2

. Roughly speaking, this so-called
Stefan condition states that the normal velocity of Γ is proportional to the jump of the temperature’s gradient
at the interface, with L denoting the material’s latent heat.

In general, the location of the sharp interface Γ is a-priori unknown and part of the solution. Hence, a
representation of Γ is needed and there are various techniques to represent it either implicitly or explicitly. As
mentioned before, a very common approach in the XFEM context is to use the level set method for this purpose.

2.2. The level set method. Within the level set method [31,34], the location of the interface Γ is given by the
zero level set of a continuous function ϕ : Ω× [t0, tf ]→ R, i.e.

Γ(t) = {x ∈ Ω : ϕ(x, t) = 0}, t ∈ [t0, tf ].

The subdomains Ω1 and Ω2 can be defined by x ∈ Ω1(t) ⇔ ϕ(x, t) < 0 and x ∈ Ω2(t) ⇔ ϕ(x, t) > 0. An
exemplary sketch of a 2D situation where a hold-all domain Ω is divided by the sign of the function ϕ into
subdomains Ω1(t) and Ω2(t) is given in Fig. 2.1a and some more level sets of ϕ are indicated in Fig. 2.1b.

The level set method i.a. allows for an easy computation of the normal ~n to Γ

~n =
∇ϕ
||∇ϕ|| ,

1Please note that discontinuous coefficients ρ and c could easily be considered by defining the thermal diffusivity κ̃ := κ
ρc

and

appropriate scaling of the right-hand-side and the boundary conditions.
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Ω1(t)
(ϕ < 0)

Ω2(t)
(ϕ > 0)

Γ(t)
(ϕ = 0)

(a) Domains Ω1(t) and Ω2(t) are separated by

the zero level set Γ(t) of ϕ.

ϕ < 0

ϕ = 0

ϕ > 0

(b) Visualization of some level sets of ϕ.

Figure 2.1. Visualization of the idea of the level sets method using a scalar function ϕ.

and the curvature K of Γ

K = −div~n = −div
∇ϕ
||∇ϕ|| .

There are various functions ϕ which can be defined and used within the level set method, however, from a
numerical point of view it is important that ||∇ϕ|| neither vanishes nor becomes too large, in order to get a stable
computation of ~n and K. Due to this, literature suggest to use a so called signed distance function, i.e.

ϕ(x, t) =


− min

x̃∈Γ(t)
||x− x̃||2, if x ∈ Ω1(t)

min
x̃∈Γ(t)

||x− x̃||2, if x ∈ Ω2(t)
,

which satisfies ||∇ϕ|| = 1.
Given the initial value ϕ0(·) = ϕ(·, t0) with zero level set Γ0 = Γ(t0), the evolution of the level set function ϕ

and consequently of the interface Γ in time can be described by the transport equation

(2.3)
∂ϕ

∂t
+ ~V · ∇ϕ = 0,

where ~V = ~V (x, t) has to be a sufficiently smooth velocity field.

With additional boundary conditions on the inflow boundary ∂Ωin := {x ∈ ∂Ω : ~V (x, t)·n̄(x) < 0, t ∈ [t0, tf ]}
defined by a continuous function ϕin : ∂Ωin× [t0, tf ]→ R, the level set problem in strong formulation is given by:
Find ϕ ∈ C1(Ω× [t0, tf ]) ∩ C0(Ω̄× [t0, tf ]), s.t.

(2.4)

∂ϕ

∂t
+ ~V · ∇ϕ = 0 in Ω× [t0, tf ],

ϕ(·, t0) = ϕ0(·) in Ω,

ϕ(·, t) = ϕin(·, t) on ∂Ωin × [t0, tf ].

2.3. Coupled problem. Combining both models, the full coupled Stefan problem in level set formulation with
non-prescribed interface as considered in this paper is given by:
Find ϕ ∈ C1(Ω× [t0, tf ])∩C0(Ω̄× [t0, tf ]) and u sufficiently smooth, i.e. u ∈ C0(Ω̄× [t0, tf ]), u(·, t)|Ωi

∈ C2(Ωi(t))

and ∂tu(·, t) ∈ C0(Ω1(t) ∪ Ω2(t)) for t ∈ [t0, tf ] and i = 1, 2, such that

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2.5e)



∂u

∂t
−∇ · (κ∇u) = f, in Ω1(t) ∪ Ω2(t), t ∈ (t0, tf ),

u = uD, on ΓD × (t0, tf ),

κ
∂u

∂n̄
= gN , on ΓN × (t0, tf ),

u(·, t0) = u0, in Ω1(t0) ∪ Ω2(t0),

u(·, t) = uΓ, on Γ(t),

(2.6) [[κ∇u · ~n]] = L~V · ~n, on Γ(t),
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(2.7a)

(2.7b)

(2.7c)


∂ϕ

∂t
+ ~V · ∇ϕ = 0 in Ω× [t0, tf ],

ϕ(·, t0) = ϕ0(·) in Ω,

ϕ(·, t) = ϕin(·, t) on ∂Ωin × [t0, tf ],

for given data uD, gN , u0, uΓ, ϕ0 and ϕin that are assumed to be sufficiently smooth. Thereby, equation

(2.6) couples heat equation and level set problem and only provides the normal component of ~V (t) on Γ(t).
Consequently, more effort is needed to obtain a full velocity field which is needed for the solution of the transport
problem (2.7). We will discuss this in Section 4.7.

3. Discretization of the Stefan problem

As mentioned in [15], using space-time elements for deriving a suitable weak formulation of problem (2.5)
is a natural approach. However, a weak formulation can also be introduced formally by using Rothe’s method,
cf. [15, 16], as we will do in this section.

3.1. Discretization in time. The interval [t0, tf ] is discretized by Nt + 1 time steps into tn = t0 + n∆t, n =
0, . . . , Nt, with ∆t denoting the time step size, and the implicit Euler time discretization2 is applied to problem
(2.5) which then reads: For n = 0, . . . , Nt, find un+1 ≈ u(·, tn+1) such that

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

un+1

∆t
−∇ ·

(
κ∇un+1

)
= fn+1 +

un

∆t
, in Ω1(tn+1) ∪ Ω2(tn+1),

un+1 = un+1
D , on ΓD(tn+1),

κ
∂un+1

∂n̄
= gn+1

N , on ΓN (tn+1),

un+1 = uΓ, on Γ(tn+1),

[[κ∇un+1 · ~n]] = L~V n+1 · ~n on Γ(tn+1).

For a fixed n ∈ {1, . . . , Nt}, we use the notation ξ = 1
∆t and obviate the time dependency by setting Ω1 :=

Ω1(tn+1), Ω2 := Ω2(tn+1), u := un+1, et cetera, and summarize the right-hand-side in (3.1) by f̃ so that,
eventually, we end up with the stationary problem

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

ξu−∇ · (κ∇u) = f̃ , in Ω1 ∪ Ω2,

u = uD, on ΓD,

κ
∂u

∂n̄
= gN , on ΓN ,

u = uΓ, on Γ,

[[κ∇u · ~n]] = L~V · ~n on Γ,

for each time step. By using this simplified notation we are able to drop the time as an argument of the function
space, however, we want to stress that all XFEM function spaces depend on Γ(t) and, consequently, on time, cf.
Section 5.

3.2. Weak formulation. Since we want to solve the problem using the extended finite element method, we
introduce the affine space

H1
uD

(Ω1 ∪ Ω2) :=
{
v ∈ L2(Ω) : v|Ωi ∈ H1 (Ωi) , i = 1, 2, v|ΓD

= uD
}
,

where each element v ∈ H1
uD

(Ω1 ∪ Ω2) can be restricted onto a subdomain by vi := v|Ωi . While we choose
the general setting with uD as Dirichlet boundary condition (in trace sense), setting uD = 0 leads to the more
familiar Hilbert space H1

0 (Ω1 ∪ Ω2) which will be used in (3.11).
For functions u, v ∈ H1

uD
(Ω1 ∪ Ω2) ⊂ H1(Ω1 ∪ Ω2), we define

(u, v)H1(Ω1∪Ω2) := (u, v)H1(Ω1) + (u, v)H1(Ω2)

2In general, the so-called θ−scheme is often used as time discretization technique since it allows arbitrary weighting of old and
new data. However, the formulation ends up with terms that are not well-defined and cannot be interpreted meaningfully, if we use

θ ∈ (0, 1) in the XFEM context, cf. [16]. Therefore, we use the implicit Euler scheme in this paper.
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with

(ui, vi)H1(Ωi) :=

∫
Ωi

∇ui∇vidx, i = 1, 2.

By using this definition and the L2-norm we end up with the norm(
||·||2L2(Ω) + | · |2H1(Ω1∪Ω2)

)1/2

=: ||·||H1(Ω1∪Ω2)

and define the corresponding Hilbert space

(3.11) V0 :=
{
v ∈ H1

0 (Ω1 ∪ Ω2) : v|Γ = 0
}

and the affine space3

(3.12) VΓ :=
{
v ∈ H1

uD
(Ω1 ∪ Ω2) : v|Γ = uΓ

}
where the interface conditions are introduced in a trace sense, as before. A weak formulation of the problem
(3.6) is then given by: For ξ, κ ∈ L∞(Ω), f̃ ∈ L2(Ω) and gN ∈ L2(ΓN ) find u ∈ VΓ s.t.

(3.13) (ξu, v)L2(Ω1∪Ω2) + (κu, v)H1(Ω1∪Ω2) = (f̃ , v)L2(Ω) + (gN , v)L2(ΓN )

for all v ∈ V0. Using the theorem of Lax-Milgram, one can show that there exists an unique solution to (3.13).

3.3. Discretization in space based on Nitsche’s method. Now, let {Sh}h>0 be a family of shape regular
triangulations consisting of d-simplices, with d denoting the dimension, and h is the maximum diameter h =
maxS∈Sh diam(S). Furthermore, let Ωi,h, i = 1, 2, be the discrete counterparts of Ωi

4 separated by an (at this
point arbitrary) approximation Γh of Γ and Si := S ∩ Ωi,h the part of S in Ωi,h.

In our approach, the interface Γh is not considered explicitly as facets within the triangulation, so the condition
v|Γh

= uΓ can not be included into the discrete function space in the same way as the outer Dirichlet condition
on ΓD. Thus, we introduce the function space

(3.14) V kh,uD
:=
{
v ∈ H1

uD
(Ω1,h ∪ Ω2,h) : vi ∈ C0(Ωi), v|Si ∈ Pk, i = 1, 2, S ∈ Sh

}
for k ∈ N, where we only request that for a function v only the restriction vi has to be continuous on Ωi,h, i = 1, 2
but not on Ωh = Ω1,h ∪ Ω2,h. Please note that the corresponding function space without Dirichlet condition is
denoted by V kh . To consider the internal Dirichlet condition uh = uΓ on Γh, Nitsche’s method [29] is used to
include this condition weakly into the discrete problem formulation. Hence, we end up treating (3.13) as two
“independent” problems.

Spatial discretization. Following [12], the discrete formulation of (3.6) is given by: Find uh ∈ V kh,uD
s.t.

(3.15) a(uh, vh) + a1(uh, vh) + a2(uh, vh) = L(vh) + L1(vh) + L2(vh)

for all vh ∈ V kh,0. The bilinear forms and linear forms are defined as

a(uh, vh) =

∫
Ω1,h∪Ω2,h

ξuhvhdx +

∫
Ω1,h∪Ω2,h

κ∇uh∇vhdx

a1(uh, vh) = −
∫

Γh

κ1∇u1,h · ~nhv1,hdc−
∫

Γh

κ1∇v1,h · ~nhu1,hdc +

∫
Γh

λu1,hv1,hdc

a2(uh, vh) =

∫
Γh

κ2∇u2,h · ~nhv2,hdc +

∫
Γh

κ2∇v2,h · ~nhu2,hdc +

∫
Γh

λu2,hv2,hdc

L(vh) =

∫
Ω1,h∪Ω2,h

f̃vhdx +

∫
ΓN,h

gNvhds

L1(vh) = −
∫

Γh

κ1∇v1,h · ~nhuΓdc +

∫
Γh

λuΓv1,hdc,

L2(vh) =

∫
Γh

κ2∇v2,h · ~nhuΓdc +

∫
Γh

λuΓv2,hdc

cf. Appendix for more details. Here, 0 < λ ∈ R is a stability parameter which has to be chosen large enough and
can be derived analytically for some situations [12]. Please note that the signs of the terms in ai and Li, i = 1, 2,

3In this particular situation, one could also use H1
0 (Ω) resp. H1

uD
(Ω) in the definitions of V0 resp. VΓ since no jumps are allowed

across Γ and only a weak discontinuity, i.e. a jump in the gradients, is present. However, the present approach can easily be extended

to allow for strongly discontinuities as they may occur in more general problems.
4We want to stress that due to our Ω with ∂Ω polygonal, we have Ωh = Ω without any further requirements on the boundary of

the d-simplices.
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Figure 3.1. Standard basis function vi and additional basis function Hvj when using the
Heaviside enrichment for d = 2.

result from the direction of the normal vector ~nh pointing from Ω2,h to Ω1,h. In contrast to the continuous
situation, it is not trivial to show that the sum of all bilinear forms is coercive. In fact, this property depends
heavily on the choice of λ. In this paper, we do not comment and investigate this issue further but assume that
there is a unique solution of problem (3.15).

3.4. XFEM representation of the function space. The general idea of the extended finite element method
is to represent a function by a standard and an enriched part, where the enrichment should be locally restricted.
Thus, most of the simplices and degrees of freedom can be considered just as in the standard finite element
context while only a minor subset needs special attention so that the assembled matrices and vectors are still
sparse. While there are various approaches possible for a concrete representation of a basis of the function space
(3.14), we choose a Heaviside enrichment, cf. i.a. [14, 26,28], so that uh ∈ V kh , is given by

uh =
∑
i∈N

uivi +
∑
j∈Ñ

ûjHvj

with basis functions vi, i ∈ N , of the associated standard Lagrangian function space Ṽ kh = {vh ∈ C(Ωh) : vh|S ∈
Pk, ∀S ∈ Sh} and corresponding coefficients ui. The index set of enriched basis functions Ñ is defined by

Ñ := {i ∈ N : measd−1(Γh ∩ supp(vi)) > 0, vi ∈ Ṽ kh },
ûj are the enriched coefficients, and

H(x) =

{
1, for x ∈ Ω2,h

0, else

is the Heaviside function. The advantage of using a strong enrichment, like the presented Heaviside enrichment,
is its flexibility as it can be used for problems with strong and weak discontinuities by adding corresponding
conditions using Nitsche’s technique.

Although using curved intersection segments and the corresponding adaption of the quadrature rules are
possible as shown in [10], k = 1 is chosen as polynomial degree in this paper so that Γh is an linear approximation
of Γ, thus, making the intersecting segments Si linear, too. Fig. 3.1 shows a visualization of a standard and the
corresponding enriched basis function for a 2D setting.

Remark: As shown in [5], this enrichment is equivalent to the method proposed by [17] which is called cut cell
method and based on duplicating nodes of intersected elements.

4. Discretization of the level set problem

The level set problem can be discretized by both, the method of lines and Rothe’s method. Since using the
method of lines is more common, we continue with this approach and, firstly, derive a suitable weak formulation
before discretizing the problem. Please note that this subsection is just a brief overview of the approaches
considered in our previous work [18] and the references therein.

4.1. Weak formulation. A weak formulation of the level set problem (2.4) can be easily derived using the time
dependent function space

W (t)~V ,ϕD
= {v ∈ L2(Ω) : ~V (·, t) · ∇v ∈ L2(Ω) ∧ v|∂Ωin(·,t) = ϕD(·, t)}.

By multiplying (2.3) with an arbitrary test function v ∈ L2(Ω) and integrating over Ω, we end up with the

weak formulation of the level set problem (2.4): For t ∈ (t0, tf ) find ϕ(·, t) ∈ W~V ,ϕD
(t) with ∂ϕ

∂t ∈ L2(Ω) s.t.
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ϕ(·, t0) = ϕ0 and

(4.1)

(
∂ϕ

∂t
, v

)
L2

+ (~V · ∇ϕ, v)L2 = 0, ∀v ∈ L2(Ω), t ∈ [t0, tf ].

4.2. Discretization in space. For the triangulations {Sh}h>0 we introduce the standard Lagrangian finite
element space

(4.2) W l
h = {vh ∈ C(Ωh) : vh|S ∈ Pl, ∀S ∈ Sh},

and for functions with Dirichlet boundary conditions we define for [t0, tf ] the affine space

(4.3) W l
h,ϕD

(t) = {vh ∈ C(Ωh) : vh|S ∈ Pl, ∀S ∈ Sh, v(x) = ϕD(x, t), ∀x ∈ ∂Ωin,h(t)},
with l ≥ 1 and ∂Ωin,h(t) being the discrete influx boundary5. Using these function spaces, (4.1) discretized in

space reads: For t ∈ [t0, tf ] find ϕ(·, t) ∈W l
h,ϕD

with ~V (t) ∈ L∞(Ωh) and ∂ϕh

∂t ∈ L2(Ωh) such that

(4.4)
∑
S∈Sh

(
∂ϕh
∂t

+ ~V · ∇ϕh, vh
)
L2(S)

= 0, ∀vh ∈W l
h.

In this paper as well as in many other applications like multi-phase flow, the polynomial degree l = 2 is chosen
for the finite-dimensional function space (4.3). This is due to different reasons, for example the quality of the
curvature approximation of the level set function containing second derivatives, as pointed out in [16]. Moreover,
using quadratic basis functions has the additional advantage that the degrees of freedom coincide with the
degrees of freedom of linear basis functions on a regularly refined mesh. This will be extensively exploited for
characterizing the interface Γ discretely and by the reinitialization technique, see Section 4.5.

Remark: It is well known, that solving hyperbolic PDEs with standard finite element methods can be insta-

ble, especially for high velocities ~V . An approach to overcome this issue is using a stabilization method [33]
to slightly reformulate the discretized problem to enforce stability. A method well known in literature is the
Streamline-Upwind/Petrov-Galerkin (SUPG) stabilization [8]. In this paper however, we do not use any stabi-
lization technique due to the small velocities and the absence of an advection term in (2.1). Further reference on
this topic and the adjusted formulation of (4.4) can be found in [16] and [18].

4.3. Discretization in time. For time discretization of (4.4), the so-called θ−scheme is used. Since the time
discretization of the level set problem may differ in comparison to the discretization described in Section 3.1, we
now discretize the interval [t0, tf ] by Ñt + 1 time steps tn = t0 + n∆̃t, n = 0, . . . , Ñt with ∆̃t denoting the time
step. Let θ ∈ [0, 1] be a parameter6 and ϕnh(·) ≈ ϕ(·, tn) be an approximation of the level set function ϕ at time
tn. The completely discretized level set problem reads

(4.5)
∑
S∈Sh

(
ϕn+1
h − ϕnh

∆̃t
+ θ~V n+1 · ∇ϕn+1

h + (1− θ)~V n · ∇ϕnh, vh
)
L2(S)

= 0, ∀vh ∈W 2
h .

4.4. Representation of Γ. An important aspect of the discretization is the discrete approximation of the
interface Γ. While we assumed Γh to be an arbitrary approximation of Γ for the formal definition of the function
spaces and the introduction of the discrete formulation of the Stefan problem in Section 3, we now describe the
approach chosen in this article which follows the idea presented in [16].

For tn = t0 + n∆̃t, n = 0, . . . , Ñt, let ϕh(·, tn) ∈ W 2
h be the finite element approximation of the level set

function ϕ, Γ̄h its zero level, and

(4.6) SΓ
h :=

{
S ∈ Sh : measd−1(S ∩ Γ̄h) > 0

}
the set of simplices containing Γ̄h. We drop the time tn as an argument in this paragraph in our notation for
simplicity and define SΓ

h/2 as the set consisting of all simplices that are obtained, if the elements in SΓ
h are

regularly refined.
The finite element approximation ϕh of ϕ is then linearly interpolated by Iϕh using standard Lagrange

interpolation on the patch of refined elements S ∈ SΓ
h/2 and the discrete approximation of Γ is given by

Γh := {x ∈ Ω : Iϕh(x) = 0} ,
as shown in Fig. 4.1 for a 2D setting. A detailed investigation about the approximation quality and the
discretization error of this discrete interface representation is given in [16].

5Note that the time dependency of this function space is only introduced by the influx boundary and the corresponding boundary

condition. If both are time independent, the function space W l
h,ϕD

is also time independent.
6Note that θ = 0 leads to the explicit Euler-scheme while θ = 1 results in the implicit Euler-scheme.
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Figure 4.1. Construction of the discrete representation Γh of a interface Γ for d = 2

Remark: While a high order approximation of the interface Γ is possible, cf. [10], using the presented approach
to get a discrete representation Γh has several advantages. First of all, the degrees of freedom (DOFs) of ϕh
and Iϕh coincide due to the choice of ϕh ∈W 2

h , allowing for a fast interpolation. More important, the segments
of ΓS , S ∈ Sh/2, are straight resp. planar which makes the computation of intersection points very easy. This
fact is heavily utilized during the computation of the distances in the reinitialization method presented in the
following section. Another advantage of this approach is that the discrete counterparts

Ω1,h := Ω1,h(ϕh) = {x ∈ Ω : Iϕh(x, tn) < 0}
and

Ω2,h := Ω2,h(ϕh) = {x ∈ Ω : Iϕh(x, tn) > 0}
at time tn = t0 + n∆̃t, n = 0, . . . , Ñt, can be easily (re-) constructed.

4.5. Maintaining techniques. As mentioned earlier, it is beneficial to have a level set function ϕh which is
close to a signed distance function. Unfortunately, this property may be lost during the evolution of the level
set function in time due to various reasons, e.g. discretization errors, insufficient approximation of the curvature
and topological changes. To regain the signed distance property, the level set function is reinitialized with a
variant [16] of the Fast Marching Method (FMM) [34], providing a signed distance approximation ϕ̃h of ϕh.
Since the FMM slightly distorts the interface Γh and, consequently, is not volume-preserving, we present a
volume correction algorithm in Section 4.5.2 which can be applied during the reinitialization process. Please note
that a more detailed description of these techniques can also be found in [16] and our previous work [18].

4.5.1. Reinitialization via FMM. Given ϕh ∈W 2
h on Sh, we firstly compute the linear interpolation Iϕh of ϕh on

the regularly refined triangulation Sh/2, cf. Section 4.4. Let V(S) denote the set of vertices given on a simplex

S ∈ Sh/2 and V := V(Sh/2) be the (discrete) set of all vertices of Sh/27. The patch of order l + 1, l ≥ 1, of
elements related to a vertex v ∈ V(S), S ∈ Sh/2 is given by

P l+1(v) := {S ∈ Sh/2 : V(S) ∪ V(P l(v)) 6= ∅}
with

P1(v) := {S ∈ Sh/2 : v ∈ V(S)}.
The basic idea of the FFM, consisting of two phases, is to compute distance values d̂(v) for any vertex v ∈ V
taking thereby advantage of the fact that all information will only propagate outwards from the zero level set of
the function.

In the first, so-called initialization phase, distance values d̂(v) are then calculated for v ∈ V(SΓ
h/2) by

d̂(v) = min
S∈P2(v)

dist(v,Γh,S).

Please note that for stability reasons, cf. [16], we do not consider the patch P1(v) but the extended patch P2(v)
including also all second neighbor simplices for this computation.

In the second phase referred to as extension phase, the initially computed values are propagated into the far
field. Therefore, we introduce the finished set

VF = {v ∈ V(Sh/2) : d̂(v) is computed},
which stores already processed vertices, as well as an active set

VA = {v ∈ V(Sh/2) : At least one neighbor vertex of v is in VF }

7Please note that by choosing a linear Lagrangian basis, vertices and degrees of freedom coincide.
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storing vertices, which are likely to be dealt with next since they are neighbors of already processed vertices.
The process of choosing the vertex v ∈ VA which is considered next is based on a tentative distance function

d̃(v) = min{d̃S(v) : S ∈ P1(v) with V(S) ∩ VF 6= ∅}

with d̃S(v) defined as

d̃S(v) = d̂(PW (S)(v)) + ‖v − PW (S)(v)‖.
Thereby, the function PW (S)(v) is the minimum distance projection of v onto the convex hull W (S) = V(S)∩VF ,
i.e.

PW (S)(v) = argminx∈conv(W(S))‖v − x‖.
With this construction, the value d̃S(v) approximates the distance of v to the discrete interface Γh by using the
simplex S (which has at least one vertex in VF ) as an information propagator. Out of all these possible values,

the minimum value d̃S(v) is used as the tentative distance value respectively the most likeliest distance value, if
all processed vertices/simplices are considered as information propagators.

Once values d̃(v) can be calculated, the extension phase works by extracting the current nearest vertex v∗ =

argminv∈VA d̃(v), setting d̂(v∗) = d̃(v∗), removing this vertex from the active set VA and adding it to the finished

set VF . Then the active set VA and the tentative values d̃(v), v ∈ VA are updated according to the updated
finished set and the procedure is repeated until all vertices are processed.

As the result of the FMM, we obtain unsigned distance values d̃(v) for every vertex v of the refined triangula-
tion. These uniquely define a reinitialized piecewise quadratic level set function ϕ̃h ∈ W 2

h due to the one-to-one

relation between vertices in Sh/2 and DOFs in W 2
h . Note that the values d̃ are unsigned, hence a multiplication

with the correct sign is necessary before using them as new DOFs of ϕ̃h.

4.5.2. Volume conservation. While the reinitialized level set function ϕ̃h is close to a signed distance function,
its zero level set Γ̃h does not coincide with the zero level set Γh of the original level set function ϕh any more.
Consequently, the volume is not preserved during reinitialization. This is also true for the linearized level set
functions Iϕh and Iϕ̃h on Sh/2.

One way to overcome this issue is to apply a local volume conservation algorithm after the initialization phase

of the FMM in which the new (unsigned) distance values d̂(v) for v ∈ V(SΓ
h/2) are computed. In this article,

we use the localized correction algorithm of [6] that is briefly explained in the following. For a more detailed
description, we refer to [6] and [18].

As before, we only consider the linear level set functions Iϕh and Iϕ̃h on Sh/2. For arbitrary functions φ, ψ,
we define the volume functional

∆V (φh, ψh, S) =

∫
S∩{x∈Ωh :φ<0}

dx−
∫

S∩{x∈Ωh :ψ<0}

dx, S ∈ Sh/2.

Let ΩΓh
= ∪

S∈SΓh
h/2

S be the domain of all intersected simplices and W 1
h/2(ΩΓh

) be the corresponding function

space, cf. Eq. (4.2). The values d̂(v) computed in the initialization phase of the FMM then define a tentative

level set function φ̃ten ∈ W 1
h/2(ΩΓh

). To apply the volume conservation, we adjust the values of this function in

the following four steps:

(1) Calculate an offset CS ∈ R for every S ∈ SΓh

h/2 such that

∆V (I(ϕh), φ̃ten(·) + CS , S) = 0

is satisfied. Thereby the addition φ̃ten(·) +CS is understood as a DOF-wise addition, i.e. CS is added to

every DOF of φ̃ten.
(2) Compute a continuous, piecewise linear offset function φcorr ∈ W 1

h/2(ΩΓh
) by averaging values CS on

P1(v) so that a value φcorr(v) for v connected to S ∈ SΓ
h/2 is given as

φcorr(v) =
1

|S ∈ P1(v) ∩ SΓh

h/2|
∑

S∈P1(v)∩SΓh
h/2

Cs.

(3) Search a global multiplier CΩ ∈ R such that the equation

∆V (I(ϕh), φ̃ten(·) + CΩφ
corr(·),Ωh) = 0

is satisfied. Since this is already the second optimization, the resulting CΩ is usually close to 1.
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Figure 4.2. Different vertices in the narrow band level set method for a two-dimensional prob-
lem: VINB in blue, VONB in blue and red.

(4) Adjust the d̂(v) values for vertices that are processed in the FMM initialization phase by setting them to

d̂(v) =

{
d̂(v)− CΩφ

corr(v), if v ∈ Ω1,h,

d̂(v) + CΩφ
corr(v), if v ∈ Ω2,h,

and proceed the extension phase of the FMM with these modified d̂(v) values.

The roots in steps 1 and 3 can e.g. be computed by using the regula falsi algorithm in the Anderson/Björk
variant [4] as shown in [18].

4.6. Narrow band approach. A major drawback of the level set method as an interface representation tech-
nique is the inherent computational effort which is caused by using a higher dimensional object (the level set
function) to represent the lower dimensional object (the interface). To overcome this drawback, the narrow band
level set method [32] can be used. The basic idea in this is to restrict the steps of the interface evolution, namely
the PDE solution and the reinitialization, to a small narrow band around the current interface.

4.6.1. Construction of the narrow band(s). Two sets of vertices are defined via a small γ ∈ Z+, namely the inner
narrow band

(4.7) VINB = {v ∈ V(Sh) : ϕh(v) < γh},

with γh = γh and h = maxS∈Sh diam(S), and the outer narrow band

VONB = VINB ∪

 ⋃
v∈VINB

⋃
S∈P1(v)

V(S)


which corresponds to all vertices of the inner narrow band set as well as all vertices of the first neighbor patch
of all simplices in the inner narrow band domain. An exemplary visualization of both sets can be seen in
Figure 4.2. Using these set, we define the corresponding domains ΩINB := {S ∈ Sh : V(S) ⊂ VINB} and
ΩONB := {S ∈ Sh : V(S) ⊂ VONB}.

Remark: The narrow band method is based on the assumption that the level set function ϕh(v) is an approximate
signed distance function, cf. (4.7) so that the DOF values in the inner narrow band are be approximately equal
to the exact distance from a vertex to the interface, making reinitialization even more important.

4.6.2. Modifications to the level set problem. Based on these definitions, the concept of the narrow band level set
method is to solve (4.5) on ΩINB, reinitialize the solution on ΩONB and extend the function with a constant value
±(γh + ε) outside of ΩONB. Unfortunately, solving the original level set problem (4.5) on ΩINB and reinitializing
the solution on ΩONB often exhibits oscillations at the boundary ∂ΩINB as shown in [32]. Due to this, a modified
level set problem is introduced reading

(4.8)
∂ϕ

∂t
+ ζ(ϕ)~V · ∇ϕ = 0 in Ω× [t0, tf ],
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where

(4.9) ζ(ϕ) = ζ(ϕ(x, t)) =


1 if |ϕ(x, t)| ≤ βI,h,
(ϕ(x, t)− βO,h)

2 2ϕ(x,t)+βO,h−3βI,h

(βO,h−βI,h)3 if βI,h < |ϕ(x, t)| ≤ βO,h,
0 if |ϕ(x, t)| > βO,h,

is a cutoff function that slowly decreases the influence of the advection term towards the boundary of ΩINB.
The parameters βI,h = βIh and βO,h = βOh with βI < βO < γ divide the inner narrow band layer into three
sublayers, s.t. the cutoff parameter is equal to 1 in the innermost layer, tends to zero in the middle layer and is
equal to zero in the outermost layer of the inner narrow band8.

As for the discretization of (4.8), we treat (4.9) explicitly w.r.t. time by defining ζn+1
h = ζ(ϕnh) to avoid the

task of solving a non-linear equation. For doing so, the innermost narrow band layer width βIh has to be chosen
to be sufficiently large. Using this approach, the discretized level set problem on the narrow domain ΩINB is
given as

(4.10)
∑
S∈Sh

(
ϕn+1
h − ϕnh

∆̃t
+ θζn+1

h
~V n+1 · ∇ϕn+1

h + (1− θ)ζnh ~V n · ∇ϕnh, vh
)
L2(S)

= 0,

for vh ∈W 2
h .

4.6.3. CFL conditions. When using the narrow band level set method, one has to consider two CFL conditions:

• Since ζ decreases the transport of the level set function everywhere but in the most inner band, the

velocity ~V must not exceed a value which would make the interface Γh leave this region. Therefore, the
CFL condition

(4.11) ∆t‖‖~V n‖2‖L∞(ΩINB) < βI,h, ∀n ∈ {0, . . . , Ñt}
must hold.

• For constructing Ωn+1
INB ⊂ ΩnONB, we need ϕh to be close to a signed distance function on ΩnONB. If the

velocity transporting the interface is too big, we may end up considering the constant values ±(γh + ε)
during the solution and reinitialization process. To avoid this, the condition

(4.12) ∆t‖‖~V n‖2‖L∞(ΩINB) < h, ∀n ∈ {0, . . . , Ñt}.
has to be respected.

Remark: A typical parameter choice includes βI > 1 so that (4.11) is automatically fulfilled, if (4.12) holds,
making this the limiting condition. Please also note that even though the method’s description assumes the
reinitialization procedure to be applied after every time step, it might be better to apply reinitialization and
update the narrow band after every m-th time step instead. This results in a more restrictive CFL condition
given by

(4.13) m∆t‖‖~V n‖2‖L∞(ΩINB) < h, ∀n ∈ {0, . . . , Ñt}.

4.7. Construction of a velocity field. The solution of the level set problem is based on knowing the velocity
~V . For the Stefan problem, this velocity field ~V n ∈ (W 1

h )d can be computed in two steps by using the Stefan
condition (2.2), which discretely reads

(4.14) [[κ∇unh · ~nh]] = L~V n · ~nh on Γn, n ∈ {1, . . . , Nt}.
In the first step, (4.14) is used to compute the velocity at the interface which is then extended to the whole
narrow band in a second step, making this approach very similar to the previously presented Fast Marching
Method. However, please note that the velocity field is not calculated on the regularly refined mesh since we do
not need a piecewise quadratic velocity function.

4.7.1. Initialization phase. First of all, we compute the projections wj , j ∈ N ⊂ N, of v onto the discrete
interface Γh such that ‖v − wj‖ = dist(v,Γh) holds for all j. As there can be multiple points that satisfy the
minimum distance requirement, we may have multiple projections wj . Now, we present two approaches that can

be used to compute the corresponding values ~V n(v) for v ∈ V(S), S ∈ SΓ
h :

8A viable choice for these parameters is βI = 2, βO = 4, γ = 6.
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Figure 4.3. Evaluation points of in the DSCE velocity calculation method

(1) Direct gradient evaluation (DGE) We compute the discrete temperature gradient9 ∇unh, which is a
piecewise constant, vectorial XFEM function, and the velocity field at the projections wj directly using(

~V n(wj)
)
k

=
(
∇(un1,h)(wj)

)
k
−
(
∇(un2,h)(wj)

)
k
,

with index k = 1, . . . , d denoting the respective component. The velocity vector at v is then defined by

averaging over all contributions
(
~V n(wj)

)
k

of all projections wj that are found in the previous step.

(2) Discretized Stefan condition evaluation (DSCE) [7] For every projection w ∈ {wj : j ∈ N}, we
use point-value tuples(

w
l
4 δh
− , un1,h

(
w
l
4 δh
−

))
and

(
w
l
4 δh
+ , un2,h

(
w
l
4 δh
+

))
, l = 0, . . . , 4,

with

wrδh+,− = w ± rδh~nh(w)

and δh = δhmax a step-width parameter to perform a linear least-squares regression through these five
points on each separate side, cf. Figure 4.3. The slope of these regressions is taken to approximate the
gradient in normal direction at w and the resulting normal velocity is given as

(~V n · ~nh)(w) =
2

L

[
κ1

5

2un1,h(w) + un1,h

(
w

1
4 δh
−

)
− un1,h

(
w

3
4 δh
−

)
− 2un1,h

(
wδh−

)
δh

+
κ2

5

2un2,h(w) + un2,h

(
w

1
4 δh
+

)
− un2,h

(
w

3
4 δh
+

)
− 2un2,h

(
wδh+

)
δh

]
.

By multiplying with ~nh a velocity field ~V n(w) = (~V n ·~nh)(w)·~nh(w) can be obtained from this expression.
At the end, we set the velocity field at v to the average of all contributions from the projections w ∈
{wj : j ∈ N}.

Remark: In numerical studies, we sometimes observe stability issues for the DGE method in situations with
“barely intersected” simplices, i.e. for situations where we have either a very large or a very small volume ratio
|S ∩ Ω2,h|/|S ∩ Ω1,h|. To overcome these problems, we neglect any simplex S and the corresponding discrete
interface Γh,S where the ratio of one subvolume to the complete simplex volume is below a small tolerance.

4.7.2. Extension phase. To propagate the initialized velocity values into the far field, we can make extensive use
of the already presented FMM algorithm. Since the algorithm propagates (distance) values into the far field in
the reinitialization, we can basically step through the same procedure and propagate velocity values additionally
to the distance values. Concretely, we conduct the following 2 steps:

(1) Calculate distance values for vertices v ∈ V(S), S ∈ SΓ
h so that initialized distance and velocity field

values are given after this step.

9Note that this gradient is a piecewise constant, vectorial XFEM function.
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(2) Propagate the distance values into the far field through the FMM extension phase and additionally

propagate the velocity values. If a vertex v∗ regarding d̂ in the distance propagation is processed, we set
the velocity to

~V n(v∗) = ~V n
(
PW (Smin)(v

∗)
)

where the value ~V n
(
PW (Smin)(v

∗)
)

is again calculated through the barycentric coordinates of the projec-
tion PW (Smin

(v∗) and already known velocity values.

Remark: Note that though (2) coincides highly with what we do in the reinitialization process, there is actually
a minor difference that needs to be considered: There can be multiple minimizing simplices Smin that minimize
the current d̃(v∗) function for the vertex that is processed next. While this does not matter in the reinitialization
since the distance value coincide for all these minimizing simplices, the velocity values can differ. In this case,
we need to set the velocity to be the average of all contributions, i.e.

~V n(v∗) =
1

|Smin|
∑

S∈Smin

~V n
(
PW (S)(v

∗)
)
,

where Smin captures all simplices that minimize the tentative distance function. Also note that there is no such
thing as a tentative velocity function in this procedure. The vertex that is processed next is still defined by the
vertex that minimizes the tentative distance function d̃ on the current active set VA. In other words, the velocity
field values is information that is propagated alongside but does not interfere with the FMM procedure itself.

5. Implementation aspects

The considered problem is solved with miXFEM and a level set toolbox, both developed within our work group
for the FEniCS framework.

5.1. The FEniCS project. FEniCS is a collaborative project of researchers who develop tools for automated
scientific computing, especially in the field of finite element methods for the solution of partial differential
equations [24]. It consists of a collection of core components such as

(1) the Unified Form Language UFL [3], which is a domain-specific language to specify finite element dis-
cretizations of differential equations using variational formulations close to the mathematical notation,

(2) the FEniCS Form Compiler FFC [23,30], which analyzes given UFL code and, in combination with Instant

and FIAT [22], generates UFC [2] code for arbitrary finite elements on simplices based on the variational
forms specified in the UFL file,

(3) DOLFIN [25], the main problem solving environment and user interface whose functionality integrates
the other FEniCS components and handles communication with external libraries or toolboxes such as
miXFEM.

5.2. miXFEM - an XFEM toolbox for FEniCS. FEniCS provides a lot of useful classes, structures and
other utilities for solving PDE based problems with FEM. However, the FEniCS framework has to be extended
by new modules for considering non-standard problems. In order to solve problems with arbitrary time-dependent
discontinuities that may evolve and also intersect each other, we developed an XFEM toolbox [19] partly based
on the PUM toolbox [27,28].

miXFEM adds features to the domain specific language UFL in order to define enriched function spaces. Addition-
ally a new syntax for integrals on arbitrary interfaces is introduced. The UFL file is compiled using an extended
FeniCS Form Compiler, which understands and interprets the new features, to generate the corresponding C++
code. Based on this code, the problems can be solved numerically using an extension of the DOLFIN library, im-
plemented in C++. While some key features are presented in [19], a detailed technical description of all features
will be given in an upcoming publication.

5.3. Level set toolbox. Another extension to FEniCS used to solve problem (2.5)-(2.7) is a level set toolbox,
which is used to compute the evolution of the level set function resp. the discontinuity. The toolbox consists
of discretized weak formulations for different time stepping schemes formulated in UFL and compiled with the
FFC which are used by a C++ library. This library provides an implementation of the presented Fast Marching
Method and the volume correction approach which can be used for various problems. A detailed description is
given in [18]. Recently, the narrow band approach has been included to improve the efficiency of the implemented
methods.

5.4. Problem related aspects for solving the Stefan problem in level set formulation.
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Decoupling of thermal problem and level set problem. Since the problems (2.5) and (2.7) are coupled by the Stefan
condition (2.6), a numerical decoupling strategy is needed to solve the complete problem. In this article, we use
the simple approach to solve the problems in succession:

Given all data for tn, we firstly solve the level set problem to obtain ϕn+1
h and the new interface Γn+1

h based

on the old data of the thermal problem. The computed interface Γn+1
h is then used to construct new XFEM

function spaces and to solve the thermal problem for un+1. Using the approaches presented in Section 4.7, the

interface’s normal velocity ~V n+1 · ~n and the velocity field ~V are computed. In our approach, we use the implicit
Euler scheme for time discretization in both subproblems, however, we still may need intermediate time steps for
solving the level set problem due to the CFL conditions, as explained in the next paragraph.

Time stepping. As mentioned before, the discretization of the time interval [t0, tf ] for the thermal problem (2.5)
in Section 3.1 and for the transport problem (2.7) in Section 4.3 do not necessarily have to coincide. The reason
for this can be that, firstly, we may use different time stepping methods for both subproblems, e.g. the Crank-
Nicolson method for the level set problem and the implicit Euler method for the thermal problem, and, secondly,
we may need smaller time steps due to the arising CFL conditions when using the narrow band approach. Hence,
we have to synchronize the time step sizes for the subproblems in order to compute a numerical solution of the
coupled problem.

For this purpose, we use the time step size ∆t of the thermal problem as major time step size and the values
tn = t0 +n∆t with n ∈ {0, . . . , Nt}, cf. Section 3.1, as so-called synchronization points. Based on this, we adjust
the time step size ∆tϕ for the level set problem, if necessary, so that the discretization method with time step

size ∆̃t and the CFL condition(s) with time step size ∆tCFL are respected. This means, we have may have to
introduce potentially non-equidistant intermediate time steps tn,i in order to reach the (next) synchronization
point(s). The described procedure is illustrated in Fig. 5.1. As we will see in Example 2, this can influence the
solution process and the convergence behavior.

Now, the complete numerical approach for solving the Stefan problem in level set formulation is shown in
Algorithm 1.

6. Results

The presented numerical approach consists of a level set solver including maintaining techniques, an XFEM
framework, and some methods for tackling the Stefan problem. Since we already verified the level set toolbox,
cf. [18], and the XFEM framework for time-dependent problems, see [19], we now focus on the overall results of
the complete approach. In particular, a numerical convergence study is performed with respect to different time
step sizes ∆t and varied maximum cell diameters h. Similar to our previous work with prescribed interface [19],
two academical examples with known analytical solutions u are examined and the considered errors for u − uh
are the L2-error

‖u− uh‖L∞(L2) := max
t∈(t0,tf )

‖u(·, t)− uh(·, t)‖L2(Ω)

and the (semi) H1-error

‖∇u−∇uh‖L2(L2) :=

√∫ tf

t0

‖∇u(·, t)−∇uh(·, t)‖2L2(Ω) dt.

(a) Time stepping for different discretization schemes (b) Time stepping due to CFL conditions

Figure 5.1. Time stepping synchronization: Intermediate time steps for the solution of the
level set problem are synchronized with the time step size for the thermal problem.
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Algorithm 1 Solver for the two-phase Stefan problem in level set formulation

Input: Ω, ΓD, ΓN , Sh, ϕ0, u0, uΓ, f, κ, L, uD, gN , ∆t, βO, βI , γ.

Output: unh, Γnh, ϕ
n
h, ~V

n
h for n = 0, . . . , NT .

Initialization:

Obtain ϕ0
h by reinitializing the given level set function ϕ0.

Construct the function space V 1
h,uD

(t0) with ϕ0
h.

if the narrow band method is applied then
Initialize ΩINB and ΩONB with ϕ0

h.
end if
Interpolate u0 onto V 1

h,uD
to obtain the initial temperature u0

h.

Time stepping:

for n = 0, . . . , Nt − 1 do

Derive the velocity field ~V n from unh with one of the methods that are presented in Section 4.7.

Assign tϕ = n∆t (current simulation time) and ϕ
tϕ
h = ϕnh.

while tϕ < (n+ 1)∆t do
Assign largest allowed time step to ∆tCFL such that CFL conditions (4.11) and
(4.13) are satisfied.

Calculate time step for level set propagation ∆tϕ = min{∆tCFL, (n+ 1)∆t− tϕ}.
Propagate level set function to obtain an updated level set function ϕ

tϕ+∆tϕ
h .

if reinitialization is necessary then

Replace ϕ
tϕ+∆tϕ
h by its reinitialized version.

if narrow band method is applied then
Update inner and outer narrow band regions ΩINB, ΩONB with the

reinitialized function ϕ
tϕ+∆tϕ
h .

end if
end if
Set tϕ = tϕ + ∆tϕ.

end while
Set ϕn+1

h = ϕ
tϕ
h .

Construct the new discrete interface Γn+1
h from ϕn+1

h .

Construct the new XFEM space V 1
h,uD

(tn+1) with Γn+1
h .

Solve for the new temperature approximation un+1
h .

end for

The order of convergence for each error is as usual determined for varied ∆t and h and the results are compared
to the convergence rates using a standard finite element method for the heat equation using the implicit Euler
scheme which at best, cf. [13], are given by

‖u− uh‖L∞(L2) =

{
O(hk+1)
O(∆t)

and

‖∇u−∇uh‖L2(L2) =

{
O(hk)
O(∆t)

.

For both examples, a regular structured triangular mesh is used. The range of chosen cell diameters h and
time step sizes ∆t are specified for each example individually in the respective subsection. In regards to the
time stepping scheme, we use the implicit Euler method in both examples for all subproblems. While we present
examples for 2D situations only, please note that the same methods can be used in a straight forward way for
3D problems as well.

6.1. Example 1: Straight interface. Choosing Ω := (0, 1)2 with ΓD := {(x, y) ∈ ∂Ω | y = 0 ∨ y = 1} and
ΓN := ∂Ω\ΓD for the geometry and κ1 := 1, κ2 := 2, L := 2, uΓ := 0 for the material parameters, an analytical
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(a) u at t = 0 (b) u at t = 0.15625 (c) u at t = 0.3125

Figure 6.1. Example 1: Different level sets including the zero level set (thick yellow line) of
the analytical solution u at different time instants t.

solution to problem (2.5)-(2.7) for [t0, tf ] := [0, 5 · 2−4] is given by

u(x, t) =

 cos
(
πx
2

)
sin
(
πϕ(x,t)
y−ϕ(x,t)

)
+ ϕ(x, t) on Ω1(t)

cos
(
πx
2

)
sin
(

πϕ(x,t)
2(y−ϕ(x,t))

)
+ 1

2ϕ(x, t) + ey + 11
11t+5 on Ω2(t)

,

with x = (x, y) ∈ Ω. The corresponding interface Γ(t) to this solution is a straight horizontal line moving
downwards which is characterized by the zero level set of the level set function

ϕ(x, t) := y − ln

(
11

11t+ 5

)
.

The source term f for the right-hand-side, the boundary functions uD and gN and the initial conditions have to
be chosen with respect to the specified analytical solution and can be easily computed. The analytical solution u
is shown in Figure 6.1 at different time instants and the results of the convergence analysis are shown in Figure
6.2.

In the latter, one can see that the problem is dominated by the spacial error reaching the optimal convergence
order 2, cf. Fig 6.2(a). Moreover, an interesting effect can be seen in Fig. 6.2(b) (left) for the coarsest mesh size
where the error ‖u− uh‖L∞(L2) increases for decreasing time step sizes. This behavior is a indirect consequence
of the narrow band approach and the reinitialization method. As we have to reinitialize the level set function
after every time step, the total number of reinitialization procedures increases with decreasing time step size ∆t.
As mentioned, every reinitialization slightly alters the interface position leading to a different normal velocity,
provided by evaluating the Stefan condition, thereby influencing the complete solution process. Therefore, the
errors may not decrease but sometimes increase for very small time step sizes, if the spatial discretization is
coarse and fixed.

6.2. Example 2: Circular interface. On Ω := (−1, 1)2 with ΓN := ∂Ω consider for [t0, tf ] := [0, 3
4 ] the

function

u(x, t) =


A
(
||x||2 −R(t)2

)
on Ω1(t)

A
(
||x||2 −R(t)2

)
−R(t)− Ṙ(t) (||x|| −R(t)) +

Ṙ(t)
(
Ṙ(t)+

1
R(t)

)
2(||x||−R(t))2 on Ω2(t)

.

with A > Ṙ(t)
2R(t) , to ensure u < 0 on Ω1(t) and u > 0 on Ω2(t), and R(t) := R0 + 1

2 sin (πt). Choosing R0 = 0.3,

A = 4.1 as well as κ1 := κ2 := 1, L := 1 and uΓ := 0 for the parameters, this is a solution to problem (2.5)-(2.7)
where the interface Γ(t) corresponds to a circle with radius R(t), which is centered at the origin and is expanding
till t = 0.5 and then shrinking again. Γ(t) can be characterized by the level set function

ϕ(x, t) := R2(t)−||x||2.
As before, the right-hand-side term f , the Neumann boundary function gN and the initial conditions have to be
chosen with respect to the specified analytical solution and can be derived easily. The analytical solution u is
shown in Figure 6.3 at different time instants.
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∆t = 2−4: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h0.48), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h0.791)

∆t = 2−5: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h1.32), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.08)

∆t = 2−6: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h1.81), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.12)

∆t = 2−7: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h2.11), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.15)

∆t = 2−8: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h2.16), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.16)

∆t = 2−9: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h2.19), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.17)

(a) ‖u− uh‖L∞(L2) (left) and ‖∇u−∇uh‖L2(L2) (right) over h for different time step sizes
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10 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t−0.147), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t−0.021)

h =
√
2 · 1

15 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.005), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.0174)

h =
√
2 · 1

20 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.0917), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.0408)

h =
√
2 · 1

25 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.27), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.0702)

h =
√
2 · 1

30 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.369), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.0968)

(b) ‖u− uh‖L∞(L2) (left) and ‖∇u−∇uh‖L2(L2) (right) over ∆t for different h

Figure 6.2. Convergence tests for example 1 including approximated orders of convergences.

The convergence behavior is visualized in Fig. 6.4. Therein one can see that this problem is also highly
dominated by the spacial error and qualitatively similar to Example 1. In regards to the convergence order,
however, we can only archive suboptimal results. One reason for this is that although ϕ can be exactly approxi-
mated by ϕh if using quadratic basis functions, the linear polygonal approximation Γh(t) of the circular interface
Γ(t) introduces an additional error propagating through the solution process, which is different compared to the
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(a) u at t = 0 (b) u at t = 0.375 (c) u at t = 0.75

Figure 6.3. Example 2: Different level sets including the zero level set (thick yellow line) of
the analytical solution u at different time instants t.

situation in Example 1. Additionally, the same problem as described in the previous section arises, i.e. for small
time steps we have to reinitialize more often introducing thereby a secondary approximation error. However,
an even more significant impact on the convergence behavior has the narrow band approach, respectively the
CFL condition (4.12): In addition to using the reinitialization procedure after each time step, the CFL condition
may also request intermediate time steps, see Section 5.4, especially for big ∆t. In such a situation, the narrow
band has to be updated and the update process relies on the signed distance property making an additional
reinitialization step mandatory for every intermediate time step as well as very regular one. As a consequence,
the introduced errors also propagate through the solution process and, for some situations, prevent a convergent
behavior.

Consider exemplary the graph of the error ‖u − uh‖L∞(L2) for ∆t = 2−4 in Fig. 6.4(a)(left): As the mesh
size decreases, (4.12) requests more intermediate time steps introducing thereby more reinitialization procedures
which in turn modify the interface position and, hence, the solution. Due to the complex character of the example,
small deviations of the interface position have a high impact on the solution of the thermal problem so that,
finally, we end up with bigger errors on finer meshes then on coarser meshes. Alternatively, it can be seen in Fig.
6.4(b) (left) that for a fixed spacial discretization at some point the error ‖u− uh‖L∞(L2) does not decrease any
more but sightly increase as a results of the more and more reinitialization procedures.

7. Summary

In this article, we present a numerical approach to solve the Stefan problem using the level set method and
XFEM. The problem is decoupled by solving the level set problem and the thermal problem in succession. For
this purpose, the thermal problem is discretized using Nitsche’s method for internal Dirichlet boundaries and a
(local) strong enrichment based on a Heaviside function. The evolution of the interface is described by a level set
problem restricted to a narrow band region. In addition to maintaining techniques for the shape of the level set
function, two approaches are presented to compute the corresponding propagation velocity field using the Stefan
condition.

All described methods are implemented using our toolbox miXFEM for the FEniCS framework and are used for
solving two academical examples of different complexities with known analytical solutions. In both examples,
good results can be achieved with optimal rates of convergence (Example 1) or suboptimal rates of convergence
(Example 2).

Due to the modular implementation, maintaining methods for the level set problem, more precisely, the
reinitialization, which is mandatory for the narrow band approach, could be identified as “the weakness of the
approach”. However, this is just a technical issue arising within the convergence studies where very different
mesh sizes and time step sizes are considered.

Last but not least, we want to point out that due to the general approach, this numerical method is not limited
to the Stefan problem but works for all problems with arbitrary time-dependent discontinuities, e.g. multi-phase
flow.
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∆t = 2−4: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h0.102), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h0.258)

∆t = 2−5: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h0.403), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h0.395)

∆t = 2−6: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h0.883), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h0.759)

∆t = 2−7: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h1.16), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.05)

∆t = 2−8: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h1.17), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.06)

∆t = 2−9: ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(h1.17), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(h1.06)

(a) ‖u− uh‖L∞(L2) (left) and ‖∇u−∇uh‖L2(L2) (right) over h for different time step sizes
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10 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t−0.02), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t−0.034)

h =
√
2 · 2

20 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.144), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.0155)

h =
√
2 · 2

30 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.249), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.15)

h =
√
2 · 2

40 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.355), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.27)

h =
√
2 · 2

50 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.466), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.348)

h =
√
2 · 2

60 : ‖‖u− uh‖L2(Ω)‖L∞(t0,tf ) ∈ O(∆t0.593), ‖‖∇u−∇uh‖L2(Ω)‖L2(t0,tf ) ∈ O(∆t0.413)

(b) ‖u− uh‖L∞(L2) (left) and ‖∇u−∇uh‖L2(L2) (right) over ∆t for different h

Figure 6.4. Convergence tests for example 2 including approximated orders of convergences.
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8. Appendix

The discrete formulation of (3.6) is derived as follows: Multiply (3.6) with a test function v ∈ Vh and integrate
over the domain Ω1,h ∪ Ω2,h∫

Ω1,h∪Ω2,h

ξuhvhdx−
∫

Ω1,h∪Ω2,h

∇ · (κ∇uh)vhdx =

∫
Ω1,h∪Ω2,h

f̃vhdx.

Integration by parts leads to∫
Ω1,h∪Ω2,h

ξuhvhdx +

∫
Ω1,h∪Ω2,h

κ∇uh∇vhdx−
∫
∂(Ω1,h∪Ω2,h)

κ∇uh · ~nhvhdc

=

∫
Ω1,h∪Ω2,h

ξuhvhdx +

∫
Ω1,h∪Ω2,h

κ∇uh∇vhdx−
∫

ΓD

κ∇uh · n̄ vh︸︷︷︸
=0

dc

−
∫

ΓN

κ∇uh · n̄︸ ︷︷ ︸
=gN

vhdc−
∫

Γh

κ1∇u1,h · ~nhv1,hdc +

∫
Γh

κ2∇u2,h · ~nhv2,hdc

=

∫
Ω1,h∪Ω2,h

f̃vhdx.

Now, we add the “artificial” terms

0 = ∓
∫

Γh

κ{1,2}∇v{1,2},h · ~nhu{1,2},hdc±
∫

Γh

κ{1,2}∇v{1,2},h · ~nhu{1,2},hdc

and

0 =

∫
Γh

λ{1,2}u{1,2},hv{1,2},hdc−
∫

Γh

λ{1,2}u{1,2},hv{1,2},hdc

so the equation reads ∫
Ω1,h∪Ω2,h

ξuhvhdx +

∫
Ω1,h∪Ω2,h

κ∇uh∇vhdx

−
∫

Γh

κ1∇u1,h · ~nhv1,hdc−
∫

Γh

κ1∇v1,h · ~nhu1,hdc +

∫
Γh

κ1∇v1,h · ~nhu1,hdc

+

∫
Γh

κ2∇u2,h · ~nhv2,hdc +

∫
Γh

κ2∇v2,h · ~nhu2,hdc−
∫

Γh

κ2∇v2,h · ~nhu2,hdc

+

∫
Γh

λ1u1,hv1,hdc−
∫

Γh

λ1u1,hv1,hdc +

∫
Γh

λ2u2,hv2,hdc−
∫

Γh

λ2u2,hv2,hdc

=

∫
Ω1,h∪Ω2,h

f̃vhdx +

∫
ΓN

gNvhdc

Now, we put one of each artificial term onto the right-hand-side and make use of the condition u{1,2},h = uΓ on
Γh and define λ1 = λ2 ∫

Ω1,h∪Ω2,h

ξuhvhdx +

∫
Ω1,h∪Ω2,h

κ∇uh∇vhdx︸ ︷︷ ︸
=:a(uh,vh)

−
∫

Γh

κ1∇u1,h · ~nhv1,hdc−
∫

Γh

κ1∇v1,h · ~nhu1,hdc +

∫
Γh

λu1,hv1,hdc︸ ︷︷ ︸
=:a1(uh,vh)

+

∫
Γh

κ2∇u2,h · ~nhv2,hdc +

∫
Γh

κ2∇v2,h · ~nhu2,hdc +

∫
Γh

λu2,hv2,hdc︸ ︷︷ ︸
=:a2(uh,vh)

=

∫
Ω1,h∪Ω2,h

f̃vhdx +

∫
ΓN

gvhdc︸ ︷︷ ︸
=:L(vh)

−
∫

Γh

κ1∇v1,h · ~nhuΓdc +

∫
Γh

λuΓv1,hdc︸ ︷︷ ︸
=:L1(vh)

+

∫
Γh

κ2∇v2,h · ~nhuΓdc +

∫
Γh

λuΓv2,hdc︸ ︷︷ ︸
=:L2(vh)

.
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