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SOLVING THE STEFAN PROBLEM WITH PRESCRIBED INTERFACE USING AN

XFEM TOOLBOX FOR FENICS

M. JAHN AND A. LUTTMANN

Abstract. In this article, we consider the Stefan problem with prescribed interface as an example for a

process with a time-dependent discontinuity. While there are various methods for solving these type of

problems, the extended finite element method has grown popularity due to its flexibility. Partly based
on the work of Nikbakht et al., we developed an XFEM toolbox within the FEniCS framework to solve

time-dependent problems with arbitrary discontinuities. This toolbox is tested by considering different

model variants of the Stefan problem. Numerical results and convergence analysis are presented which
show the success of the chosen approach.

1. Introduction

Instationary processes with discontinuities are very common in materials science and applied physics.
From a mathematical point of view, the modeling and simulation of these type of problems is very
interesting and challenging. A well known example for a process with a time-dependent discontinuity is
the Stefan problem describing phase transitions.

Common approaches for solving the Stefan problem numerically are moving mesh methods, based
on an explicit defined sharp interface, and enthalpy methods, introducing the interface implicitly by
considering the energy balance. Unfortunately, both methods have their drawbacks, see [4, 16] and
references therein. In moving mesh methods for example not only is there a need for a remeshing
technique but performing numerous remeshing steps during the simulation is numerically expensive, too,
especially in 3D situations. Moreover, general situations including topology changes or more complex
interfaces and geometries can not be considered at all. On the other hand, the enthalpy method lacks
accuracy and numerical issues may arise, if problems with fluid flow and a capillary surface are considered.
While there are some tricks to consider some complex situations by combining both approaches [14,15],
a method utilizing the advantages of both methods is desirable.

A method which has proven to be very suitable for all kind of problems with arbitrary discontinuities
is the extended finite element method (XFEM), see e.g. [9] for an overview. XFEM is a very flexible
approach which combines most of the advantages of moving mesh and enthalpy methods. The basic
idea is to enrich the discrete function space(s) by additional basis functions at the interface location
to consider strong discontinuities, i.e. jumps in a function, and weak discontinuities, i.e. jumps in the
derivative of a function. XFEM has already been applied successfully to the Stefan problem in various
publications, e.g. [6, 20].

Irrespective of the chosen method, there is a lot of implementation work to do in order to solve
the modeled problem numerically. That is why automated code generation is growing more and more
popularity. A very well-established framework for standard finite element approaches is the FEniCS

project [18]. By using FEniCS a user can specify a problem in a specific language close to the mathematical
formulation and let the software generate most of the corresponding code, e.g. quadrature methods,
automatically. In this paper, we use the extended finite element method and present a toolbox partly
based on [21] which enhances the FEniCS framework so that problems with arbitrary time-dependent
discontinuities can be handled in the same way.

This paper is organized as the following: Starting with the governing equations for the Stefan problem,
we give some brief introduction to the level set method which is a natural approach in XFEM for
describing the location and movement of a discontinuity. In Section 3, we derive the time discrete
formulation of the considered problem and define a weak formulation for each time step. The spatial
discretization is based on Nitsche’s method [23] treating the interface as internal Dirichlet boundary [7].
Some details about FEniCS and the developed toolbox used for solving the Stefan problem in XFEM
formulation are presented in Section 4 and results for different model examples including a convergence
study are given in Section 5. Finally, a conclusion is given.
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2. Mathematical setting

The Stefan problem. Let Ω ∈ Rd, with ∂Ω polygonally, be a fixed domain consisting for t ∈ [t0, tf ]
of a solid region Ωs(t) and a liquid region Ωl(t) that are separated by an interface Γ(t). We assume Γ(t)
to be sharp and sufficiently smooth for all t ∈ [t0, tf ] and introduce the normal vector ~n(t,x) to Γ(t)
pointing from Ωl into Ωs.

The temperature field is given by u : Ω × [t0, tf ] → R with u|Ωi
= ui, i ∈ {s, l}. Its evolution in the

subdomains Ω{s,l} is described by

ρ{s,l}c{s,l}
∂u

∂t
−∇ ·

(
κ{s,l}∇u

)
= f, in Ωs(t) ∪ Ωl(t), t ∈ (t0, tf ),(2.1)

in which we assume that ρs = ρl = 1 as well as cs = cl = 1 for simplicity and κ{s,l} to be constant
in each subdomain. Moreover, we expect the so-called isothermal interface condition to hold, i.e. we
have u(·, t) < uΓ(·, t) in Ωs(t) and u(·, t) > uΓ(·, t) in Ωl(t), and u(·, t) = uΓ on Γ(t). For the boundary
∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, the following conditions are given

u = uD, on ΓD × (t0, tf ),(2.2)

−κ∂u
∂n̄

= gN , on ΓN × (t0, tf ),(2.3)

where n̄ denotes the outer normal to ∂Ω. Initially, the temperature distribution on Ωs(t0) ∪ Ωl(t0) is
given by

u(·, t0) = u0(2.4)

and it is

Γ(t0) = {x ∈ Ω(t0) |u(x, t0) = uΓ}(2.5)

The last condition, which has to be considered, relates to the movement of the interface Γ, respectively
its velocity to be more precisely, and is given by

[[κ∇u · ~n]] = LVΓ · ~n, on Γ(2.6)

with [[·]] denoting the jump that is defined for a function φ by [[φ]] = φ|Ωl
− φ|Ωs . Roughly spoken,

this so-called Stefan condition states that the normal velocity of Γ is proportional to the jump of the
temperature’s gradient at the interface, with L denoting the latent heat.

In general, the location of the sharp interface Γ is a-priori unknown and part of the solution. Hence,
a representation of Γ is needed and there are various techniques to represent it either in an implicitly or
explicitly. A very common approach in the XFEM context is to use the level set method [25,26] for this
purpose.

The level set method. Within the level set method [25], the location of the interface Γ is given by
the zero level set of a continuous function ϕ : Ω× [t0, tf ]→ R, i.e.

Γ(t) = {x ∈ Ω |ϕ(x, t) = 0}, t ∈ [t0, tf ].

The subdomains Ωs and Ωl can be defined by x ∈ Ωs(t) ⇔ ϕ(x, t) < 0 and x ∈ Ωl(t) ⇔ ϕ(x, t) > 0.
Due to this, we use the more descriptive notation Ω+ = Ωl and Ω− = Ωs in the remainder of this paper.
An exemplary sketch of a 2D situation where a hold-all domain Ω is divided by the sign of the function
ϕ into subdomains Ω−(t) resp. Ω+(t) is given in Fig. 2.1a and some level sets of ϕ are indicated in Fig.
2.1b.

The level set method comes with some useful properties, e.g. it allows for an easy computation of the
normal ~n to Γ1

~n = − ∇ϕ
||∇ϕ||

,

and the curvature K of Γ reads as

K = −div~n = div
∇ϕ
||∇ϕ||

.

There are various functions ϕ which can be defined and used within the level set method, however, from
a numerical point of view it is important, e.g. for a stable computation of ~n and K, that the gradient

1As mentioned before, the normal ~n is chosen to point from Ω+ to Ω−, hence we need to add the negative sign.
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a) b)

Figure 2.1. Visualization of the idea of the level sets method using a scalar function
ϕ: a) Domains Ω−(t) and Ω+(t) are separated by the zero level set Γ(t) of ϕ. b)
Visualization of some level sets of ϕ.

||∇ϕ|| does neither vanish nor become too big. Due to this, literature suggest to use a so called signed
distance function, i.e.

ϕ(x, t) =


− min

x̃∈Γ(t)
||x− x̃||2, if x ∈ Ω−(t)

min
x̃∈Γ(t)

||x− x̃||2, if x ∈ Ω+(t)
,

which satisfies ||∇ϕ|| = 1.
Given the initial value ϕ0(·) = ϕ(·, t0) with zero level set Γ0 = Γ(t0), the evolution of the level set

function ϕ and consequently of the interface Γ in time can be described by the transport equation

ϕt + ~V · ∇ϕ = 0,

where ~V = ~V (x, t) has to be a sufficiently smooth velocity field. As for the Stefan problem, this velocity

field ~V depends on (2.6) but is not known completely since the equation only provides us with the normal
component on Γ(t). Consequently more effort is needed to obtain a full velocity field, see e.g. [6].

Remark: In contrast to this motivation and problem formulation, we will consider the Stefan problem
without solving the level set problem in this paper. The reason for this approach is to focus on the
extended finite element method and neglect all technical issues arising when considering the level set
method, e.g. reinitialization and mass correction techniques [13], as well as developing a strategy to
tackle the full-coupled problem. Thus, we a-priori define the position and the movement of the interface
and only consider the temperature field as unknown. The full coupled problem will be modeled and
analyzed in a forthcoming publication.

As a result of this simplification, the full problem considered in this paper is given by: For given Γ(t),
t ∈ [t0, tf ], find u sufficiently smooth, i.e. u(·, t) ∈ C2(Ω+(t) ∪ Ω−(t)), ∂tu(·, t) ∈ C0(Ω+(t) ∪ Ω−(t)) and
u ∈ C0(Ω̄× [t0, tf ]), such that

(2.7)

∂u

∂t
−∇ · (κ∇u) = f, in Ω+(t) ∪ Ω−(t), t ∈ (t0, tf ),

u = uD, on ΓD × (t0, tf ),

−κ∂u
∂n̄

= gN , on ΓN × (t0, tf ),

u(·, t0) = u0, in Ω+(t0) ∪ Ω−(t0),

u(·, t) = uΓ, on Γ(t),

[[κ∇u · ~n]] = LVΓ · ~n on Γ(t),

for given data uD, gN , u0 and uΓ that are assumed to be sufficiently smooth.
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3. XFEM-Discretization

As mentioned in [10], using space-time elements for deriving a suitable weak formulation of problem
(2.7) is the natural approach. However, a weak formulation can also be introduced formally using Rothe’s
method, cf. [10, 11]. We will follow the latter in this section.

Discretization in time. We discretize the time interval [t0, tf ] by Nt + 1 time steps into tn = t0 +
n∆t, n = 0, . . . , Nt, with ∆t denoting the time step size and apply the implicit Euler time discretization2

to problem (2.7) which then reads: For n = 0, . . . , Nt, find un+1 = u(x, tn+1), x ∈ Ω+(tn+1)∪Ω−(tn+1)
such that

(3.1)

un+1

∆t
−∇ ·

(
κ∇un+1

)
= fn+1 +

un

∆t
, in Ω+(tn+1) ∪ Ω−(tn+1),

un+1 = un+1
D , on ΓD(tn+1),

−κ∂u
n+1

∂n̄
= gn+1

N , on ΓN (tn+1),

un+1 = uΓ, on Γ(tn+1),

[[κ∇un+1 · ~n]] = LV n+1
Γ · ~n on Γ(tn+1).

For a fixed n ∈ {1, . . . , Nt}, we use the notation ξ = 1
∆t , Ω+ := Ω+(tn+1) resp. Ω− := Ω−(tn+1),

u := un+1, etc, and summarize the right-hand-side by f̃ , so that, eventually, we end up with the
stationary problem

(3.2)

ξu−∇ · (κ∇u) = f̃ , in Ω+ ∪ Ω−,

u = uD, on ΓD,

−κ∂u
∂n̄

= gN , on ΓN ,

u = uΓ, on Γ,

[[κ∇u · ~n]] = LVΓ · ~n on Γ,

for each time step. Please note that the term f̃ contains the expression un

∆t which, therefore, has to be
interpolated or approximated onto the current subdomains. We will discuss this in more detail in Section
4 within the paragraph evaluation of functions on enriched elements.

Weak formulation. Since the we want to solve the problem using the extended finite element method,
a slightly different weak formulation of problem (3.2) is derived. Therefore, we introduce the affine space3

H1
uD

(Ω+ ∪ Ω−) :=
{
v ∈ L2(Ω) | v|Ω{+,−} ∈ H1

(
Ω{+,−}

)
, v|ΓD

= uD

}
,

where each element v ∈ H1
uD

(Ω+ ∪ Ω−) can be restricted onto a subdomain by v{+,−} := v|Ω{+,−} . For

functions u, v ∈ H1
uD

(Ω{+,−}) we define

(u, v)H1(Ω+∪Ω−) := (u, v)H1(Ω+) + (u, v)H1(Ω−)

:=

∫
Ω+

∇u+∇v+dx +

∫
Ω−
∇u−∇v−dx, u, v ∈ H1(Ω+ ∪ Ω−).

Using this and the L2-norm gives us the norm(
||·||2L2(Ω) + | · |2H1(Ω+∪Ω−)

)1/2

=: ||·||H1(Ω+∪Ω−).

Based on these definitions, we also define the Hilbert space

V0 :=
{
v ∈ H1

0 (Ω+ ∪ Ω−) | v|Γ = 0
}

(3.3)

2In general, the so-called θ−scheme is often used as time discretization technique since it allows arbitrary weighting of

old and new data. However, when using θ ∈ (0, 1) in the XFEM context, the formulation ends up with terms that are not
well-defined and cannot be interpreted meaningfully, cf. [11]. Therefore, we use the implicit Euler scheme in this paper.

3Here we chose the general setting with uD as Dirichlet boundary condition (in trace sense). Using uD = 0 leads to
the Hilbert space H1

0 (Ω+ ∪ Ω−) which will be used in 3.3.
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and the affine space 4

VΓ :=
{
v ∈ H1

uD
(Ω+ ∪ Ω−) | v|Γ = uΓ

}
.(3.4)

A weak formulation of the problem (3.2) is then given by: For ξ, κ ∈ L∞(Ω), f̃ ∈ L2(Ω) and g ∈ L2(ΓN )
find u ∈ VΓ s.t.

(3.5) (ξu, v)L2(Ω+∪Ω−) + (κu, v)H1(Ω+∪Ω−) = (f̃ , v)L2(Ω) + (g, v)L2(ΓN )

for all v ∈ V0. Using the theorem of Lax-Milgram, one can show that there exists an unique solution
to (3.5).

Remark. Since the the Stefan problem only includes a weak discontinuity, i.e. the temperature u is
continuous but there is a jump in the temperature gradients at Γ one could also introduce the function
spaces

Ṽ0 :=
{
v ∈ H1

0 (Ω+ ∪ Ω−) | [[v]]Γ = 0
}
,(3.6)

and

ṼΓ :=
{
v ∈ H1

uD
(Ω+ ∪ Ω−) | [[κ∇v~n]]Γ = LVΓ~n

}
.(3.7)

which include the Stefan condition in their definition and end up with a different weak formulation.
For the spatial discretization, this weak discontinuity could be considered for example by a modified-abs
enrichment [9]. However, there is still need to consider the interface condition u = uΓ due to numerical
inaccuracies. Anyway, since our approach bases on strong enriched function spaces and the Nitsche
approach [23], see below and Section 4, we use the definitions given above.

Discretization in space based on Nitsche’s method.

Preliminaries. We introduce some notation and assumptions following the work of [12]: Let {Sh}h>0

be a family of shape regular triangulations consisting of d-simplices and h is the maximum diameter

h = maxS∈Sh diam(S). Furthermore, let Γh be a discrete approximation of Γ with Ω
{+,−}
h as discrete

counterparts of Ω{+,−}5. For any element S ∈ Sh let S{+,−} := S ∩ Ω
{+,−}
h be the part of S in Ω

{+,−}
h .

The set of elements being intersected by the interface Γh is given by SΓh

h := {S ∈ Sh|S ∩ Γh 6= ∅} and
the intersecting part is denoted by ΓS := S ∩ Γh.

Since we do not want to consider the interface Γh explicitly as edges within the triangulation, we can
not include the condition v|Γh

= uΓ into the discrete function space as we do for the outer Dirichlet
condition on ΓD. Thus, we introduce the function space6

V kh,uD
:=
{
v ∈ H1

uD
(Ω+

h ∪ Ω−h ) | v{+,−} ∈ C0(Ω{+,−}), v|S{+,−} ∈ Pk, S ∈ Sh
}

(3.8)

for k ∈ N. To consider the internal Dirichlet condition uh = uΓ on Γh, Nitsche’s method [23] is used to
include this condition weakly into the discrete problem formulation. Hence, we end up treating (3.5) as
two “independent” problems.

Spatial discretization. Following [7], the discrete formulation of (3.2) is given by: Find uh ∈ V kh,uD
s.t.

a(uh, vh) + a+(uh, vh) + a−(uh, vh) = L(vh) + L+(vh) + L−(vh)(3.9)

for all vh ∈ V kh,0. The bilinear forms and linear forms are defined as

a(uh, vh) =

∫
Ω+

h∪Ω−h

ξuhvhdx +

∫
Ω+

h∪Ω−h

κ∇uh∇vhdx(3.10)

a+(uh, vh) = −
∫

Γh

κ+∇u+
h · ~nhv

+
h dc−

∫
Γh

κ+∇v+
h · ~nhu

+
h dc +

∫
Γh

λu+
h v

+
h dc(3.11)

4In this particular situation, one could also use H1
0 (Ω) resp. H1

uD
(Ω) in the definitions of V0 resp. VΓ since no jumps

are allowed across Γ and only a weak discontinuity, i.e. a jump in the gradients, is present. However, the present approach
can easily be extended to allow for strong discontinuities as they may occur in more general problems.

5We want to stress that due to our Ω with ∂Ω polygonal, we have Ωh = Ω
6Evidently, in contrast to the standard Lagrangian function space we now request that for a function v only the

restriction v{+,−} has to be continuous on Ω{+,−}.
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a−(uh, vh) = +

∫
Γh

κ−∇u−h · ~nhv
−
h dc +

∫
Γh

κ−∇v−h · ~nhu
−
h dc +

∫
Γh

λu−h v
−
h dc(3.12)

L(vh) =

∫
Ω+∪Ω−

f̃vhdx +

∫
ΓN

gvhds(3.13)

L+(vh) = −
∫

Γh

κ+∇v+
h · ~nhuΓdc +

∫
Γh

λuΓv
+
h dc(3.14)

L−(vh) =

∫
Γh

κ−∇v−h · ~nhuΓdc +

∫
Γh

λuΓv
−
h dc,(3.15)

cf. Appendix for more details. Therein, 0 < λ ∈ R is a stability parameter which has to be chosen big
enough and can be derived analytically for some situations [7]. Please note that the sign of the terms in
a{+,−} and L{+,−} result from the direction of the normal vector ~nh pointing from Ω+

h to Ω−h . In contrast
to the continuous situation, it is not trivial to show that the sum of all bilinear forms is coercive. In fact,
this property depends heavily on the choice of λ. In this paper, we do not comment and investigate this
issue further but assume that there is a unique solution of problem (3.9).

4. Implementation aspects

The problem (3.9) is solved by using an XFEM toolbox for FEniCS which has been developed within
our work group. It uses the FEniCS framework and is partly based on the PUM toolbox [21, 22]. FEniCS

is a collaborative project of researchers who develop tools for automated scientific computing, especially
in the field of finite element methods for the solution of partial differential equations [18]. It consists of
a collection of components, described in various articles, e.g. [1, 2, 17–19, 24], which make the numerical
computation of solutions for PDE-based problems very easy. Furthermore, the FEniCS framework can be
extended by new modules such as our XFEM toolbox, which, as its precursor, bases on added features
for the domain specific language UFL, an extended FEniCS Form Compiler (FFC), and an extension of
the DOLFIN library.

4.1. XFEM toolbox. In contrast to its precursor PUM, our XFEM toolbox can handle time-dependent
problems with multiple, arbitrary discontinuities that may evolve and also intersect each other. A
detailed description of its features will be given in an upcoming publication. Here, we just want to point
out the most relevant aspects regarding the solution of the Stefan problem in level set formulation.

Enrichment scheme. A principal characteristic of the extended finite element method is that the effect
of the enrichment is locally restricted. Thus, we can consider most of the elements and degrees of freedom
just as in the standard finite element context while only a minor subset needs special attention. Hence,
the assembled matrices and vectors are still sparse. There are various approaches to enrich a function
space which, for a start, differ whether the enrichment is made to handle strong discontinuities, i.e.
jumps in the function, or weak discontinuities, that is to say the function itself is continuous but the
gradients differ on each side of the interface Γh.

In our toolbox, we follow [21, 22] and use a strong enrichment so that an enriched function uXFEM
h ∈

V XFEM
h , e.g. V XFEM

h = V kh , is given by

uXFEM
h =

∑
i∈N

uivi +
∑
j∈Ñ

ũjHvj(4.1)

with basis functions vi, i ∈ N , of the standard Lagrangian function space V FEM
h and corresponding

coefficients ui. The index set Ñ is defined by

Ñ := {i ∈ N |measd−1(Γh ∩ supp(vi)) > 0, vi ∈ V FEM
h }(4.2)

and

H(x) =

{
1, for x ∈ Ω+

0, else
(4.3)

is the Heaviside function.
In combination with the Heaviside function, definition (4.2) takes care to avoid linear dependency

since the enriched degrees of freedom only exists in a small region around the interface Γh and vanish
elsewhere. The advantage of using a strong enrichment is its flexibility as it can be used for the modeling
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and simulation of different processes with both, strong and weak discontinuities since for the latter,
continuity of a function can be enforced by adding corresponding conditions using the Nitsche technique
as presented in Section 3 or by including jump conditions [12].

Remark: As shown in [3], this enrichment is equivalent to the method proposed by [12] which is called
cut cell method and based on duplicating nodes of intersected elements.

Interpolation. A fundamental challenge in XFEM is the interpolation of an arbitrary function onto the
discrete function space. It is well known that standard Lagrange finite element basis functions fulfill the
partition of unity property in each degree of freedom, i.e. for a function space V FEM

h with basis functions
vi, i ∈ N , we have ∑

i∈N
vi(x) = 1, ∀x ∈ Ω,

and, therefore, the nodal interpolation property

uFEM
h (xk) =

∑
i∈N

uivi(xk) = uk(4.4)

holds for all nodes xk ∈ Ω with coefficients ui, i ∈ N .
Unfortunately, this is not true for enriched degrees of freedom in the XFEM case: Due to (4.1), we

have for uXFEM
h ∈ V XFEM

h

uXFEM
h (xk) =

∑
i∈N

uivi(xk) +
∑
j∈Ñ

ũjH(xk)vj(xk) = uk +H(xk)ũk(4.5)

and, hence, uXFEM
h (xk) 6= uk for all k ∈ Ñ with xk ∈ Ω+

h , cf. definitions (4.2) and (4.3). Consequently for
interpolating an arbitrary function onto an enriched function space, a more sophisticated interpolation
scheme has to be implemented.

Alternatively, the L2-projection can be used for this purpose, i.e. solve∫
Ω

(PXFEM
h f)vdx =

∫
Ω

fvdx, ∀v ∈ V XFEM
h ,(4.6)

to project an arbitrary f onto V XFEM
h with (PXFEM

h f) denoting the corresponding XFEM function. This
variant is very convenient since the FEniCS framework offers the possibility to just add this equation to
our problem formulation within the UFL file and generate the respective code automatically using the
extended FEniCS Form Compiler. Moreover, if we have to interpolate multiple functions onto the same
function space, we only need to assemble the left-hand-side in (4.6) once and can re-use it.

Remark: Obviously, the L2-projection approximates a given function as good as possible only in L2

sense. Consequently, the nodal values may differ from the values which would be computed using a nodal
interpolation scheme. While in general this is of no importance for a function, there may arise numerical
issues if considering the gradient of a function if the support of a degree of freedom is barely intersected.
This is due to the fact that the domain on which the quadrature is performed can be tiny, making the
value at a corresponding degree of freedom almost arbitrary. This may result in deviations and spikes
in convergence plots when analyzing the convergence behavior for the gradient. The described issue can
be prevented by deactivating the respective degrees of freedom, however, if for error computation the
numerical and analytical solution are interpolated onto a function space with higher polynomial degree,
the deactivation of DOFs may cause additional noise. Therefore, one may add a penalty term to punish
small errors at the interface and, hence, reduce the error at this domain. We will address this issue
further in Section 5.

Interface representation and local mesh. Within our implementation, a given level set function ϕ
is approximated piecewise quadratically by ϕh while its zero level set Γh is approximated polygonally
using Lagrangian interpolation, i.e.

Γh := {x ∈ Ωh | Ilinϕh(x) = 0}.
Hence, the intersection segments ΓS = S ∩ Γh are linear. In order to perform the quadrature on all
elements S ∈ Sh being intersected by Γh, we use the same idea as in [21, 22], i.e. dividing them into
sub-elements by firstly divide them into two parts by using the linear segment ΓS of the interface as facet
and create new sub-simplices using the element’s vertices, the intersection points, and the centroids of
the newly created subdomains. A sketch of the idea for a 2D situation is given in Figure 4.1. The same
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Figure 4.1. Creating sub-elements of a cell S ∈ Sh using ΓS and the centroids of the
resulting subdomains.

Figure 4.2. Creating sub-elements of a cell S ∈ Sh for time-dependent problems con-
sidering ΓnS and Γn+1

S .

approach is used for 3D situations where additionally the facets are subdivided in order to maintain the
connectivity and proximity relationship.

For time-dependent problems, this concept of creating a local mesh is extended, so that now both
interfaces Γnh = Γh(tn) and Γn+1

h = Γh(tn+1) are considered for the subdivision of an element: Firstly,
we divide the mesh accordingly to Γnh, as described previously, and then refine those newly created sub-

elements of the adapted mesh who are intersected by Γn+1
h , see Figure 4.2 for a 2D visualization. The

resulting sub-mesh of each element is stored for both situations in a so-called local mesh which is used
for doing the quadrature, visualization of the results and so on.

Remark: As shown in [5], it is also possible to use curved intersection segments for the subdivision of
an element into sub-elements. By using their method with an appropriate quadrature scheme, one can
archive optimal convergence rates for k > 1, if using strong enrichments. Up to now, this concept is not
included into our work. The consequences of this can be seen in Example 2 in Section 5.

Quadrature and function evaluation on enriched elements. As mentioned before, the FEniCS

approach is to specify the problem’s weak formulation within an UFL formulation and generate most
of the related code automatically using the FFC. Among other things, the corresponding formulas for
performing quadrature for all kind of finite elements are generated this way.

In general, the assembling strategy in FEniCS is to compute the integral over each element and add
the result to a global system matrix resp. vector. As usual, the quadrature rule is based on evaluating
the function to be integrated in its quadrature points by using the basis functions and the corresponding
coefficients. However for doing quadrature in the XFEM context, we need to adapt the rules since special
care is needed for enriched elements.

Using the local mesh, we have a partition of each intersected element into sub-elements respecting the
interface. Since these sub-elements are either completely in Ω+ or in Ω−, we can simply use a transformed
standard quadrature rule to compute the contribution of each sub-element. For doing this accurately,
we need to evaluate every function with respect to their particular enrichment. This means, we have to
distinguish for each quadrature point x ∈ Ω whether the enriched basis function is active, i.e. ϕh(x) > 0
and consequently H(x) = 1, or it is inactive, i.e. we have ϕh(x) < 0 and therefore H(x) = 0.
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As for the implementation and the automated code generation, this is especially complex for computing
integrals of type ∫

Ω

fvhdx,(4.7)

if we have f /∈ V XFEM
h but f ∈ WXFEM

h instead, i.e the function space resp. the enrichment of a
function f , which has to be integrated, differs from the function space of the test function vh ∈ V XFEM

h .
Since different function spaces lead to dissimilar enriched elements and degrees of freedom, we have to
consider multiple enrichments at the same time. This is especially of concern, if more functions with
different enrichments are considered. Please note that the discussed terms naturally arise due to the
time discretization since for time dependent problems with Γn+1

h 6= Γnh we have∫
Ωn+1

unnv
n+1
h dx,(4.8)

cf. the first equation in (3.1).
Remark: In regards to interface integrals, the proposed subdivision of the elements by linear interface

segments is beneficial as well since we can easily compute the integrals on a d− 1 simplex.

Boundary conditions. As mentioned in [9], applying boundary conditions in XFEM context, especially
of type Dirchlet, can cause issues since not only standard degrees of freedom but also enriched ones need
to be considered. For problems where this issue may arise, we use weak Dirichlet boundary conditions,
i.e. we incorporate them into the weak formulation, similar to the approach shown in Section 3, and
mark the respective boundary domain with marker functions provided by DOLFIN. In contrast to Dirichlet
boundary conditions, applying Neumann type boundary conditions can be done without any problems.

Error computation. For the analysis of the convergence behavior, various errors can be considered,
including the standard L2-error

‖u(·, t)− uh(·, t)‖L2(Ω),(4.9)

the H1-error

‖∇u(·, t)−∇uh(·, t)‖L2(Ω),(4.10)

and the many more. These error values are computed using additional forms corresponding to the errors
into the problem’s UFL file. Thereby the forms respect both, the analytical given interface and the
computed interface. All results are visualized automatically using gnuplot [27].

5. Results

In this section, two academical examples with known analytical solutions u are examined. In partic-
ular, a numerical convergence analysis is performed with respect to different time step sizes ∆t, varied
maximum cell diameters h and the local polynomial degrees k of the XFEM-space. The considered errors
for u− uh are the L2-error

‖u− uh‖L∞(L2) := max
t∈(t0,tf )

‖u(·, t)− uh(·, t)‖L2(Ω)

and the H1-error

‖∇u−∇uh‖L2(L2) :=

√∫ tf

t0

‖u(·, t)− uh(·, t)‖2L2(Ω) dt.

The order of convergence for each error is determined for κ = 1, 2 fixed while either ∆t or h are varied
but not both. The results are compared to the convergence rates using a standard finite element method
for the heat equation using the implicit Euler scheme which at best, cf. [8], are given by

‖u− uh‖L∞(L2) =

{
O(hk+1)
O(∆t)

and

‖∇u−∇uh‖L2(L2) =

{
O(hk)
O(∆t)

.
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For both examples, a regular structured triangular mesh is used. The range of chosen cell diameters h
and time step sizes ∆t are specified for each example individually in the respective subsection. The local
polynomial degree k is chosen as either 1 or 2, as mentioned above.

5.1. Example 1: straight interface. Choosing Ω := (0, 1)2, ΓD := {(x, y) ∈ ∂Ω | y = 0 ∨ y = 1},
ΓN := ∂Ω\ΓD for the geometry and κ− := 1, κ+ := 2, L := 1, uΓ := 0 for the material parameters, an
analytical solution to problem (2.7) on the time intervall (t0, tf ) := (0, 1

6 ) is given by

u(x, t) =

 cos
(
πx
2

)
sin
(
πϕ(x,t)
y−ϕ(x,t)

)
+ ϕ(x, t) on Ω−(t)

cos
(
πx
2

)
sin
(

πϕ(x,t)
2(y−ϕ(x,t))

)
+ 1

2ϕ(x, t) + ey + 3
3t−2 on Ω+(t)

,

where y denotes the second component of x ∈ Ω and the interface Γ(t) is a straight horizontal line
moving downwards. Γ(t) can be characterized by the level set function

ϕ(x, t) := y − ln

(
3

2− 3t

)
.

The source term f , the boundary functions uD and gN and the initial conditions have be chosen with
respect to the specified analytical solution and can be easily computed. The analytical solution u is
shown in Figure 5.1 at different time instants.

Since ϕ is a linear function in x at each time instant t, using ϕh and the corresponding normal vector
~nh instead of ϕ and ~n results in no additional approximation error. Results of the convergence test for
k = 1 resp. k = 2 are shown in Figure 5.2.

In each subfigure, the interdependence of the errors with respect to space and time discretization can
be seen since the ideal convergence rates regarding the space discretization are only achieved for small
values of ∆t, which is accompanied with a relatively small time discretization error. The same holds for
the time discretization error and small values of h. In particular, for k = 1 it can be seen from Figure
2(a) and 2(b) that the ideal convergence rate ‖u−uh‖L∞(L2) = O(h2) is barely achieved for the smallest
value of ∆t, whereas the ideal convergence rate ‖∇u − ∇uh‖L2(L2) = O(h) is achieved for nearly all
values chosen for ∆t. In Figure 2(c) and 2(d), the ideal convergence rate O(∆t) can only by seen for the
L2-error. For the H1-error, the space disretization error is still dominant for the smallest value of of h.

This behavior changes for k = 2. As shown in Figure 2(g) and 2(h), the ideal convergence rate O(∆t)
is achieved for both, the L2-error as well as the H1-error. Due to the dominance of the time error in this
case, no convergence in 2(e) and 2(f) except for larger values of h and the H1-error can be observed. Not
surprisingly, when comparing the Figures for k = 1 with the corresponding figures for k = 2, it can be
seen that the error for k = 2 is always smaller due to the smaller space discretization error. The biggest
difference can be seen for Figures 2(d) and 2(h) where the space discretization error is dominant.

5.2. Example 2: circular interface. Choosing Ω := (−1, 1)2, ΓD := ∂Ω for the geometry and κ− :=
κ+ := 1, L := 1, uΓ := 0 for the material parameters, an analytical solution to problem (2.7) on the time
intervall (t0, tf ) := (0, 1

6 ) is given by

u(x, t) =

cos
(
π|x|
2R(t)

)
− e|x| + 3

2−3t on Ω−(t)

cos
(
π|x|
2R(t)

)
on Ω+(t)

.

In this example, the interface Γ(t) corresponds to an expanding circle with radius R(t) := ln
(

3
2−3t

)
which is centered at the origin and can be characterized by the level set function

ϕ(x, t) := R2(t)− |x|2.
Again, the source term f , the Dirichlet boundary function uD and the initial conditions must be chosen
with respect to the specified analytical solution and can be derived easily. The analytical solution u is
shown in Figure 5.3 at different time instants. While ϕ can be exactly approximated by ϕh when using
quadratic basis functions, the polygonally approximation Γh(t) of the circular interface Γ(t) introduces
an additional error, which is different compared to the situation in Example 1. The discrete unit normal
vector to Γh is approximated by

~nh := − ∇ϕh
‖∇ϕh‖

on Γh(t)

using ϕh. Results of the convergence test for k = 1 resp. k = 2 are shown in Figure 5.4.
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(a) u at t = 0 (b) u at t = 1
16

(c) u at t = 1
8

(d) u at t = 1
6

Figure 5.1. Example 1: analytical solution u at different time instants t. u is repre-
sented by its level sets {x ∈ Ω | ∃z ∈ Z : u(x, t) = 0.1 · z}. The interface Γ(t) coinciding
with the zero level set {x ∈ Ω |u(x, t) = 0} is visualized using an increased line width.

Despite the additional approximation error introduced by Γh and ~nh, the results are qualitatively
the same as for Example 1. For Figure 4(a), it should be pointed out, that the ideal convergence
‖u− uh‖L∞(L2) = O(h2) can only by seen by neglecting the smaller values of h for the smallest value of
∆t which is due to the relatively large time discretization error.

6. Conclusion

In our paper, we have discussed a numerical approach to solve the Stefan problem based on XFEM
by using the FEniCS framework. An XFEM toolbox partly based on [21, 22] has been developed, which
is used for computing solutions of two academical examples. The numerical results show that optimal
convergence rates can be archived for piecewise linear elements. The named toolbox can be combined
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Figure 5.2. Example 1 convergence tests: ‖u− uh‖L∞(L2) and ‖∇u−∇uh‖L2(L2) for

∆t ∈ {2−8, 2−9, 2−10, 2−11, 2−12}, nx ∈ {16, 32, 64, 128, 256} and k = 1(a-d) resp. k = 2
(e-h). An approximated order of convergence is shown in the legend for each plot.
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(a) u at t = 0 (b) u at t = 1
16

(c) u at t = 1
8

(d) u at t = 1
6

Figure 5.3. Example 2: analytical solution u at different time instants t. u is repre-
sented by its level sets {x ∈ Ω | ∃z ∈ Z : u(x, t) = 0.1 · z}. The interface Γ(t) coinciding
with the zero level {x ∈ Ω |u(x, t) = 0} is visualized using an increased line width.

with our level set toolbox [13] in order to solve the full coupled problem. This full coupled problem will
be investigated in an upcoming article.
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Figure 5.4. Example 2 convergence tests: ‖u− uh‖L∞(L2) and ‖∇u−∇uh‖L2(L2) for

∆t ∈ {2−6, 2−7, 2−8, 2−9, 2−10}, nx ∈ {16, 32, 64, 128} and k = 1(a-d) resp. k = 2 (e-h).
An approximated order of convergence is shown in the legend for each plot.



SOLVING THE STEFAN PROBLEM USING AN XFEM TOOLBOX FOR FENICS 15

7. Appendix

The discrete formulation of (3.2) is derived as follows: Multiply (3.2) with a test function v ∈ Vh and
integrate over the domain Ω+ ∪ Ω−

∫
Ω+∪Ω−

ξuhvhdx−
∫

Ω+∪Ω−

∇ · (κ∇uh)vhdx =

∫
Ω+∪Ω−

f̃vhdx.(7.1)

Integration by parts leads to

∫
Ω+∪Ω−

ξuhvhdx +

∫
Ω+∪Ω−

κ∇uh∇vhdx−
∫
∂(Ω+∪Ω−)

κ∇uh · ~nhvhdc

=

∫
Ω+∪Ω−

ξuhvhdx +

∫
Ω+∪Ω−

κ∇uh∇vhdx−
∫

ΓD

κ∇uh · n̄ vh︸︷︷︸
=0

dc

−
∫

ΓN

κ∇uh · n̄︸ ︷︷ ︸
=g

vhdc−
∫

Γh

κ+∇u+
h · ~nhv

+
h dc +

∫
Γh

κ−∇u−h · ~nhv
−
h dc

=

∫
Ω+∪Ω−

f̃vhdx.

Now, we add the “artificial” terms

0 = ∓
∫

Γh

κ{+,−}∇v{+,−}h · ~nhu{+,−}h dc±
∫

Γh

κ{+,−}∇v{+,−}h · ~nhu{+,−}h dc

and

0 =

∫
Γh

λ{+,−}u
{+,−}
h v

{+,−}
h dc−

∫
Γh

λ{+,−}u
{+,−}
h v

{+,−}
h dc

so the equation reads

∫
Ω+∪Ω−

ξuhvhdx +

∫
Ω+∪Ω−

κ∇uh∇vhdx

−
∫

Γh

κ+∇u+
h · ~nhv

+
h dc−

∫
Γh

κ+∇v+
h · ~nhu

+
h dc +

∫
Γh

κ+∇v+
h · ~nhu

+
h dc

+

∫
Γh

κ−∇u−h · ~nhv
−
h dc +

∫
Γh

κ−∇v−h · ~nhu
−
h dc−

∫
Γh

κ−∇v−h · ~nhu
−
h dc

+

∫
Γh

λ+u+
h v

+
h dc−

∫
Γh

λ+u+
h v

+
h dc +

∫
Γh

λ−u−h v
−
h dc−

∫
Γh

λ−u−h v
−
h dc

=

∫
Ω+∪Ω−

f̃vhdx +

∫
ΓN

gvhdc
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Now, we put one of each artificial term onto the right-hand-side and make use of the condition u{+,−} =
uΓ on Γh and define λ+ = λ− ∫

Ω+∪Ω−

ξuhvhdx +

∫
Ω+∪Ω−

κ∇uh∇vhdx︸ ︷︷ ︸
=:a(uh,vh)

−
∫

Γh

κ+∇u+
h · ~nhv

+
h dc−

∫
Γh

κ+∇v+
h · ~nhu

+
h dc +

∫
Γh

λu+
h v

+
h dc︸ ︷︷ ︸

=:a+(uh,vh)

+

∫
Γh

κ−∇u−h · ~nhv
−
h dc +

∫
Γh

κ−∇v−h · ~nhu
−
h dc +

∫
Γh

λu−h v
−
h dc︸ ︷︷ ︸

=:a−(uh,vh)

=

∫
Ω+∪Ω−

f̃vhdx +

∫
ΓN

gvhdc︸ ︷︷ ︸
=:L(vh)

−
∫

Γh

κ+∇v+
h · ~nhuΓdc +

∫
Γh

λuΓv
+
h dc︸ ︷︷ ︸

=:L+(vh)

+

∫
Γh

κ−∇v−h · ~nhuΓdc +

∫
Γh

λuΓv
−
h dc︸ ︷︷ ︸

=:L−(vh)

.
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