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Abstract

Multi-mechanism models have become an important tool for modeling of complex material be-
havior. In particular, two-mechanism models have been applied for modeling of ratcheting in metal
plasticity as well as of steel behavior in case of phase transformations. The characteristic trait of two-
mechanism models is the additive decomposition of the inelastic (i.e., plastic or visco-plastic, e.g.)
strain into two or more parts (sometimes called “mechanisms”) in the case of small deformations. In
comparison with rheological models, there can be an interaction between these mechanisms allowing to
describe important observable effects. Up to now, each mechanism has one kinematic internal variable.
As a new item, we develop a framework for multi-mechanism models (in series) with several kinematic
variables for each mechanism as well as with several isotropic variables for each flow criterion. In this
way, the well-known “Chaboche” model with a unique inelastic strain and several kinematic variables
becomes a special case of these general multi-mechanism models. Furthermore, we present a quite
general approach for simulation and parameter identification based on uniaxial experiments. Finally,
we give numerical examples based on cyclic experiments with the stainless steel X2CrNiMo17-12-2
(1.4404).
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1 Introduction
Multi-mechanism models (abbreviated as MM models) have become an important tool for modeling
complex material behavior. In applications, one encounters mostly two-mechanism models. In case
of small deformations, the characteristic trait of multi-mechanism models with m mechanisms is the
additive decomposition of the inelastic (i.e., plastic or visco-plastic, e.g.) strain into m parts (sometimes
called “mechanisms”) (see Figure 1). We refer to Saı̈ [2011], Wolff et al. [2011b], Taleb and Cailletaud
[2011], Taleb [2013] for current overviews and further references. Some new extensions can be found
in Kröger [2013]. For instance, the thermoelastic strain can be regarded as a mechanism with “full
rights”. Moreover, evolution functionals instead of evolution equations are considered, and more complex
couplings within the flow criteria are allowed. To the authors knowledge, up to now, there are only serial
MM models under consideration. Multi-mechanism models in parallel with an additive split of the stress
are a topic of future work (see the outlook in Subsection 6).

In comparison with rheological models (cf. Palmov [1998], Palmov [2008], e.g.), generally there can
be an interaction between the (inelastic) mechanisms (within the free energy) allowing to describe impor-
tant observable effects (see below for references). As a consequence of this coupling, the thermodynamic
consistency of an MM model generally does not follow from the thermodynamic consistency of all its
elements. On the other hand, rheological models consisting of elements connected in series are (simple)
multi-mechanism models, if one element is thermoelastic. In most cases, MM models with a thermoe-
lastic part (see Figure 1) have been studied. However, this is not a principal limitation. In Wolff et al.
[2012a], Kröger et al. [2012a] and Kröger [2013], e.g., one encounters two-mechanism models without
a thermoelastic element. Connecting all inelastic elements of an MM model into one inelastic element,
this MM model becomes a rheological model consisting of generally two elements.

Figure 1: Scheme of a two-mechanism model. The two inelastic mechanisms I and II have their own
evolution equations. Generally, they are not independent from each other. The thermoelastic strain εte is
usually not regarded as a mechanism. For an alternative treatment see Kröger [2013].

If the inelastic strain is considered as one mechanism (as it was historically first), one refers to a
“unified model” (or ”Chaboche” model) (cf. the survey Chaboche [2008] and the references cited therein).
In this case, plastic and viscous components are considered together in the same inelastic strain. In our
general approach for MM models, these “Chaboche” models can be included in this framework as special
MM models - as one-mechanism models. As explained in Contesti and Cailletaud [1989] and Cailletaud
and Saı̈ [1995], there are experimentally observable effects (inverse strain-rate sensibility, e.g.) which
can be qualitatively correctly described by the two-mechanism approach. Moreover, this description has
a plausible interpretation. To our knowledge, a first systematic formulation and investigation of two-
mechanism models was given by Contesti and Cailletaud [1989].

An important application of two-mechanism models is cyclic plasticity including ratcheting. In-
vestigations of ratcheting with the aid of two-mechanism models can be found in Saı̈ and Cailletaud
[2007], Hassan et al. [2008], Taleb and Hauet [2009], Taleb and Cailletaud [2010], Saı̈ [2011], Taleb and
Cailletaud [2011], Taleb [2013], e.g. In Hassan et al. [2008], a direct comparison between a modified
Chaboche model and a 2M model has been performed (in Wolff et al. [2011b], this comparison has been
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repeated in short).
Damage models combined with a multi-mechanism approach have been investigated in Besson [2009],

Turki et al. [2009], Saı̈ et al. [2011], e.g.
Another important application of two-mechanism models lies in modeling complex material behavior

of steel under phase transformations. For a direct two-mechanism approach we refer to Videau et al.
[1994], Aeby-Gautier and Cailletaud [2004], Wolff et al. [2008], e.g. In Wolff et al. [2011a], an al-
gorithm for general material behavior of steel has been implemented as well as simulations have been
performed, taking interaction of plasticity and transformation-induced plasticity (TRIP) into account. In
Kröger [2013], a similar coupling approach has been evaluated using experimental data. There, the influ-
ence of plastic pre-deformation of austenite on the forthcoming TRIP during bainitic transformation was
investigated. There are papers dealing with plasticity, visco-plasticity, transformation-induced plasticity
(TRIP) and creep in steel without a coupling of these phenomena within the free energy. However, the
underlying models are MM models. For instance, we refer to Mahnken et al. [2009] for plasticity and
TRIP at small strains, Mahnken et al. [2012] for plasticity and TRIP at large strains, Wolff et al. [2012b]
for creep and TRIP during austenitization at small strains. Contrary to the small-strain approach, in case
of large deformations, there is an additive split of the velocity gradient (see Mahnken et al. [2012] and
the references therein for a detailed explanation). In Mahnken et al. [2013], a multi-mechanism model
for viscoplasticity at large strains has been developed, taking asymmetric effects and isotropic hardening
into account. To our knowledge, up to now, there is no general theory of MM models in large strains
including coupling of the kinematic variables within the free energy.

Some polymers show a material behavior similar to ratcheting in metal plasticity. This effect has
been reported for an epoxy resin in Tao and Xia [2007], and in Shen et al. [2004] for epoxy polymers,
e.g. In Xia et al. [2006], nonlinear viscoelastic models have been applied for the description of cyclic
deformation behavior of polymers. In Wolff et al. [2012a], the two-mechanism approach has been ap-
plied to visco-elasticity with internal variables. In Kröger et al. [2012a] and Kröger et al. [2012b], a
2M model model for a rod with viscoelastic behavior has been analyzed and simulations have been per-
formed. Mathematical results as well as simulations for an analogous 3d problem can be found in Kröger
[2013]. Analogously as in plasticity (see Cailletaud and Saı̈ [1995], e.g.) the two-mechanism approach
can describe ratcheting effects in case of cyclic loading with non-zero mean stress.

Visco-plasticity and creep of semi-crystalline polymers in the context of multi-mechanism models
have been investigated in Regrain et al. [2009] and Saı̈ et al. [2011], e.g.

The complex material behavior of important materials (such as visco-plastic materials, shape-memory
alloys, soils, granular materials, composites, biological tissues) leads to multi-mechanism models, when
taking the additive decomposition of the strain tensor into account. However, in most cases, the concrete
application is not set in the framework of multi-mechanism models. For some references see Wolff et al.
[2011b].

Some current developments in MM models take considerations at the micro (meso) level into account.
We refer to Saı̈ and Cailletaud [2007], Regrain et al. [2009], Saı̈ et al. [2011], Taleb and Hauet [2009],
e.g. Here, we will not deal with this approach. However, some of the ideas pursued here can be combined
with macro-micro approaches.

Multi-mechanism models are usually abbreviated by their numbers of mechanisms as well as of cri-
teria (cf. Cailletaud and Saı̈ [1995], e.g.). For instance, there may be 2M1C and 2M2C models. We
continue this description in case of concrete given numbers. Generally, there may be nM mechanisms
and nC ≤ nM criteria. Thus, we will write “nMnC model” or, simply as above, MM model in case no
specification is needed. In the past, MM models have been applied preferably for plastic or visco-plastic
behavior. However, the mechanisms may also have visco-elastic (cf. Wolff et al. [2012a], Kröger [2013],
e.g.) or creep behavior (cf. Contesti and Cailletaud [1989], Wolff and Böhm [2010], e.g.). Visco-elastic
and creep behavior can be regarded as phenomena with a yield stress equal to zero. Thus, there may

4



be common flow criteria characterized by common multipliers for the involved mechanisms. Clearly, an
own criterion for each mechanism is possible, too. Plastic mechanisms are in the focus of this study. Of
course, the presented general approach can be applied to other material behavior with only some specific
modifications.

The main aims of this work are
• to develop a new general approach for multi-mechanism models with several mechanisms which

may have several internal kinematic variables as well as with several yield criteria having several
internal isotropic variables,

• to formulate general evolution laws for the internal variables which ensure thermodynamic consis-
tency under suitable conditions,

• to develop a semi-implicit matrix-based algorithm for simulations and a parameter identification
based on uniaxial experiments which is suitable for arbitrary MM models,

• to apply this algorithm to data from uniaxial experiments under cyclic loading for the stainless steel
X2CrNiMo17-12-2 (1.4404).

2 Continuum-mechanical preparations
In order to have a framework for forthcoming investigations we provide some basic facts about modeling
of inelastic material behavior. For comprehensive presentations of continuum mechanics we refer to
Krawietz [1986], Lemaitre and Chaboche [1990], Maugin [1992], Besson et al. [2001], Haupt [2002],
Bertram and Glüge [2013], e.g. We restrict ourselves to small deformations. Thus, the equation of
momentum, the energy equation and the Clausius-Duhem inequality are given by

%0 ü− div σ = %0f ,(2.1)
%0 ė+ div q = σ : ε̇+ %0r,(2.2)

−%0 ψ̇ − %0 η θ̇ + σ : ε̇− 1

θ
q ·∇θ ≥ 0.(2.3)

The relations (2.1) - (2.3) have to be fulfilled in the space-time domain Ω×]0, T [ (Ω ⊂ R3 - 3d domain
occupied by the body, T > 0 - process time). The notation is standard: %0 - density in the reference
configuration, that means for t = 0, u - displacement vector, ε - linearized Green strain tensor, θ -
absolute temperature, σ - Cauchy stress tensor, f - mass density of external forces, e - mass density of
the internal energy, q - heat-flux density vector, r - mass density of heat supply, ψ - mass density of free
(or Helmholtz) energy, η - mass density of entropy. The time derivative is denoted by a dot. α : β is the
scalar product of the tensors, q · p is the scalar product of the vectors. We note the well-known relations

(2.4) ε = ε(u) :=
1

2
(∇u+ ∇uT ), ψ = e− θ η.

Moreover, to complete the problem, boundary and initial values must be added. For simplicity we chose
the following initial values.

u(x, 0) = 0, u̇(x, 0) = 0, θ(x, 0) = θ0 in Ω.(2.5)

We assume mixed mechanical boundary conditions. The boundary ∂Ω is assumed to be the disjoint
connection of their parts Γ0 and Γ1. On Γ0 × [0, T ] the displacement is given, here, for simplicity it is
zero. On Γ1 × [0, T ] the traction τ is prescribed.

u = 0 on Γ0 × [0, T ], σν = τ on Γ0 × [0, T ].(2.6)
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(ν - outward normal on Γ1.) The thermal boundary condition usually is given as

− qν = δθ(θ − θΓ) on ∂Ω× [0, T ],(2.7)

with δθ ≥ 0 - heat-exchange coefficient, θΓ - temperature of the surrounding medium.
In many cases of inelastic material behavior (in small-deformation setting), the full strain ε is split up

via

(2.8) ε = εte + εin

The thermoelastic strain εte is in functional relation with the stressσ (see (2.17)), εin is the inelastic strain
whose evolution characterizes the behavior (plastic or creep, e.g.). Usually, in case of plastic behavior,
the inelastic strain is assumed to be traceless, i.e.

(2.9) tr(εin) = 0.

This is not a large restriction. The accumulated inelastic strain is defined by

(2.10) sin(t) :=

∫ t

0

(
2

3
ε̇in(τ) : ε̇in(τ))

1
2 dτ.

We drop the dependence on the space variable x. We propose for the free energy ψ the split

(2.11) ψ = ψte + ψin.

In case of isotropic behavior, the thermoelastic part ψte is given by (see Remark 2.1 (i) for explanations)

(2.12) ψte :=
1

2%0

{
2µ εte : εte + λL(tr(εte))2 − 6K αθ(θ − θ0) tr(εte) + 9K α2(θ − θ0)2

}
+C(θ).

Here are: µ > 0 - shear modulus, λL > 0 - second Lamé coefficient, K = λL + 2
3µ - compression

modulus, αθ - linear heat-dilatation coefficient, C - calorimetric function (see Helm and Haupt [2003] for
explanation, e.g.). We assume that the inelastic part ψin of ψ has the general form

(2.13) ψin = ψin(ξ, θ).

The quantity ξ = (ξ1, . . . , ξNξ) (ξj - scalars or tensors) represents the internal variables. Further on, these
variables will be chosen in accordance with concrete models under consideration. Moreover, they have
to fulfil evolution equations which are usually ordinary differential equations (ODE) with respect to the
time t. We write them in the following way (see Remark 2.1 (ii) for further comments).

ξ̇j = fξj (ξ, εte, θ) for j = 1, . . . , Nξ.(2.14)

As a rule, one poses zero initial conditions, i.e.

ξj(0) = 0 for j = 1, . . . , Nξ.(2.15)

Using standard arguments of thermodynamics (cf. Coleman and Gurtin [1967], Lemaitre and Chaboche
[1990], Maugin [1992], Besson et al. [2001], Haupt [2002], e.g.), one obtains the remaining inequality

(2.16) σ : ε̇in − %0

Nξ∑
j=1

∂ψin
∂ξj

: ξ̇j −
1

θ
q ·∇θ ≥ 0.
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as well as the potential relations

σ = %0
∂ψte
∂εte

, η = −∂ψ
∂θ
.(2.17)

Clearly, the (isotropic) Duhamel-Neumann (i.e. generalized Hooke) relation of linear thermoelasticity
results from (2.12) and (2.17).

(2.18) σ = 2µ εte + λL tr(εte)I − 3Kαθ (θ − θ0)I.

Moreover, one defines the thermodynamic forces Xj (scalars or tensors) via

(2.19) Xj = %0
∂ψ

∂ξj
, j = 1, . . . , Nξ.

Usually, one assumes Fourier’s law for the heat conduction

(2.20) q = −κθ∇θ

with a positive heat conductivity κθ (or, more generally with a positively definite heat-conductivity ten-
sor). In case of (2.20), the heat-conduction inequality is fulfilled, i.e.

(2.21) −1

θ
q ·∇θ ≥ 0.

Hence, the model under consideration is thermodynamically consistent (see Remark 2.1 (i)), if the Clausius-
Planck inequality is fulfilled

(2.22) σ : ε̇in −
Nξ∑
j=1

Xj : ξ̇j ≥ 0.

Up to this point, the explanations make no difference between one-mechanism models (“Chaboche”
models) and nM models. As we will see, in our extended approach, 1M models (even with multiple back
stresses) are special cases of nM models. In the theory of nM models the following decomposition of the
inelastic strain into nM parts (“mechanisms”) is crucial:

(2.23) εin =

nM∑
j=1

Aj ε
in
j .

Here, the parameters Aj (j = 1, . . . , nM ) are positive real numbers. However, extensions are possible
regarding them as phase fractions, e.g. This approach may lead to the inclusion of effects at the micro
(meso) scale. We refer to Saı̈ and Cailletaud [2007], Saı̈ et al. [2011]. Clearly, in this case an additional
term arises in the Clausius-Planck inequality (2.22). Moreover, evolution equations for the phase fractions
must be given. This is not the topic here. For further use we write εinj instead of the widely-spread
notation εj . As usual, the inelastic strains are traceless:

(2.24) tr(εin) = tr(εinj ) = 0, j = 1, . . . , nM .

For all εinj we introduce separate accumulations

(2.25) sj(t) :=

∫ t

0

(
2

3
ε̇inj (τ) : ε̇inj (τ))

1
2 dτ j = 1, . . . , nM .

Note, that sin (as defined in (2.10)) is not the sum of sj . We introduce the local (or partial) stresses σj
via

σj := Aj σ j = 1, . . . , nM .(2.26)
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Remarks 2.1. (i) In case of isotropy, the approach in (2.12) follows from the more general one

(2.27) ψte :=
1

2%0
E(θ)

(
εte − (θ − θ0)G

)
:
(
εte − (θ − θ0)G

)
+ C(θ).

That means, we suppose that the mechanical part of the thermoelastic free energy is a quadratic
form of the pure elastic strain εte − (θ − θ0)G. The generally temperature-depending elasticity
tensor of fourth order E = E(θ) has the following symmetry properties.

Eijkl = Ejikl = Eklij ∀ i, j, k, l ∈ {1, 2, 3, 4}.(2.28)

In case of full anisotropy, E has 21 independent entrees (cf. Haupt [2002], Bertram and Glüge
[2013], e.g.). For all admissible temperatures θ the tensor E is positive-definite. In case of isotropy
one has

(2.29) E(θ)ε = 2µ(θ) ε+ λL(θ)tr(ε)I.

(µ > 0, λL, - Lamé’s coefficients, I - Identity tensor of 2nd order). G is the (symmetric) heat-
dilation tensor. In case of isotropy it reads as

(2.30) G = αθI

with a linear heat-dilation coefficient αθ. In most cases it my be assumed to be constant. In many
cases, the last quadratic term in (2.12) is dropped. This does not influence the elasticity relation
(2.16). The advantage of the “full” representations (2.12) and (2.27) will be evident for extensions
of the model, taking damage effects into account (cf. Lemaitre and Chaboche [1990]).

(ii) The evolution equations (2.14) for the internal variables ξj (j = 1, . . . , Nξ) may be more general,
sometimes they may (partially) implicit. More generally, they may be integral equations or general
functionals (see Kröger [2013] for details). This aspect is not in the focus here. Due to (2.18), a
dependence on σ does not consist any problem.

(iii) For concrete material models under consideration, one has to ensure that the Clausius-Planck in-
equality (2.22) is fulfilled for given evolution equations for εin and for ξj . We refer to Besson et al.
[2001], Haupt [2002], e.g. for general questions, and to Wolff and Taleb [2008], Wolff et al. [2010],
Wolff et al. [2011b] with respect to two-mechanism models.

(iv) By standard arguments (cf. Lemaitre and Chaboche [1990], Besson et al. [2001], Haupt [2002],
e.g.), the energy equation (2.2) implies the heat-conduction equation

%0 cd θ̇ − div (κθ∇θ) = σ : ε̇in −
Nξ∑
j=1

Xj : ξ̇j + θ
∂σ

∂θ
: ε̇te + θ

Nξ∑
j=1

∂Xj

∂θ
: ξ̇j + %0r.(2.31)

The parameter cd is the specific heat. Here, we do not use the heat-conduction equation in data
processing. In case of necessity, this equation has to be used in a suitable discretized and possibly
simplified form,

3 An extended approach to multi-mechanism models
In the sequel we present some new items concerning kinematic as well as isotropic hardening. We inves-
tigate multi-mechanism models with nM mechanisms and 1 ≤ nC ≤ nM flow criteria. As agreed in the
introduction, the general abbreviation nMnC model is used. However, in concrete cases we additionally
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use the capital letters M and C. For example, we write “2M1C model” for a two-mechanism model with
a common flow criterion.

In order to get a compact explanation we split up the inelastic part of the free energy ψin into two
parts corresponding to kinematic and isotropic hardening, respectively:

ψin = ψkin + ψiso.(3.1)

As a consequence, here we do not consider a coupling between kinematic and isotropic hardening within
the free energy. Otherwise, the complexity of the model would be higher. We refer to Cailletaud and Saı̈
[1995] as well as to Wolff et al. [2010] for an example. As stated above, we focus on plastic mechanisms.
We refer to Kröger [2013] for a general setting with mechanisms of different kind.

At first, we specialize the approach for the inelastic part of the free energy in (2.11), defining its part
ψkin in Subsection 3.1. The part ψiso will be defined in Subsection 3.2.

3.1 Mechanisms and associated kinematic variables
We assume that each mechanism i (i = 1, . . . , nM ) has N (i)

α associated symmetric tensorial internal
variables of strain type αj (j = 1, . . . , Nα) called “kinematic variables”, where the bulk number Nα of
these internal variables is given as

Nα :=

nM∑
i=1

N (i)
α .(3.2)

The concrete relation between mechanisms and kinematic variables can be coded in a nM × Nα matrix
Cα consisting only of zeros and ones and being defined by

Cα ∈ {0, 1}nM×Nα , (Cα)ij :=

{
1, if αj belongs to the mechanism i,
0, otherwise.(3.3)

The information encoded in Cα defines two functions.
At first, each k ∈ {1, . . . , nM} defines a set of natural numbers setα(k) by

setα(k) := {j ∈ {1, . . . , Nα} | (Cα)kj = 1} k ∈ {1, . . . , nM}.(3.4)

Since the mechanism k has N (k)
α kinematic variables, the cardinal number of setα(k) equals to N (k)

α .
Moreover, setα : {1, . . . , nM} → 2{1,...,Nα} is a set-valued function mapping into the set of all subsets
of {1, . . . , Nα}.
On the other hand, each i ∈ {1, . . . , Nα} (each variable αi) belongs exactly to one k ∈ {1, . . . , nM} (to
one mechanism k). This defines the function kα : {1, . . . Nα} → {1, . . . nM} by

kα(i) := {k ∈ {1, . . . , nM} | (Cα)ki = 1} i ∈ {1, . . . , Nα}.(3.5)

Remarks 3.1. (i) In Besson [2009], in connection with modeling of damage processes, several kine-
matic variables may be attached to one mechanism. Besides, the backstress related to the mech-
anism is defined in analogous way as in (3.8). However, to the authors knowledge, there is no
systematic investigation in published literature.

(ii) A more descriptive interpretation of the structural matrix Cα can be given as follows: Each of the
Nα columns has exactly one entry with “1” belonging to the row which describes the corresponding
mechanism. This fact is expressed by the function kα in (3.5). On the other hand, each of the nM
rows has exactly N (k)

α entries with “1” belonging to the columns which describe the associated
kinematic variables. This fact is expressed by the set-valued function setα.
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(iii) The mechanisms and kinematic variables may be arranged in such an order, that the first row
stands for the first mechanism and its associated variables occupy the first N (1)

α columns, etc. For
more clarity, the following formula shows the arrangement of tensorial internal variables αj in this
special case.

α1, α2, . . . , αN(1)
α︸ ︷︷ ︸

1st mechanism

, α
N

(1)
α +1

, . . . , α
N

(1)
α +N

(2)
α︸ ︷︷ ︸

2nd mechanism

, . . .(3.6)

. . . , α
N

(1)
α +N

(2)
α +···+N(nM−1)

α +1
, . . . , α

N
(1)
α +N

(2)
α +···+N(nM )

α︸ ︷︷ ︸
nthM mechanism

.

Note, that in this case the set setα(k) is an interval consisting of N (k)
α numbers. The forthcoming

considerations do not depend on a special arrangements of the rows and columns like in (3.6).
However, the presentation in this manner may be more convenient.

(iv) The matrix-based approach shows its advantage when preparing and performing numerical simu-
lations. We will deal with this in Section 4.

We assume for the part ψkin of the free energy (cf. (3.1))

(3.7) ψkin(α1, . . . ,αNα , θ) :=
1

3%0

Nα∑
i,j=1

cij(θ)αi : αj .

Without any loss of generality we assume that the matrix c = (cij) is symmetric. In a usual way we
define the back stresses Xi (i = 1, . . . , Nα) as thermodynamic forces related to the kinematic internal
variables αi in accordance with (2.19) by

Xi = %0
∂ψkin
∂αi

=
2

3

Nα∑
j=1

cij αj , i = 1, . . . , Nα.(3.8)

The factors 1
3 in (3.7) and 2

3 in (3.8) ensure a compatibility between 3d and 1d representations of the
corresponding formulas. We need this in simulations and applications (cf. Subsection 4.1).

We sum up all back stresses Xi belonging to the same mechanism, defining back stresses Xk (k =
1, . . . , nM ) associated with the kth mechanism by

Xk =
∑

i∈setα(k)

Xi k = 1, . . . , nM ,(3.9)

or, equivalently in short

X = CαX(3.10)

with the obvious definitionsX := {X1, . . . ,XnM } andX := {X1, . . . ,XNα}. The back stressesXk

(k = 1, . . . , nM ) are related to the mechanism in a one-to-one manner. Moreover, they are involved in
the evolution equations of the mechanisms (see formulas (3.49), (3.53), e.g.).

We assume that for each fixed temperature θ (at least of the admissible domain) the (symmetric)
matrix c = (cij) is positive semi-definite, i.e. there holds

∀ ξ ∈ RNα :

Nα∑
i,j=1

cij(θ)ξiξj ≥ 0.(3.11)
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Under the condition (3.11) ψkin is a convex function with respect to {α1, . . . ,αNα}. We demand (cf.
Remark 3.2 (ii) for explanations)

∀ i ∈ {1, . . . , Nα} : cii > 0.(3.12)

To our knowledge, the general approach of multi-mechanism models with multiple kinematic vari-
ables for one mechanism is new. It covers multi-mechanism models in use as well as 1M models. We
give three examples.

3.1.1 Current state of multi-mechanism models

Up to now, MM models with the same number of mechanisms and tensorial internal variables of strain
type have been investigated and applied (see Cailletaud and Saı̈ [1995], Taleb and Cailletaud [2010], Saı̈
[2011], Wolff et al. [2011b], e.g.). In this case, all numbers N (i)

α are equal to one, and nM = Nα, and the
structural matrix Cα is the nM × nM identity matrix, and it does not contain any additional information.
It suffices to determine the number of mechanisms nM . Clearly, in this case there holds

Xk = Xk k = 1, . . . , nM .(3.13)

3.1.2 One-mechanism models (“Chaboche” models)

The approach in (3.3) and (3.7) generalizes 1M models with several back stresses with their own evolu-
tions. These models are called “Chaboche” models, and they are used for modeling plastic and visco-
plastic behavior. We refer to Chaboche [2008], Abdel-Karim [2010], Desmorat [2010], e.g. Indeed, for a
1M model with N1

α tensorial internal variables of strain type, one has nM = 1, and the bulk back stress
X1 = X is given by

X =

N1
α∑

i=1

Xi.(3.14)

Moreover, the structural matrix Cα consists of one row with N1
α entries being equal to one. In this case,

the matrix Cα also does not contain any additional information. It suffices to determine the number of
partial back stresses N1

α. In applications to ratcheting, the number N1
α frequently is 4, sometimes 8 (cf.

Taleb and Cailletaud [2010], Abdel-Karim [2010], e.g.).

3.1.3 A prototypical example of the extended approach

Clearly, the number of parameters cij in (3.7) can quickly growth in the general case. Hence, to keep
track of this general case, we consider a simple version: A 2M model where the first mechanism has two
variables α, while the second mechanism has only one kinematic variable. Thus, the structural matrix
Cα reads as

(3.15) Cα =

(
1 1 0
0 0 1

)
Moreover, the symmetric 3 × 3 matrix c defining the part of the free energy ψkin is described by six
coefficients which are arranged as follows.

(3.16) c =

 c11 c12 c13

c12 c22 c23

c13 c23 c33

 , cI =

(
c11 c12

c12 c22

)
, cII =

(
c33

)

11



The first mechanism has the two internal variables, α1 and α2. The variable α3 belongs to the second
mechanism. The sub-matrix cI corresponds to the first mechanism, and the interaction inside of this
mechanism is described by c12. The sub-matrix cII is assigned to the second mechanism. The coefficients
c13 and c23 describe interactions between the two mechanisms. Specializing the formulas (3.8) and (3.9),
we get

Xi =
2

3

3∑
j=1

cij αj , i = 1, 2, 3,(3.17)

X1 = X1 +X2, X2 = X3(3.18)

In the sequel, we will use this example as a reference example in order to demonstrate the possibilities of
the general approach.

Remarks 3.2. Some items concerning symmetric matrices
(i) It follows from algebraic considerations, that the sum in (3.7) is non-negative for all symmetric

3× 3 matrixes αi (i = 1, . . . , Nα), if and only if (3.11) is fulfilled. Besides, the convexity of ψkin
follows in this case.

(ii) From the positive semi-definiteness of the matrix c the inequalities

∀ i ∈ {1, . . . , Nα} : cii ≥ 0(3.19)

follow. Moreover, if there is cij = 0 for one pair of indices (i, j), then all entries in the ith row and
in the jth colon are zero. Thus, it is reasonable to assume the condition (3.12).

(iii) The matrix c is called “positive definite”, if the sum in (3.11) is positive for all non-vanishing
ξ ∈ RNα . In this case, the determinant det(c) is not zero, and the matrix c is invertible.

(iv) For a symmetric 2× 2 matrix c positive semi-definiteness is equivalent to the condition

(3.20) c212 ≤ c11c22.

Moreover, positive definiteness is equivalent to the strong inequality in (3.20) (see Wolff and Taleb
[2008], e.g.).

3.2 Flow criteria and associated isotropic variables
As already stated above, an nM model may have 1 ≤ nC ≤ nM flow criteria. We assume that the ith

(i ∈ {1, . . . , nC}) criterion is related to N (i)
f (i = 1, . . . , nC) mechanisms. In other words, the N (i)

f

(i = 1, . . . , nC) mechanisms have the ith criterion as their common one. Of course, the special cases of
one-criterion models (1C models) as well as of nMnM models are covered, too. In the first case, one has
N

(1)
f = nM . In the second case, all numbers N (i)

f are equal to one. Clearly, there must be

(3.21)
nC∑
j=1

N
(j)
f = nM .

In an analogous way as for mechanisms and kinematic variables in the previous Subsection, the
concrete relations between mechanisms and flow criteria can be coded by a structural nC × nM matrix
Cf :

Cf ∈ {0, 1}nC×nM , (Cf )ij :=

{
1, if mechanism j belongs to the criterion i,
0, otherwise.(3.22)
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Again (cf. (3.4)), the information encoded in the matrix Cf defines two functions: At first, a set-
valued function setf : {1, . . . , nC} → 2{1,...,nM} is given by

setf (k) := {j ∈ {1, . . . , nM} | (Cf )kj = 1} k ∈ {1, . . . , nC}.(3.23)

Secondly, a function kf : {1, . . . , nM} → {1, . . . , nC} is defined by

kf (i) := {k ∈ {1, . . . , nC} | (Cf )ki = 1} i ∈ {1, . . . , nM}.(3.24)

We assume thatN (i)
q isotropic internal variables qj are associated to the ith criterion (i ∈ {1, . . . , nC}).

Hence, the number of all isotropic internal variable is given by

Nq :=

nuc∑
i=1

N (i)
q .(3.25)

Again, the concrete relation between flow criteria and isotropic variables can be coded via a structural
nC ×Nq matrix Cq:

Cq ∈ {0, 1}nC×Nq , (Cq)ij :=

{
1, if qj belongs to the flow criterion i,
0, otherwise.(3.26)

Again (cf. (3.4) and vv), the information encoded in the matrix Cq defines two functions: At first, a
set-valued function setq : {1, . . . , nC} → 2{1,...,Nq} is given by

setq(k) := {j ∈ {1, . . . , Nq} | (Cq)kj = 1} k ∈ {1, . . . , nC}.(3.27)

Secondly, a function kq : {1, . . . , Nq} → {1, . . . , nC} is defined by

kq(i) := {k ∈ {1, . . . , nC} | (Cq)ki = 1} i ∈ {1, . . . , Nq}.(3.28)

Remark 3.3. Obviously, there hold analogous remarks concerning the matrices Cf and Cq like for the
matrix Cα in the Remarks 3.1.

Now we assume for the part ψiso (see (3.1))

(3.29) ψiso(q1, . . . , qNq , θ) :=
1

2%0

Nq∑
i,j=1

Qij qiqj .

The part ψkin remains the same as in (3.7). In analogy to the matrix c we assume that for each fixed
temperature θ (at least of the admissible domain) the following condition holds.

∀ ξ ∈ RNq :

Nq∑
i,j=1

Qij(θ)ξiξj ≥ 0.(3.30)

Without any loss of generality the matrix Q can be assumed to be symmetric. As above for the matrix c
(cf. Remark 3.2 (i)) it is reasonable to assume

∀ i ∈ {1, . . . , Nq} : Qii(θ) > 0.(3.31)

The isotropic hardening stresses Ri are defined in accordance with the general approach in (2.19).
Hence, one has

Ri = %0
∂ψiso
∂qi

=

Nq∑
j=1

Qij qj i ∈ {1, . . . , Nq},(3.32)
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Sometimes, in the case of 1C models with only one isotropic variable, instead of q1, Q11 and R1 one
simply writes q, Q and R, respectively. Analogously as in the case of kinematic hardening, we sum up
all isotropic hardening stresses belonging to the same criterion, defining

Rk =
∑

i∈setq(k)

Ri k = 1, . . . , nC .(3.33)

The last relation can be expressed in an equivalent way:

R = CqR(3.34)

with R := (R1, . . . ,RnC ) and R := (R1, . . . ,RNq ). The quantities Rk are related to the flow criteria
in a one-to-one manner.

Based on the von Mises stress, we define the quantities

J i :=
(3

2
(σ∗i −X

∗
i ) : (σ∗i −X

∗
i )
) 1

2

i = 1, . . . , nM ,(3.35)

Jk :=
( ∑
i∈setf (k)

J
β

i

) 1
β

k = 1, . . . , nC .(3.36)

The quantity σ∗ stands for the deviator of σ, and J i can be regarded as the von Mises stress of the
“effective stress” of the ith mechanism. The quantity Jk is some kind of “effective stress” associated
with the kth criterion. The material parameter β has to fulfil

(3.37) β > 1.

Frequently, the parameter β is labelled by N , see Wolff and Taleb [2008], Taleb and Cailletaud [2010].
More comments can be found in Remarks 3.4 (ii), (iii).

The definition (3.36) of the von Mises stresses J := (J1, . . . , JnC ) related to the flow criteria can be
expressed in a compact way.

J =
(
Cf Jβ

) 1
β

(3.38)

with J := (J1, . . . , JnM ). The power operations in (3.38) are understood in a component-wise way.
Generally, there are more mechanisms than flow criteria, i.e. nC ≤ nM . Thus, for technical reason in

the sequel, we define an auxiliary vector J (m) of von Mises stresses related to the mechanisms by:

J (m) :=
(
Cf
)T
J .(3.39)(

Cf
)T

is the transposed matrix to Cf . Clearly, in general case, some components of J (m) are equal,
however, the number of components is equal to the number of mechanisms nM .

The yield functions are given by

fk(σi,Xi, Rk, R0k) := Jk − (Rk +R0k) k = 1, . . . , nC , i ∈ setf (k),(3.40)

R0k :=
β

√
N

(k)
f σ0k, k = 1, . . . , nC .(3.41)

The quantities σ0k = σ0k(θ) > 0 (i = 1, . . . , nC) are the initial yield stresses associated with the
corresponding flow criteria. It is assumed that

(3.42) σ0k(θ) > 0 for k = 1, . . . , nC .
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The notation in (3.40) means that the kth flow function fk depends on all σi and Xi which mecha-
nisms i are united by the kth flow criterion.

In order to have formally the same number of flow criteria and mechanisms, we define a new vector
of flow functions f (m) by

f (m) :=
(
Cf
)T
f ,(3.43)

whereby f := (f1, . . . , fnC ) and the fk are defined in (3.40), (3.41).
Since we are dealing only with plastic behavior, we suppose for all nMnC models the subsequent nC

constraints

fk(σi,Xi, Rk, R0k) ≤ 0 k = 1, . . . , nC , i ∈ setf (k),(3.44)

or, in short, using (3.43)

f (m)(σ(A),X,R,R0) ≤ 0(3.45)

with the vector σ(A) of partial stresses defined by

(3.46) σ(A) := (σ1, . . . ,σnM ).

Remarks 3.4. (i) In Taleb and Cailletaud [2010], the isotropic hardening R is represented as a sum
of two parts having their own evolutions and involving additional variables. The aim is to obtain a
better description of ratcheting. This approach is analogous to the representation of one back stress
as a sum of partial back stresses as in (3.9).

(ii) In the case nM = nC each mechanism has its own flow criterion, and, from (3.35), (3.36) follows

(3.47) J i = Ji =
(3

2
(σ∗i −X

∗
i ) : (σ∗i −X

∗
i )
) 1

2

for i = 1, . . . , nM .

Therefore, there is no parameter β in this case. Similarly, for 1M models (“Chaboche” models) one
has J1 = J1, and the parameter β does not play any role, too.

(iii) In case of nC = 1, all mechanisms have a common flow criterion, and (3.35), (3.36) yield

J =
( nM∑
i=1

J
β

i

) 1
β

.(3.48)

(iv) A current proposal for a more complex coupling between the mechanisms via the flow criteria can
be found in Kröger [2013].

3.3 Evolution equations for inelastic strains
Based on (3.35) and (3.36), we define

ni := − ∂fk
∂Xi

=
3

2

σ∗i −X
∗
i

J i

(
J i
Jk

)β−1

k = 1, . . . , nC , i ∈ setf (k).(3.49)

Using the definitions in (3.38) and (3.39), the definition (3.49) reads as

ni =
3

2

σ∗i −X
∗
i

J i

(
J i

J
(m)
i

)β−1

i = 1, . . . , nM .(3.50)
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Moreover, using the vector n := (n1, . . . ,nnM ) the last relation can be re-written in a compact way (see
(3.46) for the definition of σ(A)).

n =
3

2

σ∗(A) −X
∗

J

(
J

J (m)

)β−1

.(3.51)

Again, the algebraic operations are understood in a component-wise manner.
For further use, we introduce unit tensors mi being collinear to ni as well as to to the effective

stresses of the ith mechanisms.

mi := ni ‖ni‖−1
=

σ∗i −X
∗
i

‖σ∗i −X
∗
i ‖

i = 1, . . . , nM .(3.52)

Now we assume evolution laws for εi. All mechanisms belonging to the same flow criterion have a
common plastic multiplier. Thus, we assume

ε̇ini = λk ni, k = 1, . . . , nC , i ∈ setf (k).(3.53)

As usual, the plastic multipliers λk have to fulfil

λk

{
= 0, if fk(σi,Xi, Rk, R0k) < 0,
≥ 0, if fk(σi,Xi, Rk, R0k) = 0.

k = 1, . . . , nC i ∈ setf (k).(3.54)

In applications, it may be useful to re-write the relations (3.53) and (3.54) in a compact matrix-based
way. For this reason, we define suitable vectors stemming from the vector λ := (λ1, . . . , λnuc) of plastic
multipliers.

λ(q) :=
(
Cq
)T
λ, λ(m) :=

(
Cf
)T
λ, λ(α) :=

(
Cα
)T (Cf)T λ.(3.55)

Therefore, the evolution equations for the vector εin(m) := (εin1 , . . . , ε
in
num) of partial plastic strain reads

as (cf. (3.53))

ε̇in(m) = λ(m) n.(3.56)

Again, the multiplication on the right-hand side is component-wise. The flow conditions (3.54) can be
re-formulated equivalently in the following compact way using the Kuhn-Tucker conditions.

λ(m) ≥ 0, f (m)(σ(A),X, R,R0) ≤ 0, λ(m)f (m)(σ(A),X, R,R0) = 0.(3.57)

Clearly, the order relations have to be understood component-wise.
From (2.25), (3.35), (3.36), (3.49) and (3.53) one gets

ṡi = λk

( ∑
j∈setf (k)

J
β

j

) 1
β−1

J
β−1

i k = 1, . . . , nC , i ∈ setf (k),(3.58)

and, after this,

λk =
( ∑
j∈setf (k)

(ṡj)
β
β−1

) β−1
β

, k = 1, . . . , nC .(3.59)

In case of necessity, the last two relations can be re-written in a compact way, too.
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3.4 Evolution equations for isotropic variables and isotropic hardening stresses
We assume the following evolution equations for qi.

q̇i = λkq(i) − bi(R, q,λ, θ,σ) i = 1, . . . , Nq.(3.60)

The bi are given functions depending on the quoted quantities and possibly on further ones like accu-
mulations. The vectorial notations R, q and λ stand for the sets of all Ri, qi and λk, respectively. The
evolution equations (3.60) cover many approaches in use. It is inspired by an analogous general approach
which has been investigated in Desmorat [2010] for kinematic variables in the case of 1M models (see
below). Appropriate conditions on the functions bi ensure thermodynamic consistency. This will be
considered in Subsection 3.6.

Here, in case of plastic behavior, the following restriction ensures that the evolution of qi can only
take place, if the corresponding flow criterion is fulfilled. This can be expressed by

(3.61) λkq(i) = 0 ⇒ bi = 0 i = 1, . . . , Nq.

Using (3.60) and the definition of the isotropic hardening stresses Ri in (3.32), general evolution
equations for Ri follow.

Ṙi =

Nq∑
j=1

Qijλkq(j) −
Nq∑
j=1

Qijbj(R, q,λ, θ,σ) + θ̇

Nq∑
j=1

dQij
dθ

qj i = 1, . . . , Nq.(3.62)

In the regular case det(Q) 6= 0,Q is invertible, and the equations (3.62) can be re-formulated without qj .
For a constant matrix Q, the equations (3.62) do not contain the last sum with qj . Finally, from (3.33)
the equations for the isotropic hardening stresses Ri associated with the criteria follow.

Ṙk =
∑

i∈setq(k)

Ṙi k = 1, . . . , nC ,(3.63)

or, in short (cf. (3.34))

Ṙ = Cq Ṙ.(3.64)

An important special case of the general approach in (3.60) is given by

q̇i = λkq(i) −
Nq∑
j=1

bijRj

√
λkq(j)

√
λkq(i) i = 1, . . . , Nq,(3.65)

where b is a not necessarily symmetric matrix of material parameters generally depending on temperature
and further quantities. Now the evolution equations for Ri become

Ṙi =

Nq∑
j=1

Qijλkq(j) −
Nq∑
j,s=1

QijbjsRs

√
λkq(s)

√
λkq(j) + θ̇

Nq∑
j=1

dQij
dθ

qj i = 1, . . . , Nq.(3.66)

In order to re-formulate the evolution equations (3.65) for q = (q1, . . . , qNq ) and (3.66) for R =

(R1, . . . , RNq ), we define special diagonal matrices.

Λ(q) ∈ RNq×Nq , Λ(q) := diag{(Cq)T
√
λ}.(3.67)
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The operation diag{v} generates a quadratic diagonal matrix from a given vector v. The square root in
the middle of (3.67) is understood as a component-wise operation. Thus, an equivalent definition for Λ(q)

is given by

Λ(q) ∈ RNq×Nq , (Λ(q))ij :=

{ √
λ

(q)
i , if i = j,

0, otherwise.
.(3.68)

As a result, the evolutions equation (3.65) and (3.66) can be re-written as follows.

q̇ = λ(q) − Λ(q) bΛ(q)R,(3.69)

Ṙ = Q
(
λ(q) − Λ(q) bΛ(q)R

)
+ θ̇
(dQ

dθ

)
q,(3.70)

Remarks 3.5. (i) (One-criterion models with one isotropic variable) The general approach in (3.60)
as well in (3.65) covers well-known cases. For instance, in case of 1C models with one isotropic
variable, the equations (3.65) turn to one equation sometimes written in the following form

(3.71) q̇ = λ− b

Q
Rλ.

with b ≥ 0. Due to (3.32) and Q > 0, now q can always be eliminated. Hence, the pendant to
(3.62) reads as

Ṙ = Qλ− bRλ+
θ̇

Q

dQ

dθ
R.(3.72)

For constant Q and b > 0 and the for the usual initial condition R(0) = 0 the solution of (3.72) is
given by

R(Λ) =
Q

b

(
1− exp(−bΛ)

)
(3.73)

with (cf. (2.10) and (3.58))

(3.74) Λ(t) :=

∫ t

0

λ(τ) dτ = s(t)

The curve given by (3.73) describes clearly the isotropic hardening with saturation. The initial
sloop of this curve is Q, while its asymptotic value is Q/b.
In the special case of 1C models with one isotropic variable and with (3.71), in accordance to
(3.73), the isotropic hardening stress R is a non-negative function of the plastic accumulation Λ.
In the general situation (3.60) or (3.65), it is a mathematical task to investigate under which condi-
tions on bi (or on bij) the quantities Rk are non-negative.

(ii) In non-isothermal situation, rate-independence of isotropic hardening is ensured under condition
(3.61) and if the matrixQ is constant.

3.5 Evolution equations for kinematic variables and back stresses
Analogously as for isotropic hardening, we present a general variant of evolution equations for the kine-
matic variables which generalizes many approaches in use. In particular, this approach contains the case
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of 1M models which has been investigated in Desmorat [2010]. We assume the following evolution
equations for the kinematic variables.

α̇i = ε̇inkα(i) − di(X,α,λ, θ,σ), i ∈ {1, . . . , Nα}.(3.75)

Now, the di are given matrix functions depending on the quoted quantities and possibly on further ones
like accumulations. Again, the notations X , α and λ stand for the sets of all Xi, αi and λk, respec-
tively. Appropriate conditions on the matrix functions di ensure thermodynamic consistency. This will
be considered in Subsection 3.6.

Again, in case of plastic behavior, the following restriction ensures that the evolution of αi can only
take place, if the corresponding flow criterion is fulfilled. This can be expressed by

(3.76) λk̃α(i) = 0 ⇒ di = 0 i = 1, . . . , Nα.

Using (3.75) and the definition of the back stresses Xi in (3.8), general evolution equations for Xi

follow.

Ẋi =
2

3

Nα∑
j=1

cijλkα(j) −
2

3

Nα∑
j=1

cijdj(X,α,λ, θ,σ) +
2

3
θ̇

Nα∑
j=1

dcij
dθ
αj i = 1, . . . , Nα.(3.77)

As above, in the regular case det(c) 6= 0, c is invertible, and the equations (3.77) can be re-formulated
without αj . For a constant matrix c, the equations (3.77) do not contain the last sum with αj . Finally,
from (3.9) one gets the equations for the back stressesXk associated with the mechanisms.

Ẋk =
∑

i∈setα(k)

Ẋi k = 1, . . . , Nα.(3.78)

And, in short (cf. (3.10)) one has

Ẋ = Cα Ẋ.(3.79)

In many applications, the kinematic hardening is more in the focus than the isotropic one. Therefore,
a great variety of proposals is in use. Thus, for a better readability we will deal separately later on with
special cases of the general approach in (3.75).

Remark 3.6. Similar quite general evolution equations for the kinematic variables as in (3.60) can be
found in Desmorat [2010]. There, the aim is to model hardening without saturation. This is not in the
focus here.

3.6 General form of the Clausius-Planck inequality
At this stage, we present the general form of the Clausius-Planck inequality (2.22) using the information
already given above. Later on, this inequality will be applied to important special cases of evolution laws
for internal variables.

Based on (2.23), (2.26), (3.1), (3.7), (3.8), (3.9), (3.29), and (3.32), the Clausius-Planck inequality
(2.22) becomes

(3.80)
nM∑
k=1

(
σk −Xk

)
: ε̇ink +

Nα∑
i=1

Xi :
(
ε̇inkα(i) − α̇i

)
−

Nq∑
i=1

Riq̇i ≥ 0.
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Moreover, using (3.33), (3.35), (3.36), (3.40), (3.49), (3.53) and (3.54) this inequality turns to

(3.81)
nC∑
i=1

R0iλi +

Nq∑
i=1

Ri
(
λkq(i) − q̇i

)
+

Nα∑
i=1

Xi :
(
ε̇inkα(i) − α̇i

)
≥ 0.

Assuming the evolution laws (3.60) and (3.75), the last inequality turns to

(3.82)
nC∑
i=1

R0iλi +

Nq∑
i=1

Ribi +

Nα∑
i=1

Xi : di ≥ 0.

Due to (3.42) and (3.54), the first sum in (3.82) is always non-negative. Hence, for thermodynamic
consistency of the model under consideration the following conditions are sufficient.

Nq∑
i=1

Ri bi(R, q,λ, θ,σ) ≥ 0 for all admissible arguments,(3.83)

Nα∑
i=1

Xi : di(X,α,λ, θ,σ) ≥ 0 for all admissible arguments,(3.84)

Obviously, in the special case (3.65), the positive semi-definiteness of the matrix b (for all admissible
arguments) ensures the inequality (3.83).

3.7 More special evolution equations for the kinematic variables
Now, it is the aim to present some more concrete proposals being special cases of the quite general
approach in (3.75). For technical reason we need a further function k̃α : {1, . . . , Nα} → {1, . . . , nC}
attaching the number i of the variableαi to the number k of the flow criterion which contents the “home”
mechanism of αi. Hence, we define

(3.85) k̃α(i) := kf (kα(i)) for i = 1, . . . , Nα.

With the help of the matrix-based presentations developed above, the use of the functions k̃α can be
avoided. We will do so later on. However, for a better understanding, we use k̃α when introducing the
approaches.

The following proposal acts on a suggestion by Burlet and Cailletaud [1987] (see Remark 3.7). The
original idea was to take projections of back stresses onto the unit tensors mi (defined in (3.52)) into
account.

α̇i = ε̇inkα(i) −
3

2

Nα∑
j=1

d
(x)
ij

{
(1− η(x)

ij )Xj + η
(x)
ij (Xj : mkα(j))mkα(i)

}√
λk̃α(i)

√
λk̃α(j)+(3.86)

−
Nα∑
j=1

d
(α)
ij

{
(1− η(α)

ij )αj + η
(α)
ij (αj : mkα(j))mkα(i)

}√
λk̃α(i)

√
λk̃α(j),

i ∈ {1, . . . , Nα}.

The matrices d(x), d(α), η(x) and η(α) of material parameters are not necessarily symmetric. In most
applications one requires

0 ≤ η(x)
ij ≤ 1, 0 ≤ η(α)

ij ≤ 1 ∀ i, j ∈ {1, . . . , Nα}.(3.87)
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Besides, in many applications, scalar parameters η(x), η(α) are in use. As we will see in Subsection 4.1,
in case on uniaxial stress history, these parameters drop out. This corresponds to the case η = 0 and
(3.86) turns to

α̇i = ε̇inkα(i) −
Nα∑
j=1

(3

2
d

(x)
ij Xj + d

(α)
ij αj

)√
λk̃α(j)

√
λk̃α(i), i ∈ {1, . . . , Nα}.(3.88)

Note that the factor 3/2 does not occur in front of the kinematic variables in (3.86) and (3.88). The reason
for this is to get an equivalence between the 3d formulas and their 1d counterparts. We return to this
matter in Subsection 4.1.

We write down the Armstrong-Frederick relations for the back stresses Xi in case of the evolution
equations (3.88).

Ẋi =
2

3

Nα∑
j=1

cij ε̇
in
kα(j) −

Nα∑
j,s=1

cij

(
d

(x)
js Xs +

2

3
d

(α)
js αs

)√
λk̃α(s)

√
λk̃α(j)+(3.89)

+
2

3
θ̇

Nα∑
j=1

dcij
dθ
αj i = 1, . . . , Nα.

Clearly, for a constant matrix c the equations (3.89) do not contain explicitly the kinematic variables
αj . In the regular case of a positive definite matrix c, there exists the inverse matrix c−1. Hence, the
kinematic variables can be expressed by the back stresses, and the equations (3.89) may be re-written
without αj . We refer to Wolff et al. [2010], Wolff et al. [2011b] for more explanation. Finally, using the
definition (3.9) of the back stressesXi associated with the ith mechanism, one has

Ẋk =
∑

i∈setα(k)

Ẋi k = 1, . . . , nM(3.90)

In the case of 1C models, there is only one plastic multiplier λ. Hence, in (3.86), one has

(3.91)
√
λk̃α(j)

√
λk̃α(i) = λ ∀ i, j ∈ {1, . . . , Nα}.

In order to re-formulate the evolution equations (3.88) for α = (α1, . . . ,αNα) and (3.89) for the
back stresses, we define a further special diagonal matrix (cf. (3.67), (3.67)).

Λ(α) ∈ RNα×Nα , (Λ(α))ij := diag{(Cα)T (Cf )T
√
λ}(3.92)

Moreover, we need a special version of the partial plastic strains defined by

εin(m) :=
(
Cα
)T
εin(m).(3.93)

Finally, we can re-formulate the evolutions equation (3.88) for α as well as the evolution equations
(3.89) and (3.90) forX andX , respectively.

α̇ = ε̇
in

(m) − Λ(α)
(3

2
d(x) Λ(α)X + d(α) Λ(α)α

)
,(3.94)

Ẋ = c
(
ε̇
in

(m) − Λ(α)
(3

2
d(x) Λ(α)X + d(α) Λ(α)α

))
+ θ̇
(dc

dθ

)
α,(3.95)

Ẋ = CαẊ.(3.96)

The case with the Burlet-Cailletaud approach (3.86) can be dealt with in an analogous manner. We drop
this here because of only dealing with uniaxial experiments in the forthcoming simulations.

The quite general approach (3.86) includes used variants as well as new ones. We present three
important special cases. Clearly, for these special cases the Armstrong-frederick relations can be written
down in an analogous manner as in (3.89). We drop this here.
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3.7.1 Case of MM models with only one kinematic variable α per mechanism

For each mechanism k ∈ {1, . . . , nM} there holds N (k)
α = 1. Thus, in (3.86), one has kα(i) = i for all

i = 1, . . . , nM . In other words, in this case the structural matrix C is the nM × nM identity matrix, and
εin(m) equals to εin(m) (cf. (3.93)). Thus, the approach (3.86) will be simplified to

α̇i = ε̇ini −
3

2

nM∑
j=1

d
(x)
ij

{
(1− η(x)

ij )Xj + η
(x)
ij (Xj : mj)mi

}√
λkf (i)

√
λkf (j)+(3.97)

−
nM∑
j=1

d
(α)
ij

{
(1− η(α)

ij )αj + η
(α)
ij (αj : mj)mi

}√
λkf (j)

√
λkf (i) i ∈ {1, . . . , nM}.

This variant of nM models has been usually applied with diagonal matrices d (i.e., dij = 0, if i 6= j).
The general case with not necessarily symmetric matrices d has been proposed in Wolff et al. [2011b].
More comments are given in Remark 3.8 (ii).

Further specialization occur, if only the proper projections (Xj : mj)mj will be taken into account.
This can be achieved by setting ηij := 0 for i 6= j. Analogously, the terms with αj can be dealt with.

3.7.2 Case of 1M models with r kinematic variables α (“Chaboche models”)

Now one has nM = 1, N (1)
α = r, and the structural matrix C consists of one row with length N (1)

α = r
completely fulfilled by one. Thus, the approach (3.86) simplifies to (with εin instead of ε1, and with m
instead ofm1)

α̇i = ε̇in −
3

2

r∑
j=1

d
(x)
ij

{
(1− η(x)

ij )Xj + η
(x)
ij (Xj : m)m

}
λ+(3.98)

−
r∑
j=1

d
(α)
ij

{
(1− η(α)

ij )αj + η
(α)
ij (αj : m)m

}
λ i = 1, . . . , r.

Formally, one has εin(m) = εin Ir×r with the r×r identity matrix. This approach is typical for “Chaboche
models” and it covers many of their variants (see Bari and Hassan [2002], Abdel-Karim [2009a], Abdel-
Karim [2010], e.g.).

3.7.3 Case of MM models with coupling only inside the mechanisms

The nM mechanisms of a given nM model may have more than one kinematic variableα, but the coupling
in their evolution equations takes only place inside of the corresponding mechanism. That means, the
approach (3.86) will be specialized in the following way.

α̇i = ε̇inkα(i)+(3.99)

− 3

2

∑
j∈set(kα(i))

d
(x)
ij

{
(1− η(x)

ij )Xj + η
(x)
ij (Xj : mkα(i))mkα(i)

}√
λk̃α(i)

√
λk̃α(j)+

−
∑

j∈set(kα(i))

d
(α)
ij

{
(1− η(α)

ij )αj + η
(α)
ij (αj : mkα(i))mkα(i)

}√
λk̃α(i)

√
λk̃α(j)

i ∈ {1, . . . , Nα}.

In other words, in the evolution equation of αi, there occur only Xj , αj and mj belonging to the same
mechanism as αi. Formally, the variant (3.99) follows from the general one (3.86) by setting d(x)

ij := 0
for j /∈ set(kα(i)).
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We conclude this subsection with several remarks.

Remark 3.7. (Burlet-Cailletaud approach) The original idea of the projection of Xj onto mj is due
to Burlet and Cailletaud [1987] (there with η = 1). The modification with a (scalar) 0 ≤ η ≤ 1 was used
in Taleb et al. [2006]. The aim of theses proposals was to get a better description of bi-axial ratcheting
behavior. As we will see in Subsection 4.1, in case of uniaxial stress history, this approach does not play
any role. The brackets in (3.88) will be simply re-placed by Xj and by αj , respectively. That means,
one has {

(1− η(x)
ij )Xj + η

(x)
ij (Xj : ml)ml

}
= Xj ∀ i, j, l(3.100)

and an analogous result concerning the α term. Thus, for applications to uniaxial experiments this ap-
proach does not play any role. Hence, the parameters ηi cannot be determined by uniaxial experiments.

Remarks 3.8. (i) In many applications, one encounters the approach (3.88) either only with back
stresses or only with kinematic variables. In some earlier publications, 2M models with d(α) = 0
have been called 2M-a models, and 2M models with d(x) = 0 have been called 2M-b models. See
Wolff and Taleb [2008], Wolff et al. [2010], Wolff et al. [2011b].
At first, the approach (3.88) with d(x) = 0 has been proposed in Taleb et al. [2006] for a better
description of ratcheting behavior.

(ii) Usually, diagonal matrices d(x) and d(α) have been used. The generalization to not necessarily
symmetric matrices has been proposed in Wolff et al. [2011b] and leads to generally non-symmetric
generalized Armstrong-Frederick relations for the back stressesXj .

(iii) Using (3.8), the back stresses can be substituted by the kinematic variables, and, without any loss of
generality the approach (3.88) can be applied with d(x) = 0. Nevertheless, since many approaches
in use have the form (3.88) with d(α) = 0, here, we do not proceed in this way.

(iv) If the matrix c is positive definite (for all admissible temperatures) (see Remark 3.2 (iii)), than it is
invertible, and the αi can be expressed by the back stresses via (3.8). Thus, in this regular case,
one can assume that in (3.88) only the back stresses occur.

(v) In principle, instead of the scalar parameters cij and dij material tensors Eij and Dij of fourth
order could be used (i, j = 1, 2). This approach has been used in Wolff et al. [2012a] with respect
to 2M models with visco-elastic mechanisms.

3.8 Clausius-Planck inequality and thermodynamic consistency for some special
cases

Taking the evolution equations (3.65) and (3.88) for qi and αi, respectively, into account, one gets from
(3.81)

nC∑
i=1

R0iλi +

Nq∑
i,j=1

bijRiRj

√
λkq(j)

√
λkq(i) +

3

2

Nα∑
i,j=1

d
(x)
ij Xi : Xj

√
λk̃α(j)

√
λk̃α(i)+(3.101)

+

Nα∑
i,j=1

d
(α)
ij Xi : αj

√
λk̃α(j)

√
λk̃α(i) ≥ 0.
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Expressing the back stressesXi by the variables αj via (3.8), the inequality (3.101) becomes

nC∑
i=1

R0iλi +

Nq∑
i,j=1

bijRiRj

√
λkq(j)

√
λkq(i) +

3

2

Nα∑
i,j=1

d
(x)
ij Xi : Xj

√
λk̃α(j)

√
λk̃α(i)+(3.102)

+
2

3

Nα∑
i,j=1

Nα∑
s=1

d
(α)
ij cisαs : αj

√
λk̃α(j)

√
λk̃α(i) ≥ 0.

This inequality is true, if the matrices b and d(x) are positive semi-definite, and if d(α) fulfils the following
conditions.

Nα∑
i,j,s=1

d
(α)
ij cis ξsj ζj ζi ≥ 0, ∀ ξ ∈ RN

2
α ∀ ζ ∈ RNα .(3.103)

Note that the matrix c is involved in (3.103). In the case of 1C models, there is only one λ. Hence, the
positive semi-definiteness of b, d(x) and cTd(α) ensures thermodynamic consistency. Here, cT is the
transposed matrix of c.

In the case (3.86) the inequality (3.101) becomes

nC∑
i=1

R0iλi +

Nq∑
i,j=1

bijRiRj

√
λkq(j)

√
λkq(i)+(3.104)

+
3

2

Nα∑
i,j=1

d
(x)
ij (1− η(x)

ij )Xi : Xj

√
λk̃α(j)

√
λk̃α(i)+

+
2

3

Nα∑
i,j=1

Nα∑
s=1

d
(α)
ij (1− η(α)

ij )cisαs : αj
√
λk̃α(j)

√
λk̃α(i)+

+
3

2

Nα∑
i,j=1

d
(x)
ij η

(x)
ij (Xj : mkα(j))(Xi : mkα(i))

√
λk̃α(j)

√
λk̃α(i)+

+
2

3

Nα∑
i,j=1

Nα∑
s=1

d
(α)
ij η

(α)
ij cis(αj : mkα(j))(αs : mkα(i))

√
λk̃α(j)

√
λk̃α(i) ≥ 0.

To ensure this inequality, suitable semi-definiteness conditions involving the matrices d(x), d(α), c, η(α),
and η(x) must be fulfilled (besides the positive semi-definiteness of b).

3.9 Applications of the new items to the reference model
In order to illustrate the quite general cases above, now we consider some corresponding cases for the
reference 2M model presented in Subsection 3.1.3. This model is characterized by its structural matrix
Cα (cf. (3.16))

(3.105) Cα =

(
1 1 0
0 0 1

)
.

That means, the first mechanism has two internal kinematic variables α1 and α2, and the second mecha-
nism has the single kinematic variable α3, in short:

nM = 2, N (1)
α = 2, N (2)

α = 1, Nα = 3.(3.106)
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Moreover, the 2M model under consideration is characterized by the symmetric 3 × 3 parameter matrix
given in (3.16). Therefore, the (partial) back stresses Xi (i = 1, 2, 3) are defined by (3.17), and the
back stresses X1 and X2 associated with the mechanisms 1 and 2 are defined by (3.18). For a better
readability we repeat them.

X1 =
2

3

3∑
j=1

c1jαj , X2 =
2

3

3∑
j=1

c2jαj , X3 =
2

3

3∑
j=1

c3jαj ,(3.107)

X1 = X1 +X2, X2 = X3, .(3.108)

Due to symmetry, the matrix c has six coefficients which are material parameters.

3.9.1 Two-criteria model

At first, we assume that our reference 2M model has two criteria, and that the first criterion has two
isotropic internal variables q1, q2, and that the second criterion has one isotropic variable q3. In a 2M2C
model, each mechanism has its own criterion. Thus, the structural matrices Cf and Cq are given by

(3.109) Cf =

(
1 0
0 1

)
, Cq =

(
1 1 0
0 0 1

)
.

And, there hold

nC = 2, N (1)
q = 2, N (2)

q = 1, Nq = 3.(3.110)

N
(1)
f = 1, N

(2)
f = 1.(3.111)

Thus, we have three (partial) isotropic hardening stresses Ri (i = 1, 2, 3) and two isotropic hardening
stresses R1, R2 associated with the first and second criterion, respectively. Summarizing, there hold the
following relations.

Ri =

3∑
j=1

Qij qj , i = 1, 2, 3.(3.112)

R1 = R1 +R2, R2 = R3.(3.113)

Due to symmetry, the matrix Q has six coefficients. Clearly, we have to plastic multipliers λ1 and λ2

associated with the first and second criterion, respectively.
Now, the general approach in (3.88) yields in our concrete case.

α̇1 = ε̇in1 −
2∑
j=1

{3

2
d

(x)
1j Xj + d

(α)
1j αj

}
λ1 −

{3

2
d

(x)
13 X3 + d

(α)
13 α3

}√
λ1

√
λ2,(3.114)

α̇2 = ε̇in1 −
2∑
j=1

{3

2
d

(x)
2j Xj + d

(α)
2j αj

}
λ1 −

{3

2
d

(x)
23 X3 + d

(α)
23 α3

}√
λ1

√
λ2,(3.115)

α̇3 = ε̇in2 −
2∑
j=1

{3

2
d

(x)
3j Xj + d

(α)
3j αj

}√
λ2

√
λ1 −

{3

2
d

(x)
33 X3 + d

(α)
33 α3

}
λ2.(3.116)

Generally, each of the matrices d(x) and d(α) has nine coefficients being material functions. Considering
special cases, this number will be reduced. For instance, if only the back stresses occur (i.e. d(α) =
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0), there remain only nine coefficients. Assuming additionally, that the coupling within the evolution
equations occurs only within the mechanisms, the coefficients d13, d23, d31, and d32 become zero. This
yields fife non-vanishing coefficients of d(x)

It is possible, of course, to consider the more general case (3.86). We drop this here, focussing on
processing of data stemming from uniaxial experiments (see Subsection 4.1).

The evolution equations for qi are given by (cf. (3.65))

q̇1 = λ1 − b11R1λ1 − d12R2λ1 − b13R3

√
λ1

√
λ2,(3.117)

q̇2 = λ1 − b21R1λ1 − d22R2λ1 − b23R3

√
λ1

√
λ2,(3.118)

q̇3 = λ2 − b31R1

√
λ1

√
λ2 − d32R2

√
λ1

√
λ2 − b33R3λ2.(3.119)

Obviously, the (not necessarily symmetric) matrix b has nine coefficients.
In accordance with (3.55), we get special vectors of plastic multipliers stemming from λ = (λ1, λ2).

λ(q) = λ(α) = (λ1, λ1, λ2), λ(m) = λ = (λ1, λ2).(3.120)

Moreover, in accordance with (3.93) one has

εin(m) = (εin1 , ε
in
1 , ε

in
2 ).(3.121)

The special diagonal matrices Λ(q) and Λ(α) defined in (3.67) and (3.92), respectively, read as

Λ(q) = Λ(α) =

 √λ1 0 0
0

√
λ1 0

0 0
√
λ2

 .(3.122)

Using the matrices Λ(q) and Λ(α) as well as εin(m), the evolution equations (3.114) – (3.119) can be
transformed into matrix-based relations as in (3.69) and (3.94). Finally, from (3.114) – (3.119) and from
(3.66) and (3.89) the evolution equations for Ri (i = 1, . . . , nC) and for Xj (j = 1, . . . , Nα) follow.

In accordance with (3.35) and (3.36) we have the quantities

J1 = J1 =
(3

2
(σ∗1 −X

∗
1) : (σ∗1 −X

∗
1)
) 1

2

J2 = J2 =
(3

2
(σ∗2 −X

∗
2) : (σ∗2 −X

∗
2)
) 1

2

,(3.123)

as well as the two yield functions f1, f2 (cf. (3.40)

fi(σi,Xi, Ri, R0i) = Ji − (Ri +R0i) i = 1, 2.(3.124)

The tensors n1 and n2 are defined in accordance with (3.49). Finally, the evolution of ε1 and ε2 is given
by (3.53). In the case under consideration, due to nM = nC , one gets a simpler formula.

ε̇ini = λi
3

2

σ∗i −X
∗
i

Ji
, i = 1, 2.(3.125)

Summarizing the considerations above, the 2M2C model has the following parameters

cij i, j ∈ {1, 2, 3}, i ≤ j 6 parameters,(3.126)

d
(x)
ij i, j ∈ {1, 2, 3} 9 parameters,(3.127)

d
(α)
ij i, j ∈ {1, 2, 3} 9 parameters,(3.128)

Qij i, j ∈ {1, 2, 3}, i ≤ j 6 parameters,(3.129)
bij i, j ∈ {1, 2, 3} 9 parameters,(3.130)
A1, A2, σ01, σ01 4 parameters.(3.131)
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Clearly, in special cases, the numbers will be reduced. Moreover, the Clausius-Planck inequality (3.102)
reads as

2∑
i=1

R0iλi +

2∑
i,j=1

bijRiRjλ1 +

2∑
j=1

(bj3 + b3j)R3Rj
√
λ1

√
λ2 + b33R

2

3λ2+(3.132)

+
3

2

2∑
i,j=1

d
(x)
ij Xi : Xjλ1 +

3

2

2∑
j=1

(d
(x)
j3 + d

(x)
3j )X3 : Xj

√
λ1

√
λ2 +

3

2
d

(x)
33 X3 : X3λ2+

+
2

3

2∑
j=1

3∑
s=1

( 2∑
i=1

cTsid
(α)
ij

√
λ1 + cTs3d

(α)
3j

√
λ2

)
αs : αj

√
λ1+

+
2

3

3∑
s=1

( 2∑
i=1

cTsid
(α)
i3

√
λ1 + cTs3d

(α)
33

√
λ2

)
αs : α3

√
λ2 ≥ 0.

In accordance with the general case (see (3.102)) this inequality is fulfilled, if the matrices b and d(x) are
positive semi-definite and if the the matrix d(α) fulfills (3.103). For special cases, this condition can be
simplified.

3.9.2 One-criterion model

Now, we assume that our 2M model has only one flow criterion. Thus, the structural matrix Cf is given
by

(3.133) Cf =
(

1 1
)
.

The structural matrix Cα remains as in (3.105). Furthermore, we assume three isotropic variables qi
(i = 1, 2, 3) associated to the single criterion. This yields the structural matrix Cq as

(3.134) Cq =
(

1 1 1
)
.

Therefore, the numbers connected with the flow criterion and with the isotropic variables read as

nC = 1, N (1)
q = 3, Nq = 3, N

(1)
f = 2.(3.135)

The numbers nM = 2,N (1)
α = 2,N (2)

α = 1 andNα = 3 are the same as in (3.106). The back stressesXi

and Xj are defined as in (3.107) and (3.108). Moreover, the isotropic hardening stresses Ri are defined
as in (3.112), but, now one has

(3.136) R = R1 = R1 +R2 +R3.

Due to symmetry, the matrix Q has six coefficients. Moreover, J1 and J2 are defined as in (3.123), and
J = J1 is given by

(3.137) J :=
(
J
β

1 + J
β

2

) 1
β

with β > 0. The single flow function f = f1 is defined by

f(σ1,σ2,X1,X2, R,R0) := J − (R+R0)(3.138)
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with R01 := β
√

2σ01. The evolution equations for αi are the same as in (3.114) – (3.116) only with
λ = λ1 = λ2. Thus, a more compact notation is possible

α̇1 = ε̇in1 −
3∑
j=1

{3

2
d

(x)
1j Xj + d

(α)
1j αj

}
λ,(3.139)

α̇2 = ε̇in1 −
3∑
j=1

{3

2
d

(x)
2j Xj + d

(α)
2j αj

}
λ,(3.140)

α̇3 = ε̇in2 −
3∑
j=1

{3

2
d

(x)
3j Xj + d

(α)
3j αj

}
λ.(3.141)

Due to only one criterion, the evolution equations for qj can be written in the following way.

q̇i = λ−
3∑
j=1

bijRjλ.(3.142)

Moreover, using (3.66) and (3.89), the evolution equations for R and X can be written down without
difficulties.

Summarizing, the reference 2M1C model has the following material parameters:

cij i, j ∈ {1, 2, 3}, i ≤ j 6 parameters,(3.143)

d
(x)
ij i, j ∈ {1, 2, 3} 9 parameters,(3.144)

d
(α)
ij i, j ∈ {1, 2, 3} 9 parameters,(3.145)

Qij i, j ∈ {1, 2, 3}, i ≤ j 6 parameters,(3.146)
bij i, j ∈ {1, 2, 3} 9 parameters,(3.147)
A1, A2, σ01, β 4 parameters.(3.148)

In both cases of the 2M models considered here, the parameters A1 and A2 are positive numbers, the
parameters cij , Qij and σ0i (i = 1 or i = 1, 2) are generally temperature-depending, the remaining
parameters dij , bij and β may depend on temperature and further quantities.

In the case of the 2M1C model, the Clausius-Planck inequality (3.102) reads as

R0λ+ λ

3∑
i,j=1

bijRiRj +
3

2
λ

3∑
i,j=1

d
(x)
ij Xi : Xj +

2

3
λ

3∑
i,j=1

3∑
s=1

cTsid
(α)
ij αs : αj ≥ 0.(3.149)

Clearly, this inequality is fulfilled, if the matrices b, d(x) and cTd(α) are positive semi-definite.

3.10 Summary of the model
Concluding the modeling part of this study, we summarize the general multi-mechanism model (in series)
developed above.

At first, there are the impulse equation (2.1), the heat-conduction equation (2.31), the (isotropic)
stress-strain relation (2.18), Fourier’s law (2.20), the definition (2.4) of ε and the additive decomposition
(2.8) of the total strain as well as the initial and boundary conditions (2.5) – (2.7).

This part of the model (named conditionally “thermoelastic”) is governed by the following parameters
and given quantities:

%0, µ, λL, αθ, cd, κθ, δθ, θ0, θΓ, τ , f , r.(3.150)
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The inelastic part of a multi-mechanism model is characterized by nM mechanisms. That means, the
inelastic, here plastic behavior is determined by the decomposition (2.23) of the inelastic strain εin:

(3.151) εin =

nM∑
j=1

Aj ε
in
j .

In this work, the numbers

Aj > 0 j = 1, . . . , nM(3.152)

are parameters. In special cases, on can set them equal to one. Sometimes, it is useful to collect the
numbers Aj in a row vectorA via

A := (A1, . . . , AnM ).(3.153)

As a new item, each mechanism iwith i ∈ {1, . . . , nM}may haveN (i)
α associated kinematic variables

αj . Moreover, there may be nC ≤ nM flow criteria. To each criterion several mechanisms as well as
several isotropic variables qi are associated. The full information about relations between mechanisms,
flow criteria as well as kinematic and isotropic variables are given with the help of three structural matrices
consisting only of ones and zeros:

Cα ∈ {0, 1}nM×Nα , Cf ∈ {0, 1}nC×nM , Cq ∈ {0, 1}nC×Nq .(3.154)

The total numbers of kinematic and isotropic variables are Nα and Nq , respectively. Note that the entrees
of the three structure matrices Cα, Cf and Cq are not material parameters.

The nMnC model has nC flow functions fk (k = 1, . . . , nC) defined by (3.40) and (3.41). Thus, the
origin yield stresses σ0k are further material parameters, possibly depending on temperature. Moreover,
there arise nC plastic multipliers λk having to fulfil the conditions (3.54), or, in a compact way (3.57).
The nM plastic mechanisms εini fulfil the following evolution equations.

ε̇ini = λk ni, k = 1, . . . , nC , i ∈ setf (k).(3.155)

The kinematic as well as the isotropic hardening is given by the Nα × Nα matrix c of generalized
kinematic hardening moduli and by the Nq × Nq matrix b of generalized isotropic hardening moduli,
respectively. These two matrices consists of material parameters (possibly temperature-dependent) must
be symmetric and positive semi-definite. Due to the application in 1d simulations in this study, here we
do not repeat the general approach due to Burlet-Cailletaud (3.86).

The evolution equations for the kinematic and isotropic variables (3.65) (or (3.69) in compact form)
and (3.65) (or (3.94) in compact form), respectively, read as

α̇ = (Cα)T ε̇in(m) − Λ(α)
(3

2
d(x) Λ(α)X + d(α) Λ(α)α

)
,(3.156)

q̇ = λ(q) − Λ(q) bΛ(q)R.(3.157)

The special diagonal matrices Λ(α) and Λ(q) are defined in (3.92) and (3.67), respectively, using the vector
λ and the structural matrices. In the evolution equations (3.156), (3.157) three parameter matrices arise:

b ∈ RNq×Nq , d(x) ∈ RNα×Nα , d(α) ∈ RNα×Nα .(3.158)

Generally, the entries are functions depending on temperature and further quantities. The matrices b and
d(x) must be positive semi-definite, the matrix d(α) has to fulfill the condition (3.103).
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Moreover, the evolution equations of R, R,X andX are given as follows.

Ṙ = Q
(
λ(q) − Λ(q) bΛ(q)R

)
+ θ̇
(dQ

dθ

)
q,(3.159)

Ṙ = Cq Ṙ.(3.160)

Ẋ = c
(

(Cα)T ε̇in(m) − Λ(α)
(3

2
d(x) Λ(α)X + d(α) Λ(α)α

))
+ θ̇
(dc

dθ

)
α,(3.161)

Ẋ = Cα Ẋ.(3.162)

4 Algorithms for simulations and parameter identification based on
uniaxial experiments

We want to develop a general approach for simulations of (spatially homogenous) uniaxial material be-
havior as well as for determining material parameters using data obtained in uniaxial experiments. Here
we focus on material behavior modeled by a multi-mechanism approach with plastic mechanisms. In
Wolff et al. [2012b], an analogous approach has been developed for inelastic behavior without yield
stress like creep and transformation-induced plasticity in steels (TRIP) (in case of one-mechanism mod-
els). Due to the general coupling within the mechanisms and to the occurrence of plastic multipliers one
encounters a higher complexity. For a better readability we repeat some general items also described in
Wolff et al. [2012b].

Only in simple situations, material parameters can be determined directly from experimental data as,
for instance, the Young’s modulus. As usual, in complex situations, before identification of parameters
(“inverse problem”) one has to deal with the forward problem (“direct problem”) of material behavior
assuming material laws and parameters to be given. Here, we only deal with discretized problems as
well as with the uniaxial setting. For further discussion of general aspects of parameter identification
we refer to Mahnken and Stein [1996], to Mahnken [2004] and to the references therein. For parameter
identification in mechanics using 3d simulations we refer exemplarily to Grédiac and Pierron [2006],
Avril and Pierron [2007], Lecompte et al. [2007], Cooreman et al. [2007], Kajberg and Wikman [2007],
Yun and Shang [2011]. In Wolff and Böhm [2013], mathematical results for the inverse problem of
parameter identification have been obtained for the case of stationary linear fully non-isotropic and non-
homogeneous elasticity.

For special approaches in determining material parameters of ratcheting behavior we refer to Bari and
Hassan [2000], Abdel-Karim [2005], Taleb and Cailletaud [2010], Djimli et al. [2010].

This section is arranged as follows. In Subsection 4.1, we transform the material laws used above
into their “uniaxial” forms. After that, we provide formulas for postprocessing of experimental data
stemming from uniaxial experiments (in Subsection 4.2). In Subsection 4.3 we develop semi-implicit
algorithms for calculating the direct (discrete) problems, in a strain-driven as well as in a stress-driven
version. We will use the matrix-based form developed above. Therefore, a general implementation into
a matrix-processing programme package is possible, in principle for arbitrary nMnC models. For direct
calculations the programme will be given the three structural matrices (3.154), the parameter matrices
c, Q, b, d(x), d(α) as well as the the vector A and the “thermoelastic parameters” listed up in (3.150).
In Subsection 4.4 we present a scheme for parameter identification via optimization of suitable cost
functionals.

4.1 Form of material laws in case of uniaxial loading
Dealing with data stemming from uniaxial experiments with small cylindrical probes, we assume spacial
homogeneity and a uniaxial loading history, i.e. for all times t ≥ 0 the stress σ = σ(t) is directed along
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the x1 axis (i.e. the probe’s axis, cf. Fig. 2). Moreover, as usual it is assumed that all inelastic strains εini
and back stress tensorsXj are traceless:

tr(εinj ) = 0 j = 1, . . . , nM tr(Xj) = 0 j = 1, . . . , Nα.(4.1)

Note that (4.1) follows under mild assumptions from the evolution of internal variables (cf. Wolff et al.
[2010]). Clearly, in this case, the tensorial internal variables αi are traceless, too.

Under these assumptions the following relations for the 3d stress tensor σ, its deviator σ∗, for εini ,
for αi as well as for the back stressesXi hold.

σ =

 S 0 0
0 0 0
0 0 0

 , σ∗ =

 2
3S 0 0
0 − 1

3S 0
0 0 − 1

3S

 , εini =

 εini 0 0
0 − 1

2ε
in
i 0

0 0 − 1
2ε
in
i

 ,(4.2)

(4.3) Xi =

 Xi 0 0
0 − 1

2Xi 0
0 0 − 1

2Xi

 , αi =

 αi 0 0
0 − 1

2αi 0
0 0 − 1

2αi

 , i = 1, . . . , Nα.

Moreover, the quantities in (4.2), (4.3) are only functions of time t. Clearly, the partial stresses are given
by

Si = AiS i = 1, . . . , nM , or S = SAT .(4.4)

Note that in this study vectors are regarded as column vectors. As an exclusion, A is regarded as a row
vector.

Figure 2: Scheme of a hollow probe used in servo-hydraulic testing devices. The measured data are
longitudinal and transversal strains, temperature, force (and therefore stress as force per cross section) as
discrete functions of time.

In (4.2), the strain in x1-direction, εini , stands for εi11. Here, strain tensors are denoted by ε, while
scalar strains are denoted by ε. Obviously, from (2.25) and (4.2) one gets

ṡi = |ε̇ini | i = 1, . . . , nM , or ṡ = |ε̇in|.(4.5)

The last relation is understood as component-wise. We define 1d back stresses by

xi :=
3

2
Xi i = 1, . . . , Nα, or x :=

3

2
X.(4.6)
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The 1d back stresses xi (i = 1, . . . , nM ) are defined analogously. Therefore, the uniaxial variant of (3.8)
and (3.9) become now

xi =

Nα∑
j=1

cijαj for i = 1, . . . , Nα, or x = cα,(4.7)

x = Cαx.(4.8)

The relations for the (scalar) isotropic hardening stresses Ri (3.32) as well as for Rk in (3.33) remain
unchanged.

Based on (2.26), (3.35), (4.2) and (4.3), in the uniaxial case, we have

J i = |Si − xi| i = 1, . . . , nM , or J = |S − x|,(4.9)

Jk =
( ∑
i∈setf (k)

J
β

i

) 1
β

k = 1, . . . , nC , or J =
(
Cf Jβ

) 1
β

.(4.10)

The yield functions fi follow from (3.40). Now they have the following form.

fk(Si, xi, Rk, R0k) := Jk − (Rk +R0k) k = 1, . . . , nC , i ∈ setf (k).(4.11)

(The relations in (3.41) and (3.42) remain the same.) As in (3.43), we define a vector f (m) of flow
functions with as much as components as mechanisms.

f (m) :=
(
Cf
)T
f .(4.12)

Based on (3.49), we obtain the corresponding scalar quantities ni as well as their compact variant.

ni =
Si − xi
|Si − xi|

(
|Si − xi|
Jk

)β−1

k = 1, . . . , nC , i ∈ setf (k),(4.13)

n =
S − x
|S − x|

 |S − x|

(Cf )T
(
Cf |S − x|β

) 1
β

β−1

.(4.14)

Note that the operations in (4.14) are understood as component-wise. Now we transfer the evolution laws
for εini , qj and αk into their 1d pendants.

ε̇ini = λk ni k = 1, . . . , nC , i ∈ setf (k), ,(4.15)

or, in a compact way

ε̇in = λ(m) n =
(

(Cf )Tλ
) S − x
|S − x|

 |S − x|

(Cf )T
(
Cf |S − x|β

) 1
β

β−1

.(4.16)

The multiplication between the vector λ(m) and the “vector with matrix components” n is component-
wise. To underline this, there are brackets around (Cf )Tλ. The plastic multipliers λk have to fulfil the
conditions (3.54) now with the yield functions in the form (4.11).

The evolution equations for qi andRi remain the same as in (3.65) and (3.66), respectively. In the evo-
lution equations for αi and Xi (3.65) and (3.89), respectively, the factor 3

2 turns out. For completeness,
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we repeat these equations in their matrix-based form.

q̇ = λ(q) − Λ(q) bΛ(q)R,(4.17)

Ṙ = Q
(
λ(q) − Λ(q) bΛ(q)R

)
+ θ̇
(dQ

dθ

)
q,(4.18)

α̇ = (Cα)T ε̇in − Λ(α)
(
d(x) Λ(α) x+ d(α) Λ(α)α

)
,(4.19)

ẋ = c
(

(Cα)T ε̇in − Λ(α)
(
d(x) Λ(α) x+ d(α) Λ(α)α

))
+ θ̇
(dc

dθ

)
α,(4.20)

ẋ = Cαẋ,(4.21)

Ṙ = CqṘ.(4.22)

Based on the equivalence hypothesis, the material parameters involved in the 3d equations and in their
1d counterparts have the same meaning, e.g. in (3.88) and (4.19).

Remark 4.1. Based on (3.52), (4.2) - (4.6), in the current uniaxial setting, the unit tensorsmi are

mi =

√
2

3

 1 0 0
0 − 1

2 0
0 0 − 1

2

 , i = 1, . . . , nM .(4.23)

Therefore,Xi,αi andmi are collinear. Hence, the projections ontomi in the evolution equations (3.86)
do not have any effect, and it is sufficient to deal only with the approach (3.88) (that means with (4.19) in
uniaxial setting.

4.2 Post-processing of measured data
As already stated, in uniaxial experiments with small probes, spatial homogeneity is usually assumed, at
least over the gauge length. As a consequence, all (measured and calculated) quantities concerning these
probes are only functions of time t. Thus it holds

(4.24) divσ = 0.

Therefore, if neglecting inertial and outer forces (like gravity), (4.24) is indeed the equation of linear
momentum (2.1).

Let θ, l, d and S be measured temperature, length, diameter and applied stress, respectively, as discrete
functions of time t of small cylindrical (metal) probes. Based on Hooke’s law and assuming the usual
homogeneity with respect to space, one obtains the subsequent equations for the (whole) longitudinal
strain εL and for the (whole) transversal strain εD:

εL(t) =
l(t)− l0

l0
=

S(t)

E(θ(t))
+ α(θ(t)− θ0) + εin(4.25)

εD(t) =
d(t)− d0

d0
=
−ν(θ(t))S(t)

E(θ(t))
+ α(θ(t)− θ0)− 1

2
εin(4.26)

l0 and d0 are initial length and diameter at the beginning of the essential part of the experiment (i.e., for
t = 0). (See figure 2 for a schematic presentation.) Moreover, θ0 is the temperature at the beginning,
and, θ(t) is the temperature at time t. α is the coefficient of linear heat dilatation which is assumed to be
constant in many cases. E and ν are Young’s modulus and Poisson’s ratio for current θ(t). As defined
above, εin is the longitudinal inelastic, here plastic, strain. It is decomposed by (cf. 2.23))

(4.27) εin =

nM∑
i=1

Aiε
in
i .
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The equations (4.26) and (4.25) imply two formulas for data processing

εL(t)− εD(t) =
(1 + ν(θ))S(t)

E(θ(t))
+

3

2
εin, (“strain difference”),(4.28)

εL(t) + 2 εD(t) =
(1− 2ν(θ))S(t)

E(θ(t))
+ 3α(θ(t)− θ0) (“volume strain”).(4.29)

A nice feature of the formulas (4.29) and (4.28) is that isotropic and anisotropic effects are separated.
Thus, from (4.28) one gets a formula for obtaining the (whole) inelastic longitudinal strain εin from
measured data

(4.30) εin(t) =
2

3
(εL(t)− εD(t))− 2(1 + ν(θ))S(t)

3E(θ(t))
.

Besides, formula (4.29) does not contain the inelastic strain εin. Thus, this formula can be used for
determining the heat-dilatation coefficient α.

Unfortunately, sometimes only the longitudinal strain can be measured. In this case, the formula
(4.25) is being used directly:

εin = εL(t)− S(t)

E(θ(t))
− α (θ(t)− θ0).(4.31)

Clearly, α must be known, or the experiments must be performed under isothermal conditions.

Remarks 4.2. (i) In general cases, if phase transformations occur, the density also depends on the
phase fractions p = (p1, . . . , pNp) (Np ≥ 1 - number of phases, cf. Wolff et al. [2012b] for details
in this context). In this case, instead of the term α(θ(t)− θ0) in (4.25) and (4.26) there must be the
root

(4.32) 3

√
%0

%(θ(t), p(t))
− 1.

Using the relation between densities and phase fractions, the formula (4.29) can be used for deter-
mining the evolution of the phase fraction.

(ii) In case of no phase transformations, a linearization of the root in (4.32) gives

(4.33) 3

√
%0

%(θ(t))
− 1 ≈ %0 − %(θ(t))

3%0
≈ − 1

3%0

d%

dθ
(θ0)(θ − θ0).

Thus, approximately we have

(4.34) α = − 1

3%0

d%

dθ
(θ0).

(iii) Based on (4.2) and (2.8) and taking the relations between the elastic parameters

1

3K
=

1− 2 ν

E
,

1

2µ
=

1 + ν

E
.(4.35)

into account, the equations (4.25) and (4.26) are in accordance with (2.18).
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4.3 Semi-implicit algorithms for simulations of direct problems
Two methods are possible dealing with the discretized forward problem of spatially homogenous uniaxial
material behavior: the strain-driven and the stress-driven approach.

• Direct problem: Strain-driven approach (see Subsection 4.3.1)

The longitudinal and transversal strains are given as discrete functions of time. Sometimes, only the
longitudinal strain is given. In the non-isothermal case, the temperature is given, too. Knowing the
material behavior (i.e. material laws and parameters), one wishes to calculate the material response,
i.e. stress, inelastic strains, back stresses etc. Thus, the strain-driven approach allows the simulation of
strain-controlled experiments.

• Direct problem: Stress-driven approach (see Subsection 4.3.2)

Now, the uniaxial stress is given as a discrete function of time. Moreover, in the non-isothermal case, the
temperature is given. Calculating the material response in this context means finding the inelastic longi-
tudinal strain corresponding to traceless phenomena like plasticity. If one wishes to simulate the whole
longitudinal (and transversal) strain, one generally must have additional information, for instance, the
heat-dilatation coefficient. Hence, the stress-driven approach allows the simulation of stress-controlled
experiments, in ratcheting e.g.

Let the nMnC multi-mechanism model be given by its three structural matrices Cα, Cf , Cq as well as
by the structural vector A = (A1, . . . , AnM ) (see (3.152) – (3.154)). Moreover, there are given Young’s
modulus E, Poisson’s ratio ν, the origin yield stresses σ0k (k = 1, . . . , nC) as well as the matrices
c and Q describing kinematic and isotropic hardening, respectively. All these parameters may depend
on temperature. Finally, the matrices of material parameters b, d(x) and d(α) governing the evolution
equations of internal variables are given, too. Besides, the parameters of these last three matrices may
depend on further quantities.

4.3.1 Direct problem: Strain-driven approach

At the beginning of the nth time step, only the longitudinal and transversal strains εnL and εnD and possibly
the temperature θn are given. The corresponding stress Sn and inelastic strains εnin, εni (i = 1, . . . , nM )
have to be calculated, using the concrete equations governing the material behavior.

We develop the main steps of the algorithm, using the matrix-based approach. This means in partic-
ular, that we perform a formal update of all quantities in every time step. If some plastic multipliers are
zero, clearly, the update gives the former values for the corresponding quantities. Our approach follows
well-known items used in computational plasticity like return-mapping strategy (see Simo and Hughes
[1998], e.g., for details).

• Trial, corrected and effective stresses

Based on (4.28) we define the trial scalar stress Sntrial as well as the vector Sntrial of trial partial stresses.

Sntrial :=
En

1 + νn
(εnL − εnD −

3

2
εn−1
in ), Sntrial := SntrialA

T ,(4.36)

with the abbreviations En = E(θn), νn = ν(θn).
In a strain-driven approach, the trial stresses can be calculated directly from the measured data and

former values. The true stress (of the nth time step) is a-priori unknown. It is looked for as as corrected
stress Sn which is defined as follows.
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Sn =
En

1 + νn
(εnL − εnD −

3

2
εnin) =

En
1 + νn

(εnL − εnD −
3

2
εn−1
in )− 3En

2(1 + νn)
(εnin − εn−1

in ) =(4.37)

= Sntrial −
3En τn

2(1 + νn)

nM∑
i=1

Ai(ε̇
in
i )n = Sntrial − τn enA(ε̇in)n.

Clearly, the product A(ε̇in)n is the scalar product equivalently expressed by a matrix product of a row
and a column vector. The abbreviation en := 3En

2(1+νn) is used, and the difference strain εnin − ε
n−1
in has

been approximated by

εnin − εn−1
in = τn(ε̇ini )n,(4.38)

with the time step τn := tn − tn−1. A suitable approximation (ε̇ini )n of the rate of the ith strain will be
given in the next step of the algorithm. Thus, the vector of corrected partial stresses Sn reads as

Sn := SnAT .(4.39)

For further use, we define the vector ξn of effective stresses:

ξn := Sn − xn.(4.40)

The back stresses xn = (x1, . . . , xnM ) are also a-priori unknown, and they must be determined during
the algorithm. From (4.37) and (4.21) we get the following equation which is important for future use.

ξn = Sn − xn = Sntrial − τn en
{
A(ε̇in)n

}
AT − Cαxn.(4.41)

Remark 4.3. If only the longitudinal strains εnL are available, the trial stress builds up on the basis of
formula (4.31):

(4.42) Sntrial = En(εnL − εn−1
in )− En α (θn − θ0).

clearly, the approach for the corrected stress has to modified analogously.

• Approximation of the inelastic strain rates (ε̇ini )n

Based on (4.16), (4.40), we set

(ε̇in)n =
(

(Cf )Tλn
) ξn

|ξn|

 |ξn|

(Cf )T
(
Cf |ξn|β

) 1
β

β−1

.(4.43)

The vector λn of plastic multipliers of the nth time step is also a-priori unknown. As we will see later on,
the algorithm yields a coupled system for determining ξn and λn. The operations in (4.43) are understood
as component-wise. To underline this, there are brackets around (Cf )Tλn. The material parameter β may
depend on temperature and other quantities. For a better overview we will drop this here.

• Approaches for the internal variables, isotropic hardening stresses and
back stresses
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These a-priori unknown quantities will be approximated by semi-implicit approaches, using (4.17) –
(4.22).

qn = qn−1 + τn(Cq)Tλn − τn(Λ(q))n−1 bn−1 (Λ(q))n−1R
n−1

,(4.44)

R
n

=R
n−1

+ τnQ
n(Cq)Tλn − τnQn(Λ(q))n−1 bn−1 (Λ(q))n−1R

n−1
+(4.45)

+
(
Qn −Qn−1

)
qn−1,

αn =αn−1 + τn(Cα)T (ε̇in)n+(4.46)

− τn(Λ(α))n−1
(

(d(x))n−1 (Λ(α))n−1 xn−1 + (d(α))n−1 (Λ(α))n−1αn−1
)
,

xn =xn−1 + τnc
n (Cα)T (ε̇in)n+(4.47)

− τn(Λ(α))n−1
(

(d(x))n−1 (Λ(α))n−1 xn−1 + (d(α))n−1 (Λ(α))n−1αn−1
)

+

+
(
cn − cn−1

)
αn−1,

Rn =CqRn
, xn = Cαxn.(4.48)

Thus, semi-implicit means that only the current values of the linear terms are taken. In other words, in
case of linear hardening under isothermal conditions, these approaches would be fully implicit.

• Modified equation of effective stress

From (4.41), (4.47) and (4.48) we obtain:

ξn = yn − τn en
(
A (ε̇in)n

)
AT − τnCαc(Cα)T (ε̇in)n.(4.49)

The abbreviation yn collects all arising term from the former time step, i.e. we set:

yn := Sntrial − Cαxn−1 + τnCα(Λ(α))n−1(d(x))n−1 (Λ(α))n−1 xn−1+(4.50)

+τnCα(Λ(α))n−1(d(α))n−1 (Λ(α))n−1αn−1 − Cα
(
cn − cn−1

)
αn−1.

Now, via (4.43) the inelastic strain rates can be eliminated, obtaining an equation which contains only the
unknowns ξn and λn.

ξn =yn − τn en

{
A
(

(Cf )Tλn
ξn

|ξn|

 |ξn|

(Cf )T
(
Cf |ξn|β

) 1
β

β−1 )}
AT+(4.51)

− τnCαc(Cα)T
(

(Cf )Tλn
ξn

|ξn|

 |ξn|

(Cf )T
(
Cf |ξn|β

) 1
β

β−1 )
.

The quantity inside of the parenthesis {} is a scalar.

• Determination of active mechanisms

Generally, there are nC flow criteria. Hence, we have to ask whether the following relations are
fulfilled (see (3.35)).

fk(Sntrial,i, x
n−1
i , Rn−1

k , R0k(θn)) =(4.52)

=
( ∑
j∈setf (k)

|Sntrial,j − xn−1
j |β

) 1
β − (Rn−1

k +R0k(θn)) ≤ 0

k = 1, . . . , nC , i ∈ setf (k).
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The quantities R0k(θn) are given by (see (3.41))

R0k(θn) :=
β

√
N

(k)
f σ0k(θn).(4.53)

Due to the query in (4.52), the interval {1, . . . , nC} will be divided into two disjoint sets denoted by:

setno := {k ∈ {1, . . . , nC} | fk ≤ 0},(4.54)
setyes := {k ∈ {1, . . . , nC} | fk > 0},(4.55)

The subscript “no” means, that the corresponding flow criterion is not active, and the associated mech-
anisms do not show plastic behavior. Contrary, in case of “yes”, the involved mechanisms show only
thermoelastic behavior. Due to the flow conditions for the plastic multipliers () and to the evolution
equations for inelastic strains and internal variables, one has

λk = 0 for k ∈ setno, qnj = qn−1
j for j ∈ setq(k),(4.56)

εni = εn−1
i for i ∈ setf (k), αns = αn−1

s for s ∈ setα(i).

The λk for k ∈ setyes must be determined, and the quantities of the associated mechanisms undergo an
update.

• Determination of plastic multipliers

As usual in plasticity, the plastic multipliers of the active mechanisms will be determined by the
corresponding flow conditions. Contrary to the query, now one uses only the current values of the n time
step. Thus, using (4.9) – (4.11) and (4.40), we set

∀ k ∈ setyes : fk(Sn,xn,Rn,Rn
0 ) =

((
Cf (|ξ|n)β

) 1
β

)
k
− (Rn

k +Rn
0k) = 0(4.57)

Using (4.48) and the approximation (4.45), we get

Rn +Rn
0 = zn + τnCqQ(Cq)Tλn,(4.58)

where the vector zn collects all term not containing current values:

zn := Rn
0 − τnCqQ

n(Λ(q))n−1 bn−1 (Λ(q))n−1R
n−1

+ Cq
(
Qn −Qn−1

)
qn−1.(4.59)

Since the multipliers belonging to the non-active mechanisms are zero, we have to solve a reduced system
of equations for the multipliers of the active mechanisms. For this reason we define an auxiliary diagonal
matrixHn

yes by

Hn
yes ∈ {0, 1}nC×nC , (Hn

yes)ij :=

{
1, if i = j and fj > 0,
0, otherwise.(4.60)

Now, the reduced system of equations for determining the modified vector λnmod defined by

λnmod := Hn
yes λ

n(4.61)

can be written down using the items provided before.

Hn
yes

(
Cf (|ξ|n)β

) 1
β = Hn

yes z
n + τnH

n
yesCqQ(Cq)Tλnmod.(4.62)

38



In Subsection 3.2, the matrix Q of isotropic hardening moduli has been assumed to be positive semi-
definite (see (3.30)). Under the additional assumption

det(Q) > 0(4.63)

the equation (4.62) can be solved with respect to λnmod. As a result, one gets

λnmod =
1

τn
LnHn

yes

{(
Cf (|ξ|n)β

) 1
β − zn

}
,(4.64)

where the abbreviation

Ln :=
(
Hn

yesCqQ(Cq)T
)−1

(4.65)

has been used.

• Calculation of effective stresses and plastic multipliers

Inserting the expressing for λnmod into the equation (4.51), we obtain the following non-linear system
for determining the effective stresses ξn.

ξn = yn+(4.66)

− en

{
A
(

(Cf )TLnHn
yes

{(
Cf (|ξ|n)β

) 1
β − zn

} ξn

|ξn|

 |ξn|

(Cf )T
(
Cf |ξn|β

) 1
β

β−1 )}
AT+

− Cαc(Cα)T
(

(Cf )TLnHn
yes

{(
Cf (|ξ|n)β

) 1
β − zn

} ξn

|ξn|

 |ξn|

(Cf )T
(
Cf |ξn|β

) 1
β

β−1 )
.

This non-linear system has to be solved by an iteration procedure (by Newton’s approach, e.g.). In the
special case of nMnC models with nM = nC (i.e., each mechanism has its own flow criterion), the
system will be considerably simplified. This yields

ξn =yn − en

{
A
(
LnHn

yes

{
|ξ|n − zn

} ξn

|ξn|

)}
AT+(4.67)

− Cαc(Cα)T
(
LnHn

yes

{
|ξ|n − zn

} ξn

|ξn|

)
.

Finally, knowing ξn, the plastic multipliers λn = λnmod can be obtained by (4.64).

• Updates of stress, inelastic strain, internal variables and back stresses

After calculating the effective stresses and plastic multipliers, the remaining quantities will be updated in
the following way. Using (4.43), we obtain the rates of inelastic partial strains (ε̇in)n as well as the full
inelastic longitudinal strain (εin)n by

(εin)n = (εin)n−1 + τnA(ε̇in)n.(4.68)

Moreover, the stress Sn follows from (4.37). Finally, the quantities qn, R
n

, Rn, αn, xn and xn will be
updated with the help of (4.44) – (4.48).
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4.3.2 Direct problem: Stress-driven approach

Contrary to the strain-driven approach in Subsection 4.3.1, now, at the beginning of the nth time step,
only the stress Sn and possibly the temperature θn are given. The longitudinal and transversal strains
εnL and εnD as well as the inelastic strains εnin, εni (i = 1, . . . , nM ) have to be calculated. Some of the
approaches presented before in the strain-driven approach remain the same. For this reason, we will deal
in short with the algorithm.

Since now the stress Sn is given, we start with (4.39) and (4.40) and obtain (cf. (4.41))

ξn = Sn − xn = Sn − Cαxn.(4.69)

The back stresses xn = (x1, . . . , xnualpha) are a-priori unknown. Thus, the effective stresses ξn are
also a-priori unknown. The inelastic strain rates (ε̇in)n as well as qn, R

n
, Rn, αn, xn and xn will

be discretized as in (4.43) and (4.44) – (4.48). Thus, from (4.69) we obtain an analogous but simpler
equation for the unknowns ξn and λn.

ξn = yn − τnCαc(Cα)T
(

(Cf )Tλn
ξn

|ξn|

 |ξn|

(Cf )T
(
Cf |ξn|β

) 1
β

β−1 )
,(4.70)

where yn is given by

yn := Sn − Cαxn−1 + τnCα(Λ(α))n−1(d(x))n−1 (Λ(α))n−1 xn−1+(4.71)

+τnCα(Λ(α))n−1(d(α))n−1 (Λ(α))n−1αn−1 − Cα
(
cn − cn−1

)
αn−1.

The determination of the active mechanisms is as before. The only difference is that now the given
stress will be used in the query (instead of the trial one in the strain-driven approach, cf. (4.52)). Thus,
we have the same equations (4.64) for the plastic multipliers. Inserting these equations into (4.70), the
effective stresses ξn can be calculated as above by an iteration scheme. The updates of (εin)n, qn, R

n
,

Rn, αn, xn and xn can be performed as before.
Finally, the (full) longitudinal strain εnL and the transversal strain εnD will be obtained by

εnL =
Sn

En
+A (εin)n,(4.72)

εnD = −νn S
n

En
− 1

2
A (εin)n.(4.73)

4.4 Inverse problem: Parameter identification
The material response is known, mostly from experiments. Assuming special kinds of material laws
(two mechanism with a common yield criterion, e.g.) and constant parameters in simple cases, one
wants to determine these parameters in such a way that the simulated material behavior gives the best
approximation of the experiment (in some sense, least square, e.g.). As pointed out in Mahnken and
Stein [1996], in case of complex material behavior one needs an optimization procedure which allows a
simultaneous determination of parameters. We will follow this approach.

In our situation, as shown in Subsection 4.2, we assume that the data θ, l, d and S are given as
(discrete) functions of time stemming from experiments. In accordance with (4.25), (4.25) and (4.30),
the quantities εL, εD and εin can be also regarded as given functions following from experimental data
by simple calculations. Let the points in time be denoted by t0 < t1 < · · · < tn < · · · < tN . The
corresponding values of S, θ, εL, etc. are denoted by Sn, θn, εnL, etc.
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When performing parameter identification via a strain-driven approach, in the nth time step, the values
εnL, εnD (and sometimes θn) are regarded as given. The stress Sn, the inelastic strain εnin and possibly other
quantities must be calculated. The optimization procedure compares this calculated stress Sn with the
experimentally measured one Snex. Additionally, the calculated inelastic strain can be compared with the
experimentally obtained one.

Contrary, during parameter identification via a stress-driven approach, the values Sn (and possibly
θn) are assumed as given, and the inelastic strain εnin must be calculated. The optimization procedure
compares the calculated value εnin with the experimentally found one εnin,ex.

Finally, it is possible to combine the strain-driven and stress-driven approach in one optimization
routine. We introduce some notations: Let the following data base

(4.74)
(
εn,jL
)Nj ,J
n=1,j=1

,
(
εn,jD
)Nj ,J
n=1,j=1

,
(
Sn,j

)Nj ,J
n=1,j=1

,
(
θn,j

)Nj ,J
n=1,j=1

be given from uniaxial experiments. J is the number of experiments, Nj > 1 is the number of instants
of time of the jth experiment. The matrix

(
εn,jin
)Nj ,J
n=1,j=1

can easily be calculated by (4.30 or by (4.31).
Hence, it can be considered as given, too. After this, a suitable set of (generally vector-valued) parameters
Ξ and a start value ξ̄ ∈ Ξ have to be chosen.

We define functions assigning the calculated quantities to the given ones and to the parameters ξ:(
Sn,jcal−strain

)Nj
n=1

:= FSstrain−driven

((
εn,jL
)Nj
n=1

,
(
εn,jD
)Nj
n=1

,
(
θn,j

)Nj
n=1

, ξ
)
,(4.75) (

εn,jin,cal−strain
)Nj
n=1

:= F εinstrain−driven

((
εn,jL
)Nj
n=1

,
(
εn,jD
)Nj
n=1

,
(
θn,j

)Nj
n=1

, ξ
)
,(4.76) (

εn,jin,cal−stress
)Nj
n=1

:= F εinstress−driven

((
Sn,j

)Nj
n=1

,
(
θn,j

)Nj
n=1

, ξ
)
,(4.77)

with 1 ≤ j ≤ J . The subscripts “cal-strain” and “strain-driven” mean that
(
Sncal

)Nj
n=1

and
(
εnin,cal

)Nj
n=1

are calculated by the strain-driven approach described in subsection 4.3.1, while “cal-stress” and “stress-
driven” refer to the stress-driven approach presented in subsection 4.3.2.

Before the identification procedure, for each j ∈ {1, . . . , J} we define:

Φ
((
εn,jL
)Nj
n=1

,
(
εn,jD
)Nj
n=1

,
(
Sn,j

)Nj
n=1

,
(
θn,j

)Nj
n=1

, ξ, ξ̄, Nj

)
=(4.78)

= Φ
((
Sn,jcal−strain

)Nj
n=1
−
(
Sn,j

)Nj
n=1

,
(
εn,jc,cal−strain

)Nj
n=1
−
(
εn,jc
)Nj
n=1

,(
εn,jc,cal−stress

)Nj
n=1
−
(
εn,jc
)Nj
n=1

,
(
εn,jL
)Nj
n=1

,
(
εn,jD
)Nj
n=1

,
(
θn,j

)Nj
n=1

, ξ, ξ̄, Nj

)
.

The cost functional Φ must be chosen in a suitable way. The differences in (4.78) support the idea that
the calculated values are compared with the corresponding experimental ones. Usually, the functional Φ
contains the lp-norms, p = 2, of these differences (“least-square approach”). However, other exponents
p between 1 and∞ instead of 2 are possible. Moreover, Φ is allowed to depend directly on experimental
data as well as the number of time-instants. This is for reasons of suitable weighting.

In many cases, the optimization uses all data simultaneously. Thus, the “final” cost functional Ψ is
the sum over all data sets:

Ψ
((
εn,jL
)Nj ,J
n=1,j=1

,
(
εn,jD
)Nj ,J
n=1,j=1

,
(
Sn,j

)Nj ,J
n=1,j=1

,
(
θn,j

)Nj ,J
n=1,j=1

, ξ, ξ̄,
(
Nj
)J
j=1

)
=(4.79)

=

J∑
j=1

Φ
((
εn,jL
)Nj
n=1

,
(
εn,jD
)Nj
n=1

,
(
Sn,j

)Nj
n=1

,
(
θn,j

)Nj
n=1

, ξ, ξ̄, Nj

)
.

We summarize the procedure in box 4.1

41



4.1. Identification scheme for parameters

• Given:

– Experimental data(
εn,jL
)Nj ,J
n=1,j=1

,
(
εn,jD
)Nj ,J
n=1,j=1

,
(
Sn,j

)Nj ,J
n=1,j=1

,
(
θn,j

)Nj ,J
n=1,j=1

– Set of parameters Ξ

– Start value ξ̄ ∈ Ξ

– Cost functional Ψ in accordance with (4.78) and (4.79)

• Find: Optimal parameter ξ∗ ∈ Ξ fulfilling

Ψ(. . . , ξ∗, ξ̄) = min
ξ∈Ξ

{
Ψ
((
εn,jL
)Nj ,J
n=1,j=1

,
(
εn,jD
)Nj ,J
n=1,j=1

,
(
Sn,j

)Nj ,J
n=1,j=1

,(
θn,j

)Nj ,J
n=1,j=1

, ξ, ξ̄,
(
Nj
)J
j=1

)}

Remarks 4.4. (i) As explained in Subsection 3.9, the number of material parameters to be determined
may be large even in case of two-mechanism models with more complexity. Note that the structural
matrices Cα, Cf and Cq (see (3.154)) are given. In most cases, the “thermoelastic” parameters and
quantities in (3.150) are assumed to be given. In case of necessity, they have to be determined
earlier based on separate experiments. In many applications, the weighting parameters Aj (see
(3.151) and (3.152)) are set equal to one. Frequently, the initial yield stresses σ0k (see (3.42)) are
assumed to be given. However, they can be determined simultaneously together with the remaining
material parameters.

(ii) In case of an assumed temperature dependence of a material parameter m, for instance, one can set

(4.80) m(θ) = m0 +m1 θ.

Therefore, instead of m the two constants m0 and m1 have to be found. Sometimes, the previously
obtained value m can be used as a start value for m0. Clearly, in this case case, one necessitates
data from experiments performed at different temperatures or with varying temperature.

(iii) The routine in box 4.1 contains the strain- and stress-driven approach. More precisely, Φ contains
generally three differences. Obviously, it is possible to use only one or two of them. In case of
stress-driven algorithm, we only take the difference

(
εn,jc,cal−stress

)N
n=1
−
(
εn,jc
)N
n=1

into account.

Principally, one can compare the difference
(
εn,jL
)N
n=1
−
(
εn,jD
)N
n=1

of measured longitudinal and
transversal strains with the differences of the calculated ones. However, due to (4.72), (4.73), this
calculated strain difference and the calculated inelastic strain have the “same quality” for given
stress.
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5 Application to experiments in cyclic plasticity for the steel
X2CrNiMo17-12-2 (1.4404)

In this Section apply theory and algorithms developed in the previous sections to data stemming from
uniaxial experiments in cyclic plasticity. Our aim is to show the algorithms are applicable to experimental
data. An extensive comparison of different MM models with various evolution laws is not intended.

5.1 Materials and experiments
The experimental data have been generated using specimens of the steel X2CrNiMo17-12-2 (1.4404) (see
Figure 3). The chemical composition has been analyzed via SOES and is shown in Table 1.

Elements C Si Mn P S Cr Mo Ni
Mass% 0.017 0.442 1.405 0.034 0.024 16.57 2.04 10.09

± 0.001 ± 0.005 ± 0.007 ± 0.001 ± 0.002 ± 0.15 ± 0.01 ± 0.02
Elements N Cu Co W V
Mass% 0.071 0.422 0.126 0.085 0.0504

± 0.002 ± 0.003 ± 0.001 ± 0.001 ± 0.0004

Table 1: Chemical composition of the steel used in the experiments

Figure 3: Cross section of a specimen for uniaxial experiments.

The mechanical behavior was investigated with tensile test specimens as shown in Fig. 3. The spec-
imens were taken in axial direction from the semi-finished rods with a diameter of 30mm. In order to
determine the longitudinal and transversal Young’s modulus five specimens were equipped with a two
dimensional tactile strain sensor. Additionally, strain gauges were bond in both directions to validate the
measurement of the strain sensor. The tensile tests have been performed on servo-hydraulic test equip-
ment PSA. While loading the specimen with a strain rate of 1.4× 10−4s−1, the current strains and loads
are collected by a computer system. Table 5.1 shows the results of the tensile tests compared to the lit-
erature. Cyclic tests with 100 cycles (except one test with 70 cycles) under different loading conditions
have been performed (see Tables 3 and 4).
5.2 Evaluation of some models
In order to demonstrate the applicability of the algorithms developed above we will evaluate four nMnC
models with nM = nC , using the data base listed up in Tables 3 and 4. To be more concrete, we consider
the following models.

43



Young’s modulus (GPa) Rρ0.2 (MPa) Rm (MPa) Hardness (HV 10)
Experiment 194± 4 280± 3 615± 2 165± 1
Literature 2001) and 2002) ≥ 2071) 517− 6551) 160− 190

Table 2: Mechanical properties of the steel X2CrNiMo17-12-2 (1.4404). 1) http://www.matweb.com, 2)

Grote and Feldhusen [2007]

No. σa σm N
1 250 0 100
2 260 0 100
3 270 0 100
4 280 0 100
5 290 0 100
6 300 0 100
7 310 0 100
8 320 0 100
9 330 0 100
10 330 0 70

No. σa σm N
1 115 115 100
2 125 125 100
3 135 135 100
4 145 145 100
5 150 150 100
6 155 155 100
7 165 165 100
8 175 175 100

No. σa σm R N
1 210 40 -0.62 100
2 230 20 -0.84 100
3 250 0 -1 100
4 290 40 -0.72 100
5 310 20 -0.87 100
6 330 0 -1 100

Table 3: Cyclic tests with stress ratio R = −1 (left), with stress ratio R = 1 (middle) and with different
stress ratios R (right). σa - stress amplitude (MPa), σm - mean stress (MPa), N - number of cycles.

No. σa σm N
1 210 40 40

100 0 20
210 40 40

2 290 40 40
100 0 20
290 40 40

No. σa σm N
3 210 40 40

100 0 20
210 -40 40

4 210 -40 40
100 0 20
210 40 40

Table 4: Four cyclic tests with block loading and with different stress ratios. σa - stress amplitude (MPa),
σm - mean stress (MPa), N - number of cycles.

Model I: 1M model with two kinematic variables (“Chaboche” model) with its structural matrices (cf.
(3.154))

Cα =
(
1 1

)
, Cf =

(
1
)
, Cq =

(
1
)
.

Model II: 2M2C model with one kinematic variable per each mechanism and with one isotropic variable
per each flow criterion

Cα =

(
1 0
0 1

)
, Cf =

(
1 0
0 1

)
, Cq =

(
1 0
0 1

)
.

Model III: 2M2C model with two kinematic variables per one mechanism and with one per the remain-
ing mechanism as well as with one isotropic variable per flow criterion

Cα =

(
1 1 0
0 0 1

)
, Cf =

(
1 0
0 1

)
, Cq =

(
1 0
0 1

)
.
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Model IV: 3M3C model with one kinematic variable per each mechanism and with one isotropic variable
per each flow criterion

Cα =

1 0 0
0 1 0
0 0 1

 , Cf =

1 0 0
0 1 0
0 0 1

 Cq =

1 0 0
0 1 0
0 0 1

 .

We use the evolution equations given in (3.156) and (3.157) with constant parameter matrices d(x),
d(α) and b. The matrices Q, d(α) and b are assumed as to be diagonal. The unknown parameters are
listed up in Table 5.2. For simplicity, we set Ai = 1 for all i = 1, . . . , nM (see (3.151), (3.152)). The
simulations have been performed with the Young’s modulus of 194GPa (cf. Table 5.1) and with the
Poisson’s ratio of 0.29. Instead of the initial yield stress Rρ0.2 = 280MPa as stated in Table 5.1, we use
a smaller value R0 = 165MPa which indicates the first deviation from the line characterizing the elastic
domain. This value has been determined before.

Model c Q d(x) d(α) b Σ
I 3 1 3 2 1 10
II 3 2 3 2 2 12
III 6 2 6 3 2 19
IV 6 3 6 3 3 21

Table 5: Number of unknown parameters of the models I - IV which must be determined, Σ is their sum.
The matricesQ, d(α) and b are assumed to be diagonal.

At first, we will find optimal parameters for each of the selected models using the group of data sets
given in the middle of Table 3. After that, we will find optimal parameters for each of the selected models
simultaneously taking the whole data base in Tables 3 and 4 into account. We present results for the
experiment no. 4 in the middle of Table 3 (σa = σm = 145MPa) (see Figure mm). Figures 5 and 6
show an experimental stress-strain curve and simulated ones based on the selected group of the data sets.
Contrary to this, in the second case shown in the Figures 7 and 8 all data sets in Tables 3 and 4 have been
taken into account. The results were obtained using the strain-driven approach. The simulations were
performed with the programme package MATLAB. More details concerning the optimization procedure
can be found in the report by Büsing and Schlasche [2013].

As already stated above, it is not the aim here to provide an exhausting comparison between different
MM models using different groups of data sets. The intention is to show that the algorithms developed
above are applicable and yield reasonable results. However, some careful assertions can be made. All
models did not give a good approximation of the first two cycles, in particular when optimizing over the
whole data base. Moreover, model I (one mechanism with two kinematic variables) does not approximate
the experiment when optimizing over all data. Considering cycles with higher numbers, models II – IV
yield a good approximation in both cases of the optimization approach.

6 Summary and outlook
This study deals with multi-mechanism models (MM models) in series with plastic mechanisms. The
main ideas can be also applied to other material behavior. The main part, published in Section 3, provides
extensions of MM models with several kinematic internal variables per mechanism as well as with several
isotropic internal variables per flow criterion. The structural characterizations of these complex MM
models which express the mutual relations between mechanisms, flow criteria, kinematic and isotropic
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Figure 4: Stress-strain curve for all cycles of the experiment no. 4 in the middle of Table 3 (σa = σm =
145MPa)

Figure 5: Stress-strain curves for the experiment no. 4 in the middle of Table 3 (σa = σm = 145MPa)
and comparison with simulated curves for models I and II. The optimization procedure took the group of
data sets in the middle of Table 3 into account.

variables are encoded by three structure matrices (see (3.154)). Moreover, we present general evolution
equations for the internal variables which allow further coupling between the mechanisms. Besides, these
proposals lead to thermodynamically consistent models under reasonable sufficient conditions on the
parameter functions. This general approach covers many (plasticity) models in use like one-mechanism
models (“Chaboche” models, see Chaboche [2008]) and two-mechanism models (see Saı̈ [2011], e.g.).

In the second part (Section 4), we have developed algorithms for simulation and parameter identi-
fication based on uniaxial experiments with specimens where spatial homogeneity is assumed (over the
gauge length). These algorithms are matrix-based, using the three structural matrices (see (3.154)) as
main input. Thus, in principal, arbitrary MM models can be dealt with in a common framework. Our
approach follows well-known items used in computational plasticity like return-mapping strategy (see
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Figure 6: Stress-strain curves for the experiment no. 4 in Table 3 (σa = σm = 145MPa) and comparison
with simulated curves for models III and IV. The optimization procedure took the group of data sets in
the middle of Table 3 into account.

Figure 7: Stress-strain curves for the experiment no. 4 in the middle of Table 3 (σa = σm = 145MPa)
and comparison with simulated curves for models I and II. The optimization procedure took all data sets
in the Tables 3 and 4 into account.

Simo and Hughes [1998], e.g., for details).
Finally, in the last part (Section 5), we have applied the developed algorithms to real data stemming

from cyclic experiments with the steel X2CrNiMo17-12-2 (1.4404). The aim was to show the applica-
bility of the algorithms. A detailed evaluation using different groups of data, different cost functionals
as well as different optimization strategies (strain-driven, stress-driven and combined) remains for future
work. Moreover, it is an open question how to fill the arising parameter matrices (fully, diagonally or
with some blocks) in order to get a sufficiently good approximation and to limit the sum of parameters.

47



Figure 8: Stress-strain curves for the experiment no. 4 in Table 3 (σa = σm = 145MPa) and comparison
with simulated curves for models III and IV. The optimization procedure took all data sets in the Tables 3
and 4 into account.
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