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Abstract

This work deals with parameter identification for general linear elliptic problems of second order.
The parameter dependence within the equation can be non-linear. Problems of such kind arise
in many applications, in electrical impedance tomography and in elasticity, e.g. This paper aims
to consider these special applied problems within a unique frame, focussing on two prototypical
elliptic problems with mixed boundary conditions. At first we give a sound basis, providing a weak-
formulation setting as well as main results concerning existence, uniqueness and continuity results
of the solution operators. Moreover, from higher integrability of the gradient of weak solutions up
to the boundary under mixed boundary conditions we deduce important properties of the solution
operators (and of their Fréchet derivatives) with respect to an Ls topology for some 1 < s < ∞.
This is an important point of departure for a detailed study of arising inverse problems. Finally,
we present and study cost functionals which compare calculated functions within the spatial domain
where the elliptic problems are given.

Keywords: linear elliptic problems with parameters; regularity for mixed boundary-value problems;
inverse-problem setting; application to linear non-homogeneous non-isotropic elasticity; special cost func-
tionals

1 Introduction

Some important problems of parameter identification lead to inverse problems for linear elliptic boundary-
value problems, for instance in elasticity as well as in electrical impedance tomography (for references see
belove in this introduction). Some of the approaches of parameter identification are characterized by the
fact that the experiments yield more information than necessary for the calculation of the solution of the
direct (forward) problem with known parameters. This additional information can be used to determine
parameters not known or only inexactly known. In principle, with the aid of a part of experimental data
one calculates the remaining data and compares them with their experimentally obtained counterpart.
A minimization (“Fitting”) of the deviation is the basis for finding parameters.

Depending on the experimental circumstances, in elasticity, e.g., displacements and normal stresses
can be measured at (parts of) the surface. This renders two problems for two alternative calculations of
the displacements inside the body. In Yun and Shang (2011), this idea has been brought into a special
approach to inverse problems in continuum mechanics. In electrical impedance tomography, an analog
approach for a single equation can be found in Knowles (1998) (further references are given belove in
this introduction). Note that in many cases, cost functionals are also based on comparison of boundary
values (see subsection 4.2 for details and references).

Focussing on this idea, here, the parameter identification is based on a comparison of two calculated
solutions within the spatial domain representing the body or sample in experiments or measurements.

The aim of this study is to give the approach of comparison of two calculated solutions within the
domain a rigorous mathematical form in the framework of weak-solution theory for partial differential
equations and to prove first results concerning the solutions operators and arising cost functionals.

In some simple cases, material parameters can be determined more or less directly from measured
data. Young’s modulus of a homogeneous isotropic material, e.g., provides an example. In more gen-
eral situations with several parameters such a “Hand-Fitting” frequently fails. In the case of complex
material behavior (elasto-plasticity with hardening, e.g.) and of isotropy a parameter identification can
be performed with sufficient success based on uni- and bi-axial experiments with small (often cylindri-
cal or hollow-cylindrical) samples in special testing machines (Gleeble R©, e.g.). In Mahnken and Stein
(1996a), a general algorithm for uni-axial experiments with visco-plastic materials has been developed.
Special methods referred to cyclic plasticity and ratcheting in bi-axial experiments can be found in Bari
and Hassan (2000), Abdel-Karim (2005), Taleb and Cailletaud (2010), Djimli et al. (2010), e.g.. In



Wolff et al. (2012), a semi-implicit algorithm for evaluation of uni-axial experimental data for creep and
transformation-induced plasticity in steel has been developed. In Wolff et al. (2013), the underlying idea
has been applied to multi-mechanism models with several kinematic variables for each mechanism in the
case of plastic behavior. However, if the material behavior is anisotropic and/or non-homogeneous, major
difficulties arise. There are experiments with specially manufactured samples which take the expectant
anisotropy in the material into account (cf. Noman et al. (2010), Pietryga et al. (2012), e.g.). An alter-
native to these approaches consists in considering the samples as two- or three-dimensional work-pieces.
Then, the behavior of these samples is modeled by partial differential equations including boundary
conditions and corresponding two- or tree-dimensional simulations can be done.

In general, parameter identification means solving an inverse problem. While dealing with a forward
problem (or direct problem), the determining system of equations (ordinary, partial or integral equations),
the coefficients as well as boundary and initial conditions are (supposed to be) known, and a unique
solution has to be determined. In applications, the coefficients (or coefficient functions) are mostly
material and/or process parameters which are assumed to be given for the forward problems. When
dealing with an inverse problem, the solution (in practical applications mostly only parts of them, at
the boundary or inside of the body), boundary and initial conditions are known, but the equations are
known only in their structure without knowledge of some or all coefficients (or coefficient functions)
which have now to be determined. In doing so, more information is or needs to be known as it would
be necessary for solving the direct problem. This additional information is the basis for solving inverse
problems. Exemplarily we refer to Bard (1974), Banks and Kunisch (1989), Bui and Tanaka (1994),
Mahnken and Stein (1996a). In Mahnken (2004), some practical problems have been discussed which
might come up when identifying parameters. There may be an “over-parametrization” or data stemming
from inappropriately planed experiments such that the phenomena to be investigated are not or only
insufficiently active. Besides the determination of proper material parameters (or material functions) it
is often, in related but different context, aimed at finding (optimal) process parameters. Heat-transfer
coefficients provide an example. We refer to Alder et al. (2006), Hömberg and Weiss (2006), Kern (2011)
as well as Lǐsčić (2009), Lǐsčić et al. (2011) and Frerichs et al. (2014) among others. Control problems
(see Tröltzsch (2010), e.g.) in solid mechanics like in Herzog et al. (2012), Herzog et al. (2013) are
mathematically closely related to problems in parameter identification.

When solving inverse problems, a manifold of mathematical challenges arises. This refers to existence
and uniqueness of solutions of direct and inverse problems and with respect to the development of
numerical algorithms for approximate computation. Usually, the underlying partial differential equations
will be discretized in space and time and often solved approximately with the finite-element method. In
the case of necessity, adaptive procedure will be applied. We refer to Tortorelli and Michaleris (1994),
Vexler (2004), Meidner (2008) and to the references cited therein.

Concerning inverse problems in mechanics, we refer to the survey papers by Kajberg et al. (2004),
Bonnet and Constantinescu (2005) as well as to Kohn and McKenney (1990), Gockenbach and Khan
(2005), Grédiac and Pierron (2006), Avril and Pierron (2007), Feissel and Allix (2007), Pierron et al.
(2007), Lecompte et al. (2007), Cooreman et al. (2007), Kajberg and Wikman (2007), Gockenbach and
Khan (2007), Gockenbach and Khan (2008), Gockenbach et al. (2008), Andrieux and Baranger (2008),
Pierron et al. (2010), Rossi and Pierron (2012), Banerjee et al. (2013), Le et al. (2015) e.g. In Suchocki
et al. (2013), parameter identification in visco-elasticity is considered.

Concerning inverse problems in electrical impedance tomography, we refer to Kohn and Vogelius
(1987), Kohn and McKenney (1990), Knowles (1998), Dahlke et al. (2010), Jin and Maaß (2012a), Jin
et al. (2012), Jin and Maass (2012b), Pham (2015). For applications to geology see Lukaschewitsch et al.
(2009), e.g.

As already pointed out; in order to solve the inverse problem requires more information than it would
be necessary for solving the forward problem under assumed knowledge of all parameters. For problems
in mechanics, this additional information could mean that both stress and displacement are known at
parts of the boundary of the work-piece under consideration, or, alternatively, the displacement inside
the body. For example, after solving the forward problem using the known stress at this boundary part,
the calculated displacements at this boundary part can be compared with the measured ones. Hence,
the occurring mathematical problem is a version of a Neumann-to-Dirichlet problem generally only for
a port of the boundary. We refer to Isakov (2006), e.g. for general explanations and to Bonnet and
Constantinescu (2005) in the context of linear elasticity.

So-called Cauchy problems of reconstruction of incomplete data at the surface are closely related to
inverse problems for determining the elastic moduli. We refer to Andrieux et al. (2006), Andrieux and
Baranger (2008).
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In recent years, the technical preconditions for contactless optical measurement as well as the possi-
bilities for an adequate evaluation of the occurring large data set have been considerably improved (see
Avril et al. (2008), Pottier et al. (2011), Laurin et al. (2012) and the references cited therein). Thus, there
are real chances to determine material parameters via comparison between calculated and (at boundary
parts) measured quantities (displacements, e.g.) via fitting or other minimization approaches. Based on
this idea, in Widany and Mahnken (2012), the parameter identification for an incompressible hyper-elastic
material has been performed. In Mahnken and Dammann (2013), this approach has been applied to an
originally isotropic polymer which develops a strain-induced anisotropy during the process. In special
cases, for thin transparent samples, e.g., it is also possible to measure interior deformations and to use
them for parameter identification (“full-field method”, see Avril and Pierron (2007), Avril et al. (2008a),
Pottier et al. (2011), e.g.).

If one encounters material behavior with a unique relation between stress and strain like in linear and
non-linear elasticity in small and finite deformations, it is sufficient to deal with stationary (direct and
inverse) problems. However, plastic or visco-plastic material behavior leads to non-stationary problems
with major mathematical challenges as well as with major experimental effort.

In Yun and Shang (2011), a new approach has been proposed and applied to cyclic elasto-plasticity. In
Shang and Yun (2012), a further experimental verification has been performed. The basis for parameter
identification is the employment of twofold experimental information on a boundary part for two parallel
simulations and to compare the results inside of the work-piece. Regardless of a formal similarity to full-
field approaches there are essential differences. The authors call their method “Self-OPTIM” standing for
“self-optimizing inverse analysis method”. This is motivated by the fact that in the ongoing algorithm the
evaluation criterion consists in comparing of results of parallel simulations and not a permanent compar-
ison with measured data. The relevant data for the simulation are exclusively boundary data. These data
only occur as boundary conditions for the simulations. In their context, the cost functional is implicit
(see Shang and Yun (2012) for further explanations). Their approach to compare calculated quantities
in the interior of the work-piece seems to be especially appropriate in the case of non-homogenous states
and anisotropic material behavior. Numerical applications of this new approach can be found in Rahimi
et al. (2012), Sadegh Zadeh and Montas (2014) and Weaver (2015).

It is the aim of this paper to establish a sound mathematical foundation of Yun and Shang’s as
well as Knowles’ approach in the framework of weak-solution theory for partial differential equations.
In difference to some contributions in electrical impedance tomography, we consider mixed-boundary
conditions. Moreover, it is aimed to prove some results for the inverse problem. Furthermore, we discuss
some relations to other approaches in use like Dirichlet-to-Neumann approaches and full-field methods.

Discretization methods (finite elements, e.g.) will be not considered here, though their great impor-
tance for numerical realization and practical application are beyond all question.

Outline of the remaining paper:

(i) In section 2, general parameter-dependent linear elliptic problems are considered. There are given
the setting and the weak formulation of two closely related problems which play the role of pro-
totypical problems. They cover some important applications both in linear elasticity as well as in
electrical impedance tomography. We summarize widely well-known results concerning existence
and uniqueness of weak solutions. Moreover, we establish some special continuity results of the
solution operators, using global higher integrability of the gradient of weak solutions even under
mixed boundary conditions. Based on this, Fréchet differentiability of the solution operators with
respect to Ls topology for some 1 < s <∞ can be proved. This is an important point of departure
for further investigations like of convergence behavior of minimizing sequences. The last item is not
addressed in this study.

(ii) In section 3, we present some examples of boundary-value problems for linear elliptic equations
and for systems of equations which can be dealt with in an analogical manner as the prototypical
problems. The case of linear non-homogeneous non-isotropic elasticity is included, and, therefore,
the general results presented are applicable.

(iii) In section 4, some results concerning the arising inverse problems are provided. Two variants
of general cost functionals are dealt with which compare calculated solutions within the domain.
Additionally, in subsection 4.2, our approach is related to other ones like Dirichlet-to-Neumann
type mappings and full-field approaches. In subsection 4.4, some results about the existence of a
global minimum of the cost functionals presented are proven.

(iv) An outlook concludes this study in section 5.
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2 General parameter-dependent linear elliptic problems

In this section, it is the aim to provide two prototypical elliptic problems for a single equation dealt with.
This is for convenience and for a better overview. As we will see in subsection 3, this is not an essential
restriction, since some important elliptic problems (arising from elasticity or from electrical impedance
tomography, e.g.) can be studied in a very analogous manner. We provide exact formulations and results
on existence, uniqueness of weak solutions and on parameter dependence of the solution (or forward)
operators. Furthermore, we prove some special continuity results of the solution operators, using higher
integrability of the gradient of weak solutions.

2.1 Two prototypical problems

As already said in the introduction, in this work we study general linear elliptic problems of second
order with a possibly non-linear dependence on a parameter as well as some arising inverse problems for
determination of this parameter. To avoid the high technical effort for a comprehensive consideration
of second-order elliptic problems stemming from general elliptic equations or from elliptic systems of
equations, we mainly deal with two prototypical mixed boundary-value problems arising from a single
linear elliptic equation without lower-order terms. However, as a rule, the results presented in the sequel
can be transferred to more complex equations and systems of equations, including Lamé’s equations of
linear elasticity, performing only technical modifications. In subsection 3, we list up some of these cases
and give comments.

Therefore, we consider the following two alternative mixed boundary-value problems for the same
partial differential equation (PDE). For convenience, we formulate them in a classical setting. Later on,
we deal with their weak formulations and give more precise definitions.

Let Ω be a domain with three boundary parts like in Fig. 1. For exact assumptions see (2.9) - (2.11).

Problem I: A function u : Ω→ R is looked for fulfilling the following equation and boundary conditions.

−div (b(·, κ)∇u) = f a.e. in Ω,(2.1)

u = φ on ΓDN ,(2.2)

u = 0 on ΓD,(2.3)

b(·, κ)
∂u

∂ν
= 0 on ΓN .(2.4)

The function κ is a parameter function (defined on Ω), the functions f and φ are regarded as data, ν is
the outer unit normal on the boundary parts ΓDN and ΓN . The parameter-dependent coefficient function
b will be described later on.

Alternatively to problem I, we consider the corresponding problem II differing only in the boundary
condition on ΓDN :

Problem II: A function v : Ω→ R is looked for fulfilling the following equation and boundary conditions
(for further purpose we distinguish between u and v).

−div (b(·, κ)∇v) = f a.e. in Ω,(2.5)

b(·, κ)
∂v

∂ν
= τ on ΓDN ,(2.6)

v = 0 on ΓD,(2.7)

b(·, κ)
∂v

∂ν
= 0 on ΓN .(2.8)

f (being the same as in (2.1)) and τ are regarded as data, ν is as before.

Problem I has Dirichlet conditions on ΓD and on ΓDN and a Neumann condition on ΓN , while problem
II has a Dirichlet conditions on ΓD and Neumann conditions on ΓDN and on ΓN (see Fig. 1).

This setting is caused by the final purpose to deal with inverse problems. Considering a problem for
an elliptic PDE like in (2.1), we assume that on ΓD Dirichlet boundary conditions and on ΓN Neumann
boundary conditions are given. Moreover, as a special issue, on ΓDN Dirichlet and Neumann conditions
are simultaneously given corresponding to the same model situation (or to the same experiment or
measurement). This leads to two alternative mixed boundary-value problems for the same equation,
namely to the problems I and II. See remark 2.5 for non-homogeneous Dirichlet conditions on ΓD and
for Robin conditions on ΓN and/or ΓDN .
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ΓD ΓDN

ΓN

Ω

Figure 1: Scheme of the bounded domain Ω and its boundary parts. On ΓDN , double information is
available (see the explanation in the text).

Clearly, for models exactly describing deterministic scenarios these both problems must yield the same
solution u = v, if the same experiment (or measurement) is performed. Due to almost always existing
noise as well as deviations caused by numerical calculations, the calculated solutions generally differ.
However, assuming that for each admissible parameter κ each problem has a unique solution u = uκ and
v = vκ, respectively, a comparison of uκ and vκ may be a point of departure for determining an “optimal”
parameter κ.

In applications, the double information on ΓDN coming from an experiment may be, for instance,
displacement and normal stress in mechanics (see Yun and Shang (2011), Shang and Yun (2012), Shang
et al. (2013)) or electrical current and electrical potential in electrical impedance tomography (see e.g.,
Jin and Maaß (2012a) for further explanation and references).

2.2 Assumptions concerning domain and coefficient function

Let a domain (= nonempty, open and connected set) Ω and its three boundary parts like in Fig. 1 have
the following general properties.

Ω ⊂ Rd bounded Lipschitz domain,(2.9)

ΓD,ΓDN ,ΓN ⊂ ∂Ω, ∂Ω = ΓD ∪ ΓDN ∪ ΓN mutually disjoint,(2.10)

ΓD,ΓDN closed with positive surface measure.(2.11)

The space dimension d is generally a natural number, in applications often belonging to {1, 2, 3}. In more
idealized situations, ∂Ω = ΓDN can be assumed, avoiding mixed boundary conditions, see e.g., Jin and
Maaß (2012a). We notice that ΓD or ΓN can be empty. For convenience, we let ΓD have a positive surface
measure (see (2.11)), ensuring uniqueness of weak solutions for both prototypical problems without an
additional requirement like in pure Neumann boundary-value problems.

Let J be given by

J := [k1, k2] ⊂ R with −∞ < k1 < k2 <∞,(2.12)

and let

b : Ω× J → R(2.13)

be a Carathéodory function, i.e., for almost all x ∈ Ω, b is continuous with respect to s ∈ J and for all
s ∈ J it is Lebesgue measurable with respect to x ∈ Ω (see e.g., Showalter (1997)). Moreover, we assume

∃β0 ≥ 0, β1 ≥ 0 f.a.a. x ∈ Ω ∀ s ∈ J : |b(x, s)| ≤ β0 + β1|s|,(2.14)

∃β2 > 0 f.a.a. x ∈ Ω ∀ s ∈ J : b(x, s) ≥ β2,(2.15)

∃β3 > 0 f.a.a. x ∈ Ω ∀ s1, s2 ∈ J : |b(x, s1)− b(x, s2)| ≤ β3 |s1 − s2|.(2.16)

We chose the parameter space and an admissible set of parameters in the following way. The sense of
“admissible” will be clear in the sequel.

K := L∞(Ω),(2.17)

Kad := {κ ∈ K | a.e. in Ω : κ(x) ∈ J}.(2.18)

Due to (2.12), Kad is a closed, bounded and convex subset of K. This is the standard case, in particular
for linear parameter dependence. Sometimes, a special behavior of b allows an unbounded interval J and
a larger parameter space K than L∞(Ω). This may be useful in concrete applications.

For illustration, in the following remarks we consider some special cases of J , b, K and Kad.
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Remarks 2.1. (Examples for J , b, K and Kad) The following examples are included in the general
case considered above. To focus we drop a possible dependence on x ∈ Ω. Obviously, to provide more
general examples, all functions b listed here can be multiplied by a function b0 ∈ L∞(Ω) bounded to
below by a positive constant.
(i) (Linear parameter dependence) Let J be as in (2.12) with 0 < k1 and b be defined by

b(x, s) := s f.a.a. x ∈ Ω ∀ s ∈ J(2.19)

Clearly, the choice (2.17), (2.18) for K and Kad is suitable.
A single elliptic equation with this linear parameter dependence arises for instance in electrical
impedance theory (see, e.g., Jin and Maaß (2012a), Jin and Maass (2012b), Pham (2015)) and in
applications to geology (see, e.g., Lukaschewitsch et al. (2009))

(ii) A nonlinear example is given by J as in (i) and by

b(x, s) := s+ arctan(s) f.a.a. x ∈ Ω ∀ s ∈ J(2.20)

and with K and Kad as in (2.17), (2.18).

(iii) Let J be as in (2.12) with k1 = 0 and b be defined by

b(x, s) := 1 + s+ arctan(s) f.a.a. x ∈ Ω ∀ s ∈ J(2.21)

Again, the choice (2.17), (2.18) for K and Kad is suitable.

(iv) Let be J := R and b as

b(x, s) := 1 +
1

π
arctan(s) f.a.a. x ∈ Ω ∀ s ∈ J(2.22)

Now, one can chose K = Kad := Lq(Ω) with a fixed 1 ≤ q ≤ ∞. In applications, 1 ≤ q < ∞, in
particular q = 2, can be useful.

(v) Let be J := [k1,∞] with k1 > 0 and b as

b(x, s) := arctan(s) f.a.a. x ∈ Ω ∀ s ∈ J(2.23)

Now, one can chose K := Lq(Ω) with a fixed 1 ≤ q ≤ ∞ and Kad as in (2.18).

2.3 Weak formulations

To define corresponding weak formulations of the problems I and II we introduce the basic Hilbert space
V and the following test-function spaces arising from the given boundary conditions. Here, we only
consider real-valued functions.

V : = W 1,2(Ω),(2.24)

V0 : = {ϕ ∈ V |ϕ = 0 on ΓD},(2.25)

V1 : = {ϕ ∈ V |ϕ = 0 on ΓD ∪ ΓDN},(2.26)

W 1,2(Ω) is the usual Sobolev space (of real-valued functions), see Showalter (1997), Adams and Fournier
(2003), e.g. V ∗i are the corresponding dual spaces. Clearly, V1  V0. The dual pairing between f ∈ V ∗i
and ϕ ∈ Vi is denoted by 〈f , ϕ〉V ∗i ,Vi .

The parameter space K and the set of admissible parameters Kad ⊂ K are defined in (2.17) and
(2.18), respectively. In a standard way we define the form a : Kad × V × V → R being associated with
the underlying linear elliptic problems (2.1) - (2.4) and (2.5) - (2.8):

a(κ, u, ϕ) :=

∫
Ω

b(x, κ)∇u · ∇ϕdx ∀ (κ, u, ϕ) ∈ Kad × V × V.(2.27)

(∇u · ∇ϕ - scalar product in Rd.) Clearly, there holds the following result.
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Lemma 2.2. Let the assumptions (2.9) - (2.18) be given. Then there exist real numbers α2 = α2(β2) > 0,
α1 = α1(β0, β1, k1, k2) > 0 and α3 = α3(β3) > 0 such that the form a defined in (2.27) fulfils

∀κ ∈ Kad : a(κ, ·, ·) : V × V → R bilinear,(2.28)

∀ (κ, u, v) ∈ Kad × V × V : |a(κ, u, v)| ≤ α1 ‖u‖V ‖v‖V ,(2.29)

∀ (κ, u) ∈ Kad × V0 : a(κ, u, u) ≥ α2 ‖u‖2V ,(2.30)

∀ (κ1, u, v), (κ2, u, v) ∈ Kad × V × V : |a(κ1, u, v)− a(κ2, u, v)| ≤(2.31)

≤ α3 ‖u‖V ‖v‖V ‖κ1 − κ2‖K .

Thus, for κ ∈ Kad the family of bilinear forms a(κ, ·, ·) is uniformly continuous and coercive. Moreover,
on bounded sets of u and v they are uniformly Lipschitz continuous with respect to the parameter κ.
Therefore, the admissibility of Kad ⊂ K means, that for all κ ∈ Kad the bilinear form a(κ, ·, ·) has the
properties (2.28) - (2.31).

Sometimes, in more general situations like in (3.1), the assumption of symmetry in the sense of

∀ (κ, u, v) ∈ Kad × V × V : a(κ, u, v) = a(κ, v, u).(2.32)

is helpful. Clearly, in the case of the prototypical problems, the arising form a in (2.27) follows automat-
ically. However, besides in the special cases like in linear elasticity, the assumption (2.32) is not needed
for existence and uniqueness results.

Remark 2.3. (General linear elliptic problems) In more general cases of linear elliptic problems
with parameters (see subsection 3 for examples), the parameter space K is usually assumed to be a
Banach space of functions defined on Ω. Then, a set Kad ⊂ K is called admissible, if the corresponding
bilinear form a has the properties (2.28) - (2.31).

Sometimes, one needs the continuous embedding of V into W
1
2 ,2(ΓDN ) in the sense of trace (see

Showalter (1997), Adams and Fournier (2003), e.g.). Thus, there holds for the trace u|ΓDN of u

∃ c1 > 0 ∀u ∈ V : ‖u|ΓDN ‖W 1
2
,2(ΓDN )

≤ c1‖u‖V .(2.33)

We assume for the Dirichlet-boundary data as well as for the Neumann-boundary data τ on ΓDN :

φ ∈W 1
2 ,2(ΓDN )(2.34)

τ ∈ (W
1
2 ,2(ΓDN ))∗.(2.35)

To homogenize the problem I (“generalized Dirichlet problem”) we assume, that the function φ has an

extension φ̃ ∈ V0 with the estimate

‖φ̃‖V ≤ c2‖φ‖
W

1
2
,2(ΓDN )

,(2.36)

where c2 > 0 is independent of φ (cf. Kufner et al. (1977), Adams and Fournier (2003), e.g.). Clearly,
this continuation property generally yields further restrictions to the boundary ∂Ω, in particular to the
intersections ΓDN ∩ ΓD and ΓDN ∩ ΓN .

Now we give weak formulations for both problems I and II described in (2.1) - (2.4) and (2.5) - (2.8),
respectively. To avoid to much repetitions we assume (2.9) - (2.18) for the rest of this subsection.

Weak formulation of problem I (non-homogenized form) (“generalized Dirichlet problem”)
Let κ ∈ Kad, (2.34) and

f ∈ V ∗1(2.37)

be given. A function u ∈ V0 is called a (weak) solution to problem I (2.1) - (2.4), if it fulfils

u = φ on ΓDN(2.38)

a(κ, u, ϕ) = 〈f , ϕ〉V ∗1 ,V1 ∀ϕ ∈ V1.(2.39)

Note that the function u generally does not belong to the test-function space V1.
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Weak formulation of problem I (homogenized form) (“generalized Dirichlet problem”)
Let κ ∈ Kad, (2.34), (2.36) and (2.37) be given. A function u ∈ V0 is called a (weak) solution to problem
I (2.1) - (2.4), if there holds

u = w + φ̃,(2.40)

while w ∈ V1 satisfies

a(κ,w, ϕ) = −a(κ, φ̃, ϕ) + 〈f , ϕ〉V ∗1 ,V1
∀ϕ ∈ V1.(2.41)

Weak formulation of problem II (“generalized Neumann problem”)
Let κ ∈ Kad, (2.35) and

f ∈ V ∗0(2.42)

be given. A function v ∈ V0 is called a (weak) solution to problem II (2.5) - (2.8), if there holds

a(κ, v, ϕ) = 〈τ , ϕ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

+ 〈f , ϕ〉V ∗0 ,V0 ∀ϕ ∈ V0.(2.43)

Obviously, the weak formulations above can be brought into equivalent abstract operator equations.

Lemma 2.4. (i) Let κ ∈ Kad, (2.34) and (2.37) be given. Then the weak formulation (2.38), (2.39)
of problem I can be equivalently expressed by

AI(κ, u) = f in V ∗1 ,(2.44)

with the operator AI : K × {u ∈ V1 |u = φ on ΓDN} → V ∗1 being continuous in u, Lipschitz
continuous in κ and defined by

〈AI(κ, u) , ϕ〉V ∗1 ,V1
:= a(κ, u, ϕ) ∀ (κ, u, ϕ) ∈ K × {u ∈ V1 |u = φ on ΓDN} × V1.(2.45)

(ii) Let κ ∈ Kad, (2.34), (2.36), (2.37) and (2.40) be given. Then the weak formulation (2.41) of the
homogenized problem I can be equivalently expressed by

AI,hom(κ,w) = FI,hom(κ, f, φ̃) in V ∗1 ,(2.46)

with FI defined by

〈FI,hom(κ, f, φ̃) , ϕ〉V ∗1 ,V1
:= −a(κ, φ̃, ϕ) + 〈f , ϕ〉V ∗1 ,V1

∀ϕ ∈ V1,(2.47)

and with the operator AI,hom : K×V1 → V ∗1 being linear and continuous in u, Lipschitz continuous
in κ and defined by

〈AI,hom(κ,w) , ϕ〉V ∗1 ,V1 := a(κ,w, ϕ) ∀ (κ,w, ϕ) ∈ K × V1 × V1.(2.48)

(iii) Let κ ∈ Kad, (2.35) and (2.42) be given. Then the weak formulation (2.43) of problem II can be
equivalently expressed by

AII(κ, v) = FII(f, τ) in V ∗0 ,(2.49)

with FII defined by

〈FII(f, τ) , ϕ〉V ∗0 ,V0
:= 〈τ , ϕ〉

(W
1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

+ 〈f , ϕ〉V ∗0 ,V0 ∀ϕ ∈ V0,(2.50)

and with the operator AII : K × V0 → V ∗0 being linear and continuous in u, Lipschitz continuous
in κ and defined by

〈AII(κ, v) , ϕ〉V ∗0 ,V0
:= a(κ, v, ϕ) ∀ (κ,w, ϕ) ∈ K × V0 × V0.(2.51)

Note that in the first case without homogenization the corresponding operator AI is not linear in u,
since its domain is not linear. Thus, to overcome this inconvenience one usually prefers the homogenized
version. In this case, the new right-hand side explicitly depends on κ (see (2.41)). After establishing the
existence of the “auxiliary” weak solution w, one can go back to the equivalent weak formulation (2.38),
(2.39).

Moreover, if the weak solution, the function b, the parameter function κ and the data exhibit better
regularity, the weak formulations yield the differential equations (2.1) and (2.5) as well as the Neumann
boundary conditions (2.4) and (2.6), (2.8), respectively, in a standard way. Generally, these equations
and conditions can only be interpreted as relations between distributions, see subsection 2.6.
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Remarks 2.5. (More general boundary conditions) Further boundary conditions are possible and
can be treated within the same frame with some modifications.
(i) (Non-homogeneous Dirichlet conditions on ΓD) Due to applications, on ΓD may be given the same

non-homogeneous Dirichlet condition for problem I and II. Generally, this can be dealt with like in
the weak formulation (2.38), (2.39). Assuming a sufficient regularity of the boundary function, after
a standard homogenization there arises a new right-hand side in the equation generally depending
on κ like in (2.41).

(ii) (Robin conditions on ΓDN and ΓN ) On ΓDN (for problem II) and/or ΓN (for both problems) may
be given a Robin boundary condition like

b(·, κ)
∂u

∂ν
+ d(·, κ)u = τ on ΓDN(2.52)

corresponding to equation (2.1). d is a suitable Carathéodory function generally depending on κ (cf.
(2.12) - (2.16)). Clearly, now the elements of K must have a trace on ΓDN and ΓN . Therefore, K
must be narrower than L∞. This case can be handled in the standard way leading to an extended
form â which reads for problem II

â(κ, u, v) :=

∫
Ω

b(x, κ)∇u · ∇ϕdx+

∫
ΓDN

d(x, κ)uv dΓx.(2.53)

Thus, d must fulfil further assumptions to ensure the properties (2.29) - (2.31) of â. A non-linear
Robin condition (with d(·, κ, u) instead of d(·, κ)u) leads to a non-linear problem which requires
other tools for proving existence and uniqueness results. This will not be considered here.

2.4 Existence, Uniqueness, well-posedness for linear elliptic problems

The well-posedness of problems I and II, resp., is standard. Lax-Milgrams’s theorem and the assumptions
(2.28) - (2.31) are the essential ingredients (cf. Zeidler (1990a), Showalter (1997), e.g.). Again, to avoid to
much repetitions, we assume (2.9) - (2.18) as common assumptions for both problems I and II. Moreover,
we keep lemma 2.2 in mind. From now on we regard Problem I as given in its weak formulation (2.38),
(2.39) and analogously, problem II as given by (2.43). Clearly, in this context, solution means weak
solution.

Theorem 2.6. (Existence and uniqueness)
(i) (Problem I) Let (2.34), (2.36) and (2.37) be given. Than for each κ ∈ Kad there exists a unique

solution u ∈ V0 to problem I fulfilling the estimate

‖u‖V ≤
c2(α2 + α1)

α2
‖φ‖

W
1
2
,2(ΓDN )

+
1

α2
‖f‖V ∗1 ≤ c3

(
‖φ‖

W
1
2
,2(ΓDN )

+ ‖f‖V ∗1
)

(2.54)

with some constant c3 = c3(α1, α2, c2) > 0.

(ii) (Problem II) Let (2.35) and (2.42) be given. Than for each κ ∈ Kad there exists a unique solution
v ∈ V0 of problem II fulfilling the estimate

‖v‖V ≤
c1
α2
‖τ‖

(W
1
2
,2(ΓDN ))∗

+
1

α2
‖f‖V ∗0 ≤ c4

(
‖τ‖

(W
1
2
,2(ΓDN ))∗

+ ‖f‖V ∗0
)

(2.55)

with some constant c4 = c4(α1, α2, c1) > 0.

Solution operators: We define the solution operators (often called forward operators, too) of both
elliptic problems. Under the assumptions of theorem 2.6 the solution operator of problem I, LI is defined
by

(2.56) u = LI(f, φ, κ)

with

(2.57) LI : V ∗1 ×W
1
2 ,2(ΓDN )×Kad → V0 ⊂ V (= W 1,2(Ω)).

Analogously, the solution operator of problem II, LII is given by

(2.58) v = LII(f, τ, κ)
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where

(2.59) LII : V ∗0 × (W
1
2 ,2(ΓDN ))∗ ×Kad → V0 ⊂ V.

To underline the dependence of the solutions u and v of the problems I and II, respectively, on the
parameter κ, we also will use the notations uκ = LI(f, φ, κ) and vκ = LII(f, τ, κ). Besides, this makes
sense since the remaining values f , φ, τ are often kept fixed, when looking for an optimal parameter.
In the context of inverse problems the solution operators are usually called forward operators. We will
return to this matter in section 4.

The preceding theorem easily leads to the following one by standard arguments. Here, the assumed
Lipschitz continuity of the form a with respect to κ ∈ Kad (see (2.16), or more general (2.31)) is used for
the first time.

Theorem 2.7. (Well-posedness)

(i) (Problem I) Let κi ∈ Kad, fi ∈ V ∗1 , and φi ∈ W
1
2 ,2(ΓDN ) with the continuation property (2.36)

as well as (2.31) be given (i = 1, 2). Then the corresponding unique weak solutions of problem I
(2.38), (2.39), u1, u2 ∈ V0, fulfil the estimate

‖u1 − u2‖V ≤ c5
{
‖f1 − f2‖V ∗1 +‖φ1 − φ2‖

W
1
2
,2(ΓDN )

+(2.60)

+
(
‖φ2‖

W
1
2
,2(ΓDN )

+ ‖f2‖V ∗1
)
‖κ1 − κ2‖K

}
with some constant c5 = c5(α1, α2, α3, c2) > 0.

(ii) (Problem II) Let κi ∈ Kad, fi ∈ V ∗0 and τi ∈ (W
1
2 ,2(Γ1))∗ and (2.31) be given (i = 1, 2), and let

v1, v2 ∈ V0 be the corresponding unique weak solutions of problem II (2.43). Then there holds the
estimate

‖v1 − v2‖V ≤ c6
{
‖τ1 − τ2‖

(W
1
2
,2(ΓDN ))∗

+ ‖f1 − f2‖V ∗1 +(2.61)

+
(
‖τ2‖

(W
1
2
,2(ΓDN ))∗

+ ‖f2‖V ∗0
)
‖κ1 − κ2‖K

}
with some constant c6 = c6(α1, α2, α3, c1) > 0.

Often only the parameter κ ∈ K varies, while the remaining data is kept fixed. Thus, the preceding
estimates considerably simplify.

Corollary 2.8. Let κ1, κ2 ∈ Kad. Then there hold the following estimates for the solutions ui =
LI(f, φ, κi) and vi = LII(f, τ, κi) (i = 1, 2) of problems I and II, respectively:

‖u1 − u2‖V ≤
c7
α2

min
{
‖u1‖V , ‖u2‖V

}
‖κ1 − κ2‖K ,(2.62)

‖v1 − v2‖V ≤
c7
α2

min
{
‖v1‖V , ‖v2‖V

}
‖κ1 − κ2‖K(2.63)

with some constant c7 = c7(α1, α2, α3, c2) > 0 and c7 = c7(α0, α1, α3, c1) > 0, respectively.

Clearly, the minima on the right-hand sites of (2.62) and (2.63) can be estimates using (2.54) and
(2.55), respectively. The following continuity statements for the solution operators can be derived from
theorem 2.7.

Theorem 2.9. (Continuity assertions for the solutions operators) Under the assumptions of
theorem 2.7, the following assertions hold:
(i) (Problem I)

LI : V ∗1 ×W
1
2 ,2(ΓDN )×Kad → V0 ⊂ V(2.64)

Lipschitz continuous on bounded subsets of V ∗1 ×W
1
2 ,2(ΓDN )×Kad.

(ii) (Problem II)

LII : V ∗0 × (W
1
2 ,2(ΓDN ))∗ ×Kad → V0 ⊂ V(2.65)

Lipschitz continuous on bounded subsets of V ∗0 × (W
1
2 ,2(ΓDN ))∗ ×Kad.
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2.5 Higher integrability of the gradient of weak solutions

2.5.1 General remarks

A global higher integrability of the gradients of weak solutions holds for a wide class of generally quasi-
linear second-order elliptic systems of PDE under moderate assumptions (see e.g., Bensoussan and Frehse
(2013), Giaquinta (2016) for general setting of such systems). Higher integrability means that the (com-
ponents of the) gradient belong to a better Lebesgue space than it is necessary for a correct definition of
the corresponding weak solution.

In particular, in the linear cases under consideration (2.1) - (2.4) and (2.5) - (2.8), the gradient
∇u “originally“ belongs to (L2(Ω))d by definition of the weak solution. If the data exhibit a better
integrability than required for a correct definition of the weak solution, then ∇u belongs to (Lp(Ω))d for
some p > 2. Later on there will be clear formulations for our setting.

This “global higher integrability of the gradient” has been intensively investigated during the last
decades, at first locally, after that globally, for elliptic and parabolic systems. We refer to Gröger
(1989), Gröger and Rehberg (1989), Naumann and Wolff (1991), Naumann and Wolff (1995) and Haller-
Dintelmann and Rehberg (2008) for general elliptic (and parabolic) problems like in subsections 3.1 and
3.2 as well as to Dahlberg et al. (1988), Shi and Wright (1994), Brown and Mitrea (2009), Ott and
Brown (2013) and Herzog et al. (2011) with respect to the equations of elasticity provided in subsection
3.3. In Wolff (1996), a corresponding global result concerning the stationary Stokes problem with mixed
boundary condition was proved. Moreover, we refer to Fiaschi et al. (2013), where an analogous higher
integrability of the gradient of minimizers to a wide class of functionals was studied.

Although the results “global higher integrability of the gradient under mixed boundary condition”
are very similar in Naumann and Wolff (1991) and Gröger (1989), Gröger and Rehberg (1989), the
techniques of the proofs are entirely different. As a consequence, more restrictive assumptions on the
coefficient functions are needed in Gröger (1989), Gröger and Rehberg (1989). More historical remarks
can be found in Fiaschi et al. (2013). Regarding our special setting, more comments will be given in
remark 2.11 (i).

As we will see below, in connection with inverse problems for elliptic problems this global higher
integrability of the gradient allows to obtain special results.

2.5.2 Results for the prototypical problems I and II

We continue to focus on our prototypical problems I and II, given by (2.1) - (2.4) and (2.5) - (2.8),
respectively. There will be comments concerning more general elliptic problems in remarks.

Thus, we consider the weak formulation for the single elliptic equation in (2.1) and (2.5) leading to
the corresponding form a defined in (2.27). For convenience, we repeat it her:

a(κ, u, ϕ) :=

∫
Ω

b(x, κ)∇u · ∇ϕdx ∀ (κ, u, ϕ) ∈ Kad × V × V(2.66)

with V := W 1,2(Ω), V0, V1 as in (2.25), (2.26) as well as with Ω, ΓD, ΓDN , ΓN , J ⊂ R, K, Kad and
b : Ω× J → R in accordance with (2.9) - (2.18).

Clearly, the case of linear parameter dependence (2.19) is included into this setting.
It can be proved that under somewhat better assumptions on the data φ, f and τ , f , respectively,

as well as on the boundary parts ΓD, ΓDN and ΓN the weak solutions of problem I and II belong to
W 1,p(Ω) for some p > 2. Additional notations are needed.

V p : = W 1,p(Ω),(2.67)

V p0 : = {ϕ ∈ V p |ϕ = 0 on ΓD},(2.68)

V p1 : = {ϕ ∈ V p |ϕ = 0 on ΓD ∪ ΓDN},(2.69)

W 1,p(Ω) is the usual Sobolev space for 1 ≤ p ≤ ∞. By (V p)∗ and (V pi )∗ i = 0, 1 we denote the dual
spaces of V p and V pi , respectively. It is Vi = V 2

i (see (2.24) - (2.26)).

〈· , ·〉(V p0 )∗,V p0
: (V p0 )∗ × V p0 → R

is the dual pairing. p′ := p/p−1 - conjugate exponent. Additionally to (2.9) - (2.11), the parts ΓD, ΓDN
and ΓN of the boundary ∂Ω should smash each other in a not too bad way. We assume

(2.70) Ω ∪ ΓN , Ω ∪ (ΓN ∪ ΓDN ) regular in the sense of Gröger,
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(cf. Gröger (1989), Gröger and Rehberg (1989), Haller-Dintelmann and Rehberg (2008) and Herzog
et al. (2011) for details. In Naumann and Wolff (1991), the analogous requirement is, that ΓN ∩ ΓD and
ΓN ∩ ΓDN are locally the graph of a Lipschitz function of d− 2 variables.)

Theorem 2.10. (Higher integrability of the gradient) Let (2.9) - (2.18) and (2.67) - (2.70) be given.
Let the form a be given by (2.66). Then there exists a p > 2 such that for all p ∈ [2, p] the following
assertions hold.
(i) (Problem I) Let f ∈ (V p

′

1 )∗, φ ∈W 1− 1
p ,p(ΓDN ) with an analogous to (2.36) continuation property

in V p be given. Then for each κ ∈ Kad there exists a unique weak solution u ∈ V p0 of problem I
(2.39), (2.40) with the estimate

(2.71) ‖u‖V p ≤ c8
(
‖φ‖

W
1− 1

p
,p

(ΓDN )
+ ‖f‖

(V p
′

1 )∗

)
.

The constant c8 > 0 is independent of u, φ and f and universal for all κ ∈ Kad and for all p ∈ [2, p].

(ii) (Problem II) If f ∈ (V p
′

0 )∗, τ ∈ (W
1− 1

p′ ,p
′
(ΓDN ))∗, then for each κ ∈ Kad there exists a unique

weak solution v ∈ V p0 of problem II (2.43) with the estimate

(2.72) ‖v‖V p ≤ c9
(
‖τ‖

(W
1− 1

p′ ,p
′
(ΓDN ))∗

+ ‖f‖
(V p
′

0 )∗

)
.

The constant c9 > 0 is independent of v, τ , f and universal for all κ ∈ Kad and for all p ∈ [2, p].

For simplicity, we include the case p = 2 which is in deed covered by theorem 2.6 (with estimates
without the one inside the brackets).

Remarks 2.11. (i) Theorem 2.10 follows from the main result in Naumann and Wolff (1991) [section
1, estimate (1.131)] due to the fact that the elliptic equation is linear.

(ii) As pointed out in subsection 2.5.1, higher integrability of the gradients of weak solutions can
be proved for a wide class of quasi-linear elliptic systems of PDE. However, in the general case,
the estimates corresponding to (2.71) and (2.71) are more complex. Moreover, the proof works
with assumed weak solutions without ensuring their existence and a-priori estimates. Thus, on
the right-hand sides of the resulting more general estimates than (2.71) and (2.72), there arise a
further additive constant and the L2 norm of the gradient of the (assumed!) weak solution, see e.g.
Naumann and Wolff (1991).

(iii) The results in Gröger (1989), Gröger and Rehberg (1989) also cover theorem 2.10.

(iv) Theorem 2.10 only yields the existence of a p > 2 without any further information. Hence, in
the case of two spatial dimensions d = 2, the embedding theorem gives a continuous embedding
V p ⊂ C0,λ(Ω) for 0 < λ ≤ 1− 2/p, which is compact for 0 < λ < 1− 2/p.

2.5.3 Special continuity results with respect to the parameter

From theorem 2.10 we get that under the corresponding assumption the solution operators LI and LII
defined in (2.56) and (2.58), respectively, are also mappings in the following constellation for all p ∈ [2, p].

LI : (V p
′

1 )∗ ×W 1− 1
p ,p(ΓDN )×Kad → V p0 ⊂ V0,(2.73)

LII : (V p
′

0 )∗ × (W
1− 1

p′ ,p
′
(ΓDN ))∗ ×Kad → V p0 ⊂ V0.(2.74)

For studying inverse problems, the (partial) continuity properties of the solution operators from
the parameter space into the solution space are of great interest. Theorem 2.9 yields partial Lipschitz
continuity from K = L∞(Ω) into V1 ⊂ W 1,2(Ω) and V0 ⊂ W 1,2(Ω), respectively. However, the space
L∞(Ω) is not well-suited in further investigations. The higher-integrability results can close this gap in
our situation. Here, we modify the arguments used in Jin and Maaß (2012a) and Jin and Maass (2012b).
These authors deal with pure boundary conditions (i.e. not with mixed ones), and they use local (inner)
higher integrability of the gradient, since in their setting the parameter function looked for has a compact
support.

Based on theorem 2.10 and remark 2.11 (i), one can prove more special continuity properties of the
solution operators.

Theorem 2.12. (Continuity properties) Let the assumptions of theorem 2.10 concerning problems I
and II be given.
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(i) (Lipschitz continuity in the sense Ls → V ) For any p ∈ [2, p], s ∈ [ 2p
p−2 ,∞] and κ0 ∈ Kad,

κ ∈ K with κ0 + κ ∈ Kad the solution operators are Lipschitz continuous in the following sense.

‖uκ0+κ − uκ0
‖V = ‖LI(f, φ, κ0 + κ)− LI(f, φ, κ0)‖V ≤(2.75)

≤ c10 ‖κ‖Ls(Ω)

(
‖φ‖

W
1− 1

p
,p

(ΓDN )
+ ‖f‖

(V p
′

1 )∗

)
,

‖vκ0+κ − vκ0‖V = ‖LII(f, τ, κ0 + κ)− LII(f, τ, κ0)‖V ≤(2.76)

≤ c11 ‖κ‖Ls(Ω)

(
‖τ‖

(W
1− 1

p′ ,p
′
(ΓDN ))∗

+ ‖f‖
(V p
′

0 )∗

)
.

The constants c10 and c11 > 0 depend of s, Ω and c8 and c9, respectively.

(ii) (Uniform continuity in the sense Ls → V p) For any 2 < p < min{p, 4}, s ∈ [ 2p
p−2 ,∞] and

κ0 ∈ Kad, κ ∈ K with κ0 + κ ∈ Kad the solution operators are uniformly continuous in the
following sense.

lim
‖κ‖Ls(Ω)→0

‖uκ0+κ − uκ0
‖V p = 0, lim

‖κ‖Ls(Ω)→0
‖vκ0+κ − vκ0

‖V p = 0.(2.77)

Proof. (i) Using the fact, that uκ0+κ ∈ V p0 ⊂ V0 and uκ0 ∈ V
p
0 ⊂ V0 are weak solutions corresponding to

κ0 + κ and κ0, respectively, for the same data φ and f of problem I (2.38), (2.39), one easily obtains:

a(κ0, uκ0+κ − uκ0 , ϕ) = a(κ0, uκ0+κ, ϕ)− a(κ0 + κ, uκ0+κ, ϕ) ∀ϕ ∈ V1.(2.78)

Clearly, uκ0+κ − uκ0 ∈ V1 is an admissible test-function in (2.78). Using the structure of a given by
(2.66), the Lipschitz continuity condition (2.16), Hölder’s inequality with the exponents 2p/p−2, p and 2
as well es the estimate (2.71), one obtains the estimate (2.75), at first for s = 2p/p−2, and after that for
all s ≥ 2p/p−2. The estimate (2.76) can be proved analogously.
(ii) The limiting relations in (2.77) can be proved in the following way. The relation (2.78) means that
uκ0+κ − uκ0 is a weak solution of problem I with vanishing Dirichlet data on ΓDN and with a right side
of the form

〈F , ϕ〉 := a(κ0, uκ0+κ, ϕ)− a(κ0 + κ, uκ0+κ, ϕ) ∀ϕ ∈ V1.(2.79)

We show that F belongs to (V p
′

1 )∗ and estimate its norm for 2 < p < min{p, 4}. Let δ be a real number
with

0 < δ < min{p− p, p
2 − 2p

4− p
}.(2.80)

Now, after using the Lipschitz continuity of b (2.16), it is admissible to apply Hölder’s inequality with
the exponents p(p+δ)/δ, p+ δ and p′ = p/(p−1) to (each summand of) the right-hand side of (2.79). Using
(2.71), we get

|〈F , ϕ〉| ≤c ‖κ‖
L
p(p+δ)
δ (Ω)

‖uκ0+κ‖V (p+δ) ‖ϕ‖V p′ ≤(2.81)

≤ cc8 ‖κ‖
L
p(p+δ)
δ (Ω)

(
‖φ‖

W
1− 1

p
,p

(ΓDN )
+ ‖f‖

(V p
′

1 )∗

)
‖ϕ‖V p′ ∀ϕ ∈ V p

′

1 .

Due to

p(p+ δ)

δ
> s :=

2p

p− 2
(2.82)

and the boundedness of Kad in L∞(Ω) (see (2.17), (2.18)) one gets

‖κ‖
L
p(p+δ)
δ (Ω)

=
(∫

Ω

|κ(x)|
p(p+δ)
δ dx

) δ
p(p+δ)

=(2.83)

=
(∫

Ω

|κ(x)|
p(p+δ)
δ −s dx

) δ
p(p+δ)

(∫
Ω

|κ(x)|s dx
) δ
p(p+δ) ≤ k

1− δs
p(p+δ)

2 ‖κ‖
sδ

p(p+δ)

Ls(Ω)

with the constant k2 (see (2.12), (2.17), (2.18)).

Hence, F ∈ (V p
′

1 )∗, and theorem 2.10 (i) is applicable to the auxiliary problem defined by (2.78).

Moreover, the norm of F tends to zero in (V p
′

1 )∗, if the norm of κ tends to zero in Ls(Ω). Therefore,
we obtain the first assertion in (2.77), at first for s = 2p/p−2, and, after that for all s ∈ [ 2p

p−2 ,∞]. In an

analogous manner one proves the second assertion in (2.77).
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The proof of the second part of the last theorem yields a further Lipschitz continuity result, however
with the price of a larger exponent. We need it in the sequel.

Corollary 2.13. (Lipschitz continuity in the sense Ls → V p) For any p ∈ [2, p], s ∈ [p(p+δ)δ ,∞]

with 0 < δ < min{p − p, p
2−2p
4−p } and for κ0 ∈ Kad, κ ∈ K with κ0 + κ ∈ Kad the solution operators are

Lipschitz continuous in the following sense.

‖uκ0+κ − uκ0
‖V p = ‖LI(f, φ, κ0 + κ)− LI(f, φ, κ0)‖V p ≤(2.84)

≤ cc8 ‖κ‖Ls(Ω)

(
‖φ‖

W
1− 1

p
,p

(ΓDN )
+ ‖f‖

(V p
′

1 )∗

)
,

‖vκ0+κ − vκ0
‖V p = ‖LII(f, τ, κ0 + κ)− LII(f, τ, κ0)‖V p ≤(2.85)

≤ cc9 ‖κ‖Ls(Ω)

(
‖τ‖

(W
1− 1

p′ ,p
′
(ΓDN ))∗

+ ‖f‖
(V p
′

0 )∗

)
.

The constant c does not depend of κ.

Remark 2.14. The case s = ∞ is included in theorem 2.12, whereat the assertions in part (i) directly
follow from theorem 2.9.

2.6 Generalized co-normal derivatives of weak solutions

A general difficulty of the setting under consideration is the fact, that the weak formulations of problem
I and II exhibit different test-function spaces. This drawback can be partially overcome with the use of a
generalized co-normal derivative on ΓDN (in the sense of distributions) of the solution of problem I, uκ.

Theorem 2.15. (Generalized co-normal derivative of uκ on ΓDN )
(i) Under the assumptions of theorem 2.6 for problem I, let f additionally fulfil (2.42), and, let uκ =

LI(f, φ, κ) ∈ V0 be the weak solution of problem I. The relation

〈∂n(LI(f, φ, κ)) , ϕ〉
(W

1
2
,2(ΓDN ))∗,(W

1
2
,2(ΓDN ))m

:=(2.86)

= a(κ, LI(f, φ, κ), ϕ)− 〈f , ϕ〉V ∗0 ,V0
∀ϕ ∈ V0.

defines an element ∂n(LI(f, φ, κ) (= ∂n(uκ) in short) in (W 1/2,2(ΓDN ))∗.

(ii) Under the assumptions of theorem 2.10 for problem I the generalized co-normal derivative ∂n(LI(f, φ, κ)

belongs to (W
1− 1

p′ ,p
′
(ΓDN ))∗ for all p ∈ [2, p] with p′ = p/p−1.

Proof. For fixed f, φ, κ the right-hand site of (2.86) is a linear continuous functional on the space of test
functions used in (2.86). Due to (2.39), this functional only depends on the trace of ϕ on ΓDN , and it
becomes zero, if this trace vanishes. Therefore, ∂n(f, φ, κ) defines indeed a distribution in W 1/2,2(ΓDN )∗.

Finally, under the assumptions of theorem 2.10, it belongs to (W
1− 1

p′ ,p
′
(ΓDN ))∗.

Remarks 2.16. (i) Due to (2.9), the outer unit normal vector n on ΓDN exists almost everywhere.
Therefore, we use the index n within the notation of ∂n(uκ).

(ii) For the form a given in (2.66), and for u ∈ W 2,2(Ω), κ ∈ C0,1(Ω) and b Lipschitz continuous on
Ω× J , the co-normal derivative is a function and given by ∂n(uκ) = b(·, κ)(∇u)|ΓDN · n.

(iii) If the solutions of problem I and II coincide, one has ∂n(uκ) = τ .

To overcame the above mentioned drawback of different test-function spaces V1 ( V0, we reformulate
problem I. Under the assumptions of theorem 2.6 for problem I, and (2.42), a relation with test functions
from V0 follows:

a(κ, uκ, ϕ) = 〈f , ϕ〉V ∗0 ,V0
+ 〈∂n(uκ) , ϕ〉

(W
1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

∀ϕ ∈ V0.(2.87)

Clearly, in the case of higher integrability of the gradient, this relation remains valid for test-function

from V p
′

0 .
Note that uκ − vκ ∈ V0 for the weak solutions uκ and vκ of problem I and II, respectively. Thus one

gets easily the following assertions.
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Lemma 2.17. (i) Under the assumptions of theorem 2.6, problems I and II, there hold

a(κ, uκ − vκ, ϕ) = 〈∂n(uκ)− τ , ϕ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

∀ϕ ∈ V0,(2.88)

‖uκ − vκ‖V ≤
c1
α0
‖∂n(uκ)− τ‖

(W
1
2
,2(ΓDN ))∗

.(2.89)

(ii) Under the assumptions of theorem 2.10 for problems I and II, there holds for all p ∈ [2, p] with
p′ = p/p−1

‖uκ − vκ‖V p ≤ c9 ‖∂n(uκ)− τ‖
(W

1− 1
p′ ,p
′
(ΓDN ))∗

.(2.90)

Using the co-normal derivative, one can prove some generalized reciprocity relations. For simplicity
we assume f ≡ 0. Otherwise, assuming f ∈ V ∗0 , one obtains more complex expressions. For convenience,
we formulate the following assertions only with respect to spaces based on V = W 1,2(Ω). Clearly, an
extension to the case of higher integrability is straightforward.

Theorem 2.18. Let the assumptions of theorem 2.6 for problems I and II and f ≡ 0 be given. Then
the weak solutions uκ = LI(0, φ, κ) ∈ V0 and vκ = LII(0, τ, κ) ∈ V0 fulfill:
(i) (Reciprocity relation)

a(κ, uκ, vκ)− a(κ, uκ, vκ) = 〈∂n(uκ) , vκ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

+(2.91)

− 〈τ , φ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

.

(ii) (Generalized Betti theorem)

〈∂n(uκ) , vκ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

= 〈τ , φ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

.(2.92)

(iii) If the b depends linearly on κ, then (2.91) simplifies to

a(κ− κ, uκ, vκ) = 〈∂n(uκ) , vκ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

+(2.93)

− 〈τ , φ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

.

Note that for general bilinear form a one needs the symmetry relation (2.32).
Based on an reciprocity relation in the case of ∂Ω = ΓDN (full-displacement and full-traction setting),

an approach for parameter identification (“reciprocity-gap method”) in the case of linear elasticity can be
developed. We refer to Bonnet and Constantinescu (2005) for details and further references. The formula
(2.92) is a generalization of the classical Betti theorem (see e.g. Salençon (2001)) for mixed boundary
conditions.

2.7 Fréchet differentiability of the solution operators

Now we establish the continuous Fréchet differentiability of the solution operators LI and LII under
additional assumptions on the coefficient function b. In the sequel we need only the first and second
derivatives. However, in the case of linear parameter dependence (or for infinitely differentiable b), the
infinite differentiability can be proved in the same manner. We refer to Gockenbach and Khan (2007) for
a slightly different setting.

2.7.1 Preparations

In difference to Gockenbach and Khan (2007), we also consider the solution operators LI and LII as
mappings defined on Kad as a subset of Ls(Ω) for a finite s under assumptions which ensure higher
integrability of the gradient of the weak solutions. For this reason, the concept of Fréchet differentiability
will be extended to points κ0 ∈ Kad being limit points of Kad with respect to the Ls norm as well as to
increments of the operator for arguments belonging to Kad. In doing so, we introduce a further subset
(besides Kad) of K = L∞(Ω), see (2.17), (2.18). For all κ0 ∈ Kad we define:

(2.94) Lκ0
:= span{κ ∈ K |κ0 + κ ∈ Kad},

whereby span{X} denotes the linear hull of a subset X of a given linear space. As a result, the Fréchet
derivative in a limit point κ0 ∈ Kad is a linear operator defined on Lκ0 . We note some assertions
concerning the properties of Kad as a subset of Ls(Ω) with 1 ≤ s <∞.
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Remarks 2.19. Let be 1 ≤ s <∞.
(i) Due to (2.9), there holds Kad ⊂ Ls(Ω).

(ii) Due to the continuous embedding L∞(Ω) ⊂ Ls(Ω), each limit point with respect to the L∞ norm
is also a limit point with respect to the Ls norm.

(iii) The set Kad ⊂ L∞(Ω) does not contain inner points (and hence open balls) with respect to the
Ls-topology.

(iv) In general situations, Kad is not closed in the Ls-topology, see the example in remark 2.1 (iii) with
K := Kad := L∞(Ω). Thus, in this general case, the admissible set Kad is often restricted, assuming

κ ∈ Kad ⇒ κ limit point of Kad w.r.t. the L∞ norm.(2.95)

(v) Under (2.12), (2.17) and (2.18) there hold additionally
(a) The set Kad is closed, bounded and convex both in L∞- and Ls-topology.

(b) Each element of Kad is a limit point both in L∞- and Ls-topology.

In the case considered here, the Fréchet derivative can be easily extended to an operator defined on
K, using the special structure. Concerning general differential calculus in Banach spaces, we refer to
Showalter (1997) and Amann and Escher (2006), e.g.

2.7.2 Fréchet differentiability in the general case

It is natural, that the Fréchet differentiability of the solution operators requires differentiability of the
coefficient function b. Thus, besides (2.12) - (2.16) we assume

F.a.a. x ∈ Ω : b(x, ·) : J → R differentiable,(2.96)

and

∂b

∂s
(·, ·) : J × Ω→ R Carathéodory function,(2.97)

∃m1 > 0 f.a.a. x ∈ Ω ∀ s ∈ J : |∂b
∂s

(x, s)| ≤ m1,(2.98)

∃m2 > 0 f.a.a. x ∈ Ω ∀ s1, s2 ∈ J : |∂b
∂s

(x, s1)− ∂b

∂s
(x, s2)| ≤ m2|s1 − s2|,(2.99)

as well as

f.a.a. x ∈ Ω ∀ s0 ∈ J ∀ s ∈ R with s0 + s ∈ J :(2.100)

: b(x, s0 + s)− b(x, s0) =
∂b

∂s
(x, s0)s+O(x, s0, s)s,

f.a.a. x ∈ Ω ∀ s0 ∈ J : lim
s→s0

|O(x, s0, s)| = 0,

∃m3 > 0 f.a.a. x ∈ Ω ∀ s0 ∈ J ∀ s ∈ R with s0 + s ∈ J : |O(x, s0, s)| ≤ m3.

In other words, the function b must be partially differentiable with respect to the parameter, and
the partial derivative must be Lipschitz continuous and some boundedness and uniformity conditions are
required. Again, we modify arguments used in Jin and Maaß (2012a) and Jin and Maass (2012b) for our
setting.

Theorem 2.20. Let the assumptions of theorem 2.10 and (2.96) - (2.100) be given. Moreover, let be
2 < p < min{p, 4} and s ∈ [2p/(p−2),∞].

(i) Let f ∈ (V p
′

1 )∗, φ ∈ W 1− 1
p ,p(ΓDN ) with an analogous to (2.36) continuation property in V p be

given and let LI be the solution operator introduced in (2.56), (2.57).
(a) The mapping LI(f, φ, ·) : Kad ⊂ Ls(Ω) → V0 is Fréchet differentiable on Kad. The Fréchet

differential ∂LI/∂κ(κ0)κ belongs to V p1 and is given for all κ0 ∈ Kad and κ ∈ Lκ0
by

(2.101) a(κ0,
∂LI
∂κ

(κ0)κ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇LI(f, φ, κ0) · ∇ϕdx ∀ϕ ∈ V1,

or, equivalently by

∂LI
∂κ

(f, φ, κ0)κ = LI(F
I
κ0

(κ), 0, κ0) for all κ0 ∈ Kad, κ ∈ K.(2.102)
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The quantity F Iκ0
(κ) := F If,φ,κ0

(κ) ∈ (V p
′

1 )∗ is defined by

〈F Iκ0
(κ) , ϕ〉

(V p
′

1 )∗,V p
′

1

:= −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇LI(f, φ, κ0) · ∇ϕdx ∀ϕ ∈ V p

′

1 .(2.103)

(b) The Fréchet differential ∂LI/∂κ(f, φ, κ0)κ is uniformly continuous with respect to κ0 as a map-
ping from Ls(Ω) into V1.
(c) The Fréchet derivative ∂LI/∂κ(f, φ, κ0) is uniformly continuous with respect to κ0 as a mapping
from Ls(Ω) into L(L∞(Ω), V1), i.e. ∂LI/∂κ(f, φ, κ0) is uniformly continuous with respect the operator
norm.
(d) For all s ≥ max{s, 2r, r} with r := 2p/p−2 and r := pp/p−p the Fréchet differential ∂LI/∂κ(f, φ, κ0)κ
is uniformly continuous with respect to κ0 as a mapping from Ls(Ω) into V1 and the Fréchet deriva-
tive ∂LI/∂κ(f, φ, κ0) is uniformly continuous with respect to κ0 as a mapping from Ls(Ω) into
L(Ls(Ω), V1), i.e. ∂LI/∂κ(f, φ, κ0) is uniformly continuous with respect to the operator norm.
(e) For all s ≥ max{s, 2r, r, p(p+δ)/δ} with r := 2p/p−2, r := pp/p−p and 0 < δ < min{p−p, p2−2p/4−p}
the Fréchet derivative ∂LI/∂κ(f, φ, κ0) is Lipschitz continuous with respect to κ0 as a mapping from
Ls(Ω) into L(Ls(Ω), V1), i.e. ∂LI/∂κ(f, φ, κ0) is Lipschitz continuous with respect to the operator
norm.

(ii) Let f ∈ (V p
′

0 )∗, τ ∈ (W
1− 1

p′ ,p
′
(ΓDN ))∗ be given and let LII be the solution operator introduced in

(2.58), (2.59).
(a) The mapping LII(f, τ, ·) : Kad ⊂ Ls(Ω) → V0 is Fréchet differentiable on Kad. The Fréchet

differential ∂LII/∂κ(κ0)κ belongs to V p1 and is given for all κ0 ∈ Kad and κ ∈ Lκ0
by

a(κ0,
∂LII
∂κ

(κ0)κ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇LII(f, τ, κ0) · ∇ϕdx ∀ϕ ∈ V0.(2.104)

or, equivalently by

∂LII
∂κ

(f, τ, κ0)κ = LII(F
II
κ0

(κ), 0, κ0) for all κ0 ∈ Kad, κ ∈ K.(2.105)

The quantity F IIκ0
(κ) = F IIf,τ,κ0

(κ) ∈ (V p
′

0 )∗ is defined by

〈F IIκ0
(κ) , ϕ〉

(V p
′

0 )∗,V p
′

0

:= −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇LII(f, τ, κ0) · ∇ϕdx ∀ϕ ∈ V p

′

0 .(2.106)

(b) The Fréchet differential ∂LII/∂κ(f, τ, κ0)κ is uniformly continuous with respect to κ0 as a map-
ping from Ls(Ω) into V0.
(c) The Fréchet derivative ∂LII/∂κ(f, τ, κ0) is uniformly continuous with respect to κ0 as a mapping
from Ls(Ω) into L(L∞(Ω), V0), i.e. uniform continuity in the operator norm.
(d) For all s ≥ max{s, 2r, r} with r := 2p/p−2 and r := pp/p−p the Fréchet differential ∂LII/∂κ(f, τ, κ0)κ
is uniformly continuous with respect to κ0 as a mapping from Ls(Ω) into V0 and the Fréchet deriva-
tive ∂LII/∂κ(f, τ, κ0) is uniformly continuous with respect to κ0 as a mapping from Ls(Ω) into
L(Ls(Ω), V0), i.e. ∂LII/∂κ(f, τ, κ0) is uniformly continuous with respect to the operator norm.
(e) For all s ≥ max{s, 2r, r, p(p+δ)/δ} with r := 2p/p−2, r := pp/p−p and 0 < δ < min{p−p, p2−2p/4−p}
the Fréchet derivative ∂LII/∂κ(f, τ, κ0) is Lipschitz continuous with respect to κ0 as a mapping from
Ls(Ω) into L(Ls(Ω), V0), i.e. ∂LII/∂κ(f, τ, κ0) is Lipschitz continuous with respect to the operator
norm.

Proof. We only deal with the solution operator LI . The proof for LII only differs slightly. Moreover, for
convenience, we often write uκ instead of LI(f, φ, κ).
(a) For κ0 ∈ Kad and κ0 + κ ∈ Kad t he relations (2.38), (2.39) yield

a(κ0 + κ, LI(f, φ, κ0 + κ), ϕ) = 〈f , ϕ〉V ∗1 ,V1
∀ϕ ∈ V1,(2.107)

a(κ0, LI(f, φ, κ0), ϕ) = 〈f , ϕ〉V ∗1 ,V1
∀ϕ ∈ V1,(2.108)

as well as

LI(f, φ, κ0 + κ) = LI(, φ, κ0) = φ on ΓDN .(2.109)
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Using (2.107) and (2.108), one obtains without difficulties for all ϕ ∈ V1

a(κ0, LI(f,φ, κ0 + κ)− LI(f, φ, κ0), ϕ) = −
(
a(κ0 + κ, LI(f, φ, κ0), ϕ)− a(κ0, LI(f, φ, κ0), ϕ)

)
+(2.110)

− a(κ0 + κ, LI(f, φ, κ0 + κ)− LI(f, φ, κ0), ϕ)+

+ a(κ0, LI(f, φ, κ0 + κ)− LI(f, φ, κ0), ϕ) =: A1 +A2 +A3 ∀ϕ ∈ V1.

At first we consider A1. Due to the differentiability assumptions on b we get for all ϕ ∈ V1 (We also write
uκ instead of LI(f, φ, κ), sometimes the dependence on x is dropped.)

A1 = −
∫

Ω

(b(x, κ0 + κ)− b(x, κ0))∇uκ0 · ∇ϕdx =(2.111)

= −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇uκ0

· ∇ϕdx−
∫

Ω

O(x, κ0(x), κ(x))κ(x)∇uκ0
· ∇ϕdx.

The first integral on the right-hand side is a linear and continuous functional with respect to ϕ ∈ V1 for
fixed κ0 ∈ Kad and κ ∈ Lκ0 . Thus, applying the Lax-Milgram theorem, there exists a ψ ∈ V1 with

a(κ0, ψ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇uκ0 · ∇ϕdx ∀ϕ ∈ V1.(2.112)

Moreover, ψ depends linearly and continuously on κ ∈ Lκ0 . Thus, there exists a linear and continuous
operator from Lκ0

into V1 yielding ψ. We denote this operator by ∂LI
∂κ (f, φ, κ0) and obtain

a(κ0,
∂LI
∂κ

(f, φ, κ0)κ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇uκ0

· ∇ϕdx ∀ϕ ∈ V1.(2.113)

Therefore the element ∂LI
∂κ (f, φ, κ0)κ ∈ V1 is a weak solution to problem I with vanishing Dirichlet data

on ΓDN and with a right-hand side given in (2.113). Due to the assumptions ensuring higher integrability
of the gradient, ∂LI∂κ (f, φ, κ0)κ belongs to V p1 and there holds

‖∂LI
∂κ

(f, φ, κ0)κ‖V p ≤ c‖κ‖L∞(Ω)‖LI(f, φ, κ0)‖V p ≤ c‖κ‖L∞(Ω)

(
‖φ‖

W
1− 1

p
,p

(ΓDN )
+ ‖f‖

(V p
′

1 )∗

)
.(2.114)

Moreover, we have a suggestion for the Fréchet derivative. From (2.110), (2.111) and (2.113) one
deduces

a(κ0, LI(f, φ, κ0 + κ)− LI(f, φ, κ0)− ∂LI
∂κ

(f, φ, κ0)κ, ϕ) =(2.115)

= −
∫

Ω

O(x, κ0(x), κ(x))|κ(x)|∇uκ0 · ∇ϕdx+A2 +A3 ∀ϕ ∈ V1.

The second argument of the form a on the left-hand side is an admissible test-function in V1. For
convenience, we denote it by ϕ̂. After inserting it into (2.115), on the left-hand side the quare of the
V -norm of ϕ̂ arises. The first term on the right-hand side can be estimated in following way, using
Hölder’s inequality.∣∣∣ ∫

Ω

O(x, κ0(x), κ(x))κ(x)∇uκ0
· ∇ϕ̂dx

∣∣∣ ≤(2.116)

≤ c‖κ‖Ls(Ω) ‖ϕ̂‖V
(∫

Ω

|O(x, κ0(x), κ(x))|p ‖∇uκ0‖
p
Rd dx

) 1
p

.

The sum A2 +A3 will be estimated together, using Lipschitz continuity of b and Hölder’s inequality.

|A2 +A3| =
∣∣∣ ∫

Ω

(
b(x, κ0(x) + κ(x))− b(x, κ0(x))

)
∇(uκ0+κ − uκ0) · ∇ϕ̂dx

∣∣∣ ≤(2.117)

≤ c‖κ‖Ls(Ω) ‖ϕ̂‖V ‖LI(f, φ, κ0 + κ)− LI(f, φ, κ0)‖V p .

Thus, from (2.115) we obtain the following estimate.

‖LI(f, φ, κ0 + κ)−LI(f, φ, κ0)− ∂LI
∂κ

(f, φ, κ0)κ‖V ≤(2.118)

≤ c ‖κ‖Ls(Ω)‖LI(f, φ, κ0 + κ)− LI(f, φ, κ0)‖V p+

+ c ‖κ‖Ls(Ω)

(∫
Ω

|O(x, κ0(x), κ(x))|p ‖∇uκ0‖
p
Rd dx

) 1
p

.
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After dividing this inequality by ‖κ‖Ls(Ω), the right-hand side tends to zero when κ does so (with respect
to the Ls norm). This is based on the uniform continuity of the solution operator (see theorem 2.12 (ii))
for the first summand. For the second summand the reasoning uses Lebesgue’s convergence theorem, the
convergence principle (“arbitrary subsequence of an arbitrary subsequence”) and the result that an Ls-
convergent sequence consists a an almost everywhere convergent subsequence which has an Ls-majorant
(see e.g., Zeidler (1990b) [Appendix, (36)]).

Thus, the Fréchet differential of LI exists and one has for all ϕ ∈ V1

a(κ0,
∂LI
∂κ

(f, φ, κ0)κ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇uκ0

· ∇ϕdx =: 〈F Iκ0
(κ) , ϕ〉V ∗1 ,V1

.(2.119)

Or, in other words, the Fréchet differential ∂LI/∂κ(f, φ, κ0)κ ∈ V p1 is a weak solution of problem I for the

data F Iκ0
(κ) ∈ (V p

′

1 )∗, 0 ∈W 1− 1
p ,p(ΓDN ) and κ0 ∈ Kad, κ ∈ Lκ0

. Thus, (2.101) and (2.102) follow.
(b,c) The (uniform) continuity of the Fréchet differential ∂LI/∂κ(f, φ, κ0)κ with respect to κ0 (as a
mapping from Ls(Ω) into V1) can be established in the following way. Using the relation (2.119) for
κ0 ∈ Kad and κ0 ∈ Kad, one gets after some re-arrangements for all ϕ ∈ V1:

a(κ0,
∂LI
∂κ

(f, φ, κ0)κ− ∂LI
∂κ

(f, φ, κ0)κ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇(uκ0

− uκ0
) · ∇ϕdx+(2.120)

−
∫

Ω

(∂b
∂s

(x, κ0(x))− ∂b

∂s
(x, κ0(x))

)
κ(x)∇uκ0

· ∇ϕdx+

− a(κ0,
∂LI
∂κ

(f, φ, κ0)κ, ϕ) + a(κ0,
∂LI
∂κ

(f, φ, κ0)κ, ϕ) =: B1 +B2 +B3.

Using the assumptions concerning b (2.16), (2.97) - (2.99), theorem 2.10 (i) and (2.114), one gets the
following estimates.

|B1| ≤ c ‖κ‖Ls(Ω) ‖uκ0 − uκ0‖V p‖ϕ‖V ,(2.121)

|B2| ≤ c ‖κ‖L∞(Ω) ‖κ0 − κ0‖Ls(Ω) ‖uκ0
‖V p ‖ϕ‖V ,(2.122)

|B3| ≤ c ‖κ‖L∞(Ω) ‖κ0 − κ0‖Ls(Ω) ‖uκ0
‖V p ‖ϕ‖V .(2.123)

After inserting the admissible test-function ϕ := ∂LI/∂κ(f, φ, κ0)κ − ∂LI/∂κ(f, φ, κ0)κ into (2.120), there
holds

‖∂LI
∂κ

(f, φ, κ0)κ− ∂LI
∂κ

(f, φ, κ0)κ‖V ≤(2.124)

≤ c
(
‖κ‖Ls(Ω) ‖uκ0

− uκ0
‖V p + ‖κ‖L∞(Ω) ‖κ0 − κ0‖Ls(Ω) ‖uκ0

‖V p
)
.

Thus, based on theorem 2.12 (ii), this last estimate yields the uniform continuity of the Fréchet differential
∂LI/∂κ(f, φ, κ0)κ with respect to κ0. In other words, there holds:

‖∂LI
∂κ

(f, φ, κ0)κ− ∂LI
∂κ

(f, φ, κ0)κ‖V → 0, if ‖κ0 − κ0‖Ls(Ω) → 0.(2.125)

(d) Due to 2 ≤ p < p and theorem 2.10 (i), one also obtains from (2.113) (besides (2.114))

‖∂LI
∂κ

(f, φ, κ0)κ‖V p ≤ c‖κ‖Lr(Ω)‖LI(f, φ, κ0)‖V p ≤ c‖κ‖Lr(Ω)

(
‖φ‖

W
1− 1

p
,p

(ΓDN )
+ ‖f‖

(V
(p)′
1 )∗

)
(2.126)

with r := pp/p−p and (p)′ being the dual exponent to p. Using the fact, that uκ0
= LI(f, φ, κ0) also

belongs to V p, instead of (2.122) and (2.123) one obtains the alternative estimates

|B2| ≤ c ‖κ‖L2r(Ω) ‖κ0 − κ0‖L2r(Ω) ‖uκ0‖V p ‖ϕ‖V ,(2.127)

|B3| ≤ c ‖κ‖Lr(Ω) ‖κ0 − κ0‖Ls(Ω) ‖uκ0‖V p ‖ϕ‖V(2.128)

with r := 2p/p−2. Choosing s ≥ max{s, 2r, r} and using (2.120), (2.121), (2.127) and (2.128), one gets the
asserted continuity results.
(e) Again, we only deal with the solution operator LI . From the relation (2.101) we obtain for all
κ0 ∈ Kad, κ ∈ Lκ0 , ξ ∈ Ls̄(Ω) as well as for all ϕ ∈ V1

a(κ0,
∂LI
∂κ

(κ0)ξ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))ξ(x)∇LI(f, φ, κ0) · ∇ϕdx,(2.129)

a(κ0 + κ,
∂LI
∂κ

(κ0 + κ)ξ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x) + κ(x))ξ(x)∇LI(f, φ, κ0 + κ) · ∇ϕdx.(2.130)
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Using the definition of the form a in (2.27) and subtracting (2.129) from (2.130) one gets

a(κ0,
∂LI
∂κ

(κ0 + κ)ξ − ∂LI
∂κ

(κ0)ξ, ϕ) = −
∫

Ω

(
b(κ0 + κ)− b(κ0)

)
∇
(∂LI
∂κ

(κ0 + κ)ξ
)
· ∇ϕdx+(2.131)

−
∫

Ω

(∂b
∂s

(x, κ0(x) + κ(x))− ∂b

∂s
(x, κ0(x))

)
ξ(x)∇LI(f, φ, κ0 + κ) · ∇ϕdx,+

−
∫

Ω

∂b

∂s
(x, κ0(x))ξ(x)

(
∇LI(f, φ, κ0 + κ)−∇LI(f, φ, κ0)

)
· ∇ϕdx =: J1(ϕ) + J2(ϕ) + J3(ϕ).

Due to part (a) of the proof, there holds

w :=
∂LI
∂κ

(κ0 + κ)ξ − ∂LI
∂κ

(κ0)ξ ∈ V1,(2.132)

thus, w is an admissible test function in (2.131). Inserting it yields

‖∂LI
∂κ

(κ0 + κ)ξ − ∂LI
∂κ

(κ0)ξ‖2V ≤ c
(
|J1(w)|+ |J2(w)|+ |J3(w)|

)
.(2.133)

Based on the previous results, the terms |Ji(w)| (i = 1, 2, 3) can be estimated in the following way.
Using the Lipschitz continuity of b and the uniform continuity of the Fréchet derivative of the solution

operator from part (d), there holds the estimate

|J1(w)| ≤
∫

Ω

∣∣b(κ0 + κ)− b(κ0)
∣∣ ∣∣∣∇(∂LI

∂κ
(κ0 + κ)ξ

)
· ∇ϕ

∣∣∣dx ≤ c‖κ‖Ls‖ξ‖Ls‖w‖V .(2.134)

Essentially from the Lipschitz continuity of the derivative of b (see (2.99)) the subsequent estimate
follows

|J2(w)| ≤
∫

Ω

∣∣∣∂b
∂s

(x, κ0(x) + κ(x))− ∂b

∂s
(x, κ0(x))

∣∣∣|ξ(x)|
∣∣∣∇LI(f, φ, κ0 + κ) · ∇ϕ

∣∣∣ dx(2.135)

≤ c‖κ‖Ls‖ξ‖Ls‖w‖V .

To prove the estimate for J3(w), one needs the special Lipschitz continuity of the solution operator
(see corollary 2.13):

|J3(w)| ≤
∫

Ω

∣∣∣∂b
∂s

(x, κ0(x))
∣∣∣|ξ(x)|

∣∣∣(∇LI(f, φ, κ0 + κ)−∇LI(f, φ, κ0)
)
· ∇ϕ

∣∣∣dx(2.136)

≤ c‖κ‖Ls‖ξ‖Ls‖w‖V .

From the last three estimates we finally get the asserted Lipschitz continuity of the Fréchet derivative
of the solution operator: ∥∥∥∂LI

∂κ
(κ0 + κ)− ∂LI

∂κ
(κ0)

∥∥∥
V
≤ L‖κ‖Ls ,(2.137)

with a Lipschitz constant L not depending on κ0.

The Lipschitz continuity of the Fréchet derivatives of the solution operators is essential for further
investigation concerning convergence rates of regularization methods, e.g. This is not the topic in this
study, we refer to Jin and Maaß (2012a), Hofmann et al. (2007) and for the references cited therein.

Based on part (e) of the previous theorem, there holds following estimate.

Corollary 2.21. Under the assumptions of theorem 2.20, part (e), there hold for all κ0 ∈ Kad, κ ∈ L∞(Ω)
with κ0 + κ ∈ Kad

‖LI(f, φ, κ0 + κ)− LI(f, φ, κ0)− ∂LI
∂κ

(f, φ, κ0)κ‖V ≤
L

2
‖κ‖2LsI(Ω),(2.138)

‖LII(f, τ, κ0 + κ)− LII(f, τ, κ0)− ∂LII
∂κ

(f, τ, κ0)κ‖V ≤
L

2
‖κ‖2LsII(Ω),(2.139)

where L is a common Lipschitz constant of the Fréchet derivatives.
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Proof. Starting with the obvious relation

LI(f, φ, κ0 + κ)− LI(f, φ, κ0)− ∂LI
∂κ

(f, φ, κ0)κ =(2.140)

=

∫ 1

0

(∂LI
∂κ

(f, φ, κ0 + tκ)κ− ∂LI
∂κ

(f, φ, κ0)κ
)

dt,

and using the Lipschitz continuity of the Fréchet derivative, one gets (2.138), and analogously (2.139).

Remarks 2.22. (i) The extended version of (Fréchet) differentiability also includes differentiability
in boundary points.

(ii) The Fréchet differentials (respectively the Fréchet derivatives) of the solution operators can be
indicated as “sensitivities” like it takes place sometimes for the derivative of the displacement field
respective to the parameter. In particular, this concerns numerical investigations (cf. Tortorelli
and Michaleris (1994). Widany and Mahnken (2012), e.g.).

Based on arguments from the proofs of theorems 2.12 and 2.20 as well as on the representations of
the Fréchet differentials by (2.101) and (2.104), respectively, some further assertions can be derived. We
collect them into the following corollary. As a rule, the given data f , φ and τ are regarded as fixed, and,
therefore will be omitted in some formulas.

Corollary 2.23. Let the assumptions of theorem 2.20 be given.
(i) For all 2 ≤ p < min{p, 4} and s ∈ [2p/(p−2),∞] the Fréchet derivatives ∂LI/∂κ(κ0) : Lκ0

⊂ Ls(Ω)→
V1 and ∂LII/∂κ(κ0) : Lκ0

⊂ Ls(Ω) → V0 can be extended to linear bounded operators on Ls(Ω).
And, there hold the estimates and relations

‖∂LI
∂κ

(κ0)κ‖V ≤ c ‖κ‖Ls(Ω) ‖uκ0
‖V p , ‖∂LII

∂κ
(κ0)κ‖V ≤ c ‖κ‖Ls(Ω) ‖vκ0

‖V p ,(2.141)

lim
‖κ‖Ls(Ω)→0

‖∂LI
∂κ

(κ0)κ‖V p = 0, lim
‖κ‖Ls(Ω)→0

‖∂LII
∂κ

(κ0)κ‖V p = 0.(2.142)

(ii) The Fréchet differential ∂LI∂κ (κ0)κ fulfills for all ϕ ∈ V0

a(κ0,
∂LI
∂κ

(κ0)κ, ϕ) =(2.143)

= −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇uκ0

· ∇ϕdx+ 〈∂n(
∂LI
∂κ

(κ0)κ) , ϕ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

.

(iii) The difference of the Fréchet differentials fulfils

a(κ0,
∂LI
∂κ

(κ0)κ− ∂LII
∂κ

(κ0)κ, ϕ) = −
∫

Ω

∂b

∂s
(x, κ0(x))κ(x)∇

(
uκ0
− vκ0

)
· ∇ϕdx+(2.144)

+ 〈∂n(
∂LI
∂κ

(κ0)κ) , ϕ〉
(W

1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

∀ϕ ∈ V0.

2.7.3 Fréchet differentiability in the case of linear parameter dependence

Obviously, the case of linear parameter dependence (within the equation!), i.e., b(·, s) := s (see (2.19)),
is covered by theorem 2.20. Additionally, the proof simplifies and the relation (2.101) reduces to a more
convenient one:

(2.145) a(κ0,
∂LI
∂κ

(κ0)κ, ϕ) = −a(κ, uκ0 , ϕ) ∀ϕ ∈ V1,

The same concerns the relation (2.104). Moreover, this special case leads to results which may be useful
for further investigations.

Lemma 2.24. Let the assumptions of theorem 2.10 (both cases) as well as (2.95) be given.
(i) If there holds for some κ0 ∈ Kad and for all κ ∈ Lκ0

∂LI
∂κ

(κ0)κ = 0
(∂LII
∂κ

(κ0)κ = 0
)
,(2.146)
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then the following assertions are valid.

LI(f, φ, κ0) = LI(f, φ, κ1)
(
LII(f, φ, κ0) = LII(f, φ, κ1)

)
∀κ0, κ1 ∈ Kad,(2.147)

∂LI
∂κ

(κ0) = 0
(∂LII
∂κ

(κ0) = 0
)

∀κ0 ∈ Kad.(2.148)

(ii) If (2.146) holds only for some κ0 ∈ Kad and for some κ1 ∈ Lκ0 , then we get only

LI(f, φ, κ0) = LI(f, φ, κ0 + tκ1)
(
LII(f, φ, κ0) = LII(f, φ, κ0 + tκ1)

)
(2.149)

∀ t ∈ R with κ0 + tκ1 ∈ Kad.

(iii) If
◦
Kad 6= ∅ and f 6= 0, then

∂LI
∂κ

(κ0) 6= 0
∂LII
∂κ

(κ0) 6= 0, ∀κ0 ∈
◦
Kad .(2.150)

Proof. (i) Let ∂LI
∂κ (κ0)κ = 0 for some κ0 ∈ Kad and for all κ ∈ Lκ0

. Due to (2.145) and the fact, that
uκ0

is the (unique) solution of problem I corresponding to κ0, we get easily

∀κ ∈ Lκ0
: a(κ0 + κ, uκ0

, ϕ) = 〈f , ϕ〉V ∗1 ,V1
∀ϕ ∈ V1.(2.151)

Obviously, for κ1 ∈ Kad we have κ1 − κ0 ∈ K and, therefore, κ0 + (κ1 − κ0) = κ1 ∈ Kad. Thus, (2.151)
yields (2.147) and (2.148), at first for LI , and, analogously, for LII .
(ii) This assertion easily follows from the proof of (i).

(iii) Let be κ0 ∈
◦
Kad with ∂LI

∂κ (κ0) = 0. Then there exists a real interval J ⊂ R with tκ0 ∈ Kad for all
t ∈ J (clearly, 0 /∈ J and 1 ∈ J). Since f 6= 0, there exists a ϕ ∈ V1 with 〈f , ϕ〉V ∗1 ,V1 6= 0. Moreover,
taking (2.145) and (2.147) into account, we get

∀ t ∈ J : t a(κ0, uκ0
, ϕ) = 〈f , ϕ〉V ∗1 ,V1

6= 0.(2.152)

The arbitrariness of t ∈ J leads to a contradiction. To prove the assertion for problem II, one chooses a
test function ϕ ∈ V0 vanishing on ΓDN with 〈f , ϕ〉V ∗0 ,V0

6= 0.

2.7.4 Second-order Fréchet differentiability in the case of linear parameter dependence

In a similar manner as theorem 2.20 one can proof that the solution operators are also twice continuously
Fréchet differentiable, if the coefficient function b fulfils additional conditions, and that the second Fréchet
differentials are represented as weak solutions of problems of type I and II, respectively, in a similar manner
as the first differentials. However, due to the high technical effort, we only deal with the case of linear
parameter dependence, i.e., we assume

∀ s ∈ J : b(·, s) := s.(2.153)

Theorem 2.25. Let the assumptions of theorem 2.20 (cases I and II, respectively) as well as (2.153) be
given.
(i) The mapping LI(f, φ, ·) : Kad ⊂ Ls(Ω) → V0 is twice continuously Fréchet differentiable on Kad

for all 2 ≤ p < min{p, 4} and s ∈ [2p/(p−2),∞]. The second Fréchet differential ∂
2LI/∂κ2(κ0)(κ, ξ)

belongs to V p1 and is given for all κ0 ∈ Kad and κ, ξ ∈ Lκ0 by

(2.154) a(κ0,
∂2LI
∂κ2

(κ0)(κ, ξ), ϕ) = −a(κ,
∂LI
∂κ

(κ0)ξ, ϕ)− a(ξ,
∂LI
∂κ

(κ0)κ, ϕ) ∀ϕ ∈ V1

or, equivalently by

(2.155)
∂2LI
∂κ2

(f, φ, κ0)(κ, ξ) = LI(G
I
κ0

(κ, ξ), 0, κ0),

while GIκ0
(κ, ξ) = GIf,φ,κ0

(κ, ξ) ∈ V ∗1 continuously depends on κ0 and is defined by

〈GIκ0
(κ, ξ) , ϕ〉V ∗1 V1 := −a(κ, LI(F

I
κ0

(ξ), 0, κ0), ϕ)− a(ξ, LI(F
I
κ0

(κ), 0, κ0), ϕ) ∀ϕ ∈ V1.(2.156)
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(ii) The mapping LII(f, τ, ·) : Kad ⊂ Ls(Ω) → V0 is twice continuously Fréchet differentiable on Kad

for all 2 ≤ p < min{p, 4} and s ∈ [2p/(p−2),∞]. The second Fréchet differential ∂
2LII/∂κ2(κ0)(κ, ξ)

belongs to V p0 and is given for all κ0 ∈ Kad and κ, ξ ∈ Lκ0 by

a(κ0,
∂2LII
∂κ2

(κ0)(κ, ξ), ϕ) = −a(κ,
∂LII
∂κ

(κ0)ξ, ϕ)− a(ξ,
∂LII
∂κ

(κ0)κ, ϕ) ∀ϕ ∈ V0,(2.157)

or, equivalently by

(2.158)
∂2LII
∂κ2

(f, τ, κ0)(κ, ξ) = LII(G
II
κ0

(κ, ξ), 0, κ0),

while GIIκ0
(κ, ξ) = GIIf,τ,κ0

(κ, ξ) ∈ V ∗0 continuously depends on κ0 and is defined by

〈GIIκ0
(κ, ξ) , ϕ〉V ∗0 V0 := −a(κ, LII(F

II
κ0

(ξ), 0, κ0), ϕ)− a(ξ, LII(F
II
κ0

(κ), 0, κ0), ϕ) ∀ϕ ∈ V0.(2.159)

Again, some further assertions can be proved.

Corollary 2.26. Let the assumptions of theorem 2.20 and (2.153) be given.
(i) For all 2 ≤ p < min{p, 4} and s ∈ [2p/(p−2),∞] the second Fréchet derivatives ∂2LI/∂κ2(κ0) :

(Lκ0
× Lκ0

) ⊂ (Ls(Ω)× Ls(Ω))→ V1 and ∂LII/∂κ(κ0) : (Lκ0
× Lκ0

) ⊂ (Ls(Ω)× Ls(Ω))→ V0 can
be extended to bounded operators on Ls(Ω) × Ls(Ω). Moreover, these extensions are bounded on
L∞(Ω)× L∞(Ω), and there hold the estimates and relations (for i ∈ {I, II})

‖∂
2Li
∂κ2

(κ0)(κ, ξ)‖V ≤ c
(
‖κ‖Ls(Ω) ‖ξ‖(L∞(Ω))k + ‖κ‖L∞(Ω) ‖ξ‖(Ls(Ω))k

)
.(2.160)

lim
‖κ‖Ls(Ω)→0

‖∂
2Li
∂κ2

(κ0)(κ, ξ)‖V p = 0, lim
‖ξ‖Ls(Ω)→0

‖∂
2Li
∂κ2

(κ0)(κ, ξ)‖V p = 0.(2.161)

(ii) The second Fréchet differential ∂
2LI/∂κ2(κ0)(κ, ξ) fulfills

a(κ0,
∂2LI
∂κ2

(κ0)(κ, ξ), ϕ) = −a(κ,
∂LI
∂κ

(κ0)ξ, ϕ)− a(ξ,
∂LI
∂κ

(κ0)κ, ϕ)+(2.162)

+
〈
∂n(

∂2LI
∂κ2

(κ0)(κ, ξ)) , ϕ
〉

(W
1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

∀ϕ ∈ V0.

(iii) There holds for all κ0 ∈ Kad, κ, ξ ∈ Lκ0
:

a(κ0,
∂2LI
∂κ2

(κ0)(κ, ξ)− ∂2LII
∂κ2

(κ0)(κ, ξ), ϕ) =(2.163)

=− a(κ,
∂LI
∂κ

(κ0)ξ − ∂LII
∂κ

(κ0)ξ, ϕ)− a(ξ,
∂LI
∂κ

(κ0)κ− ∂LII
∂κ

(κ0)κ, ϕ)+

+
〈
∂n(

∂2LI
∂κ2

(κ0)(κ, ξ)) , ϕ
〉

(W
1
2
,2(ΓDN ))∗,W

1
2
,2(ΓDN )

∀ϕ ∈ V1.

3 Examples of linear elliptic problems with parameters

For a better readability the investigations above have been focused on the two prototypical mixed
boundary-value problems I (2.1) - (2.4) and II (2.5) - (2.8). The solutions looked for are scalar functions
and the underlying PDE (2.1) is simple. However, the results presented in subsection 2.4, and, with some
care in subsections 2.5 and 2.7, can be extended to many important cases with more complex equations
or with systems of equations. As a rule, the proofs of these extended assertions have the same structure.
Generally, the parameter space K is a normed space of (vector) functions defined on Ω, in some cases
(L∞(Ω))k with some k ∈ N, sometimes (Lq(Ω))k with some 1 ≤ q <∞.

We provide some examples of linear elliptic problems with parameters, generalizing problems I and
II. To avoid repetitions we assume for all cases considered in the sequel boundary conditions like in (2.2)
- (2.4) for the problem I and in (2.6) - (2.8) for the problem II. Besides, the domain Ω and its boundary
parts are assumed to fulfil (2.9) - (2.11).
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3.1 General linear elliptic equations of second order

This more complex case is given by

a(κ, u, ϕ) :=

d∑
i,j=1

∫
Ω

aij(x, κ)
∂u

∂xj

∂ϕ

∂xi
dx+

d∑
i=1

∫
Ω

ai(x, κ)u
∂ϕ

∂xi
dx+(3.1)

+

d∑
i=1

∫
Ω

bi(x, κ)
∂u

∂xi
v dx+

∫
Ω

b(x, κ)uv dx ∀ (κ, u, ϕ) ∈ K × V × V

with V , V0, V1 as in (2.24) - (2.26). Generally, each coefficient function aij , ai, bi and b can depend
on its own parameter. This issue can be handled by a vector function. Hence, the general approach is
K := (L∞(Ω))k for some k ∈ N. In special situations, K := (Lq(Ω))k for some 1 ≤ q < ∞ may be
possible, see remarks 2.1 (v), (iv).

To fulfill the properties (2.29), (2.30), (2.31), we let the functions aij , ai, bi and b be special
Carathéodory functions, i.e., they are Lebesgue measurable for κ ∈ K and for almost all x ∈ Ω they
are Lipschitz continuous. Moreover, to ensure the existence of the integrals in (3.1) we require for all
κ ∈ Kad and for all indices i, j ∈ {1, . . . , d}

aij(·, κ) ∈ L∞(Ω),(3.2)

ai(·, κ), bi(κ, ·) ∈ Ld(Ω), b(κ, ·) ∈ L d
2 (Ω), if d > 2,(3.3)

ai(·, κ), bi(·, κ) ∈ L2+δ(Ω), b ∈ L1+δ(Ω), if d = 2, with a fixed δ > 0.(3.4)

Finally, the set Kad must be chosen so that the coercivity property (2.30) is additionally fulfilled. Clearly,
this is a restriction to Kad and to the functions aij , ai, bi and b. The corresponding classical formulation
of problem I reads as

−
n∑

i,j=1

∂

∂xi

(
aij(·, κ)

∂u

∂xj
+ ai(·, κ)u

)
+

n∑
i=1

bi(·, κ)
∂u

∂xi
+ b(·, κ)u = f in Ω in V ∗1 ,(3.5)

u = φ on ΓDN ,(3.6)

u = 0 on ΓD,(3.7)
n∑

i,j=1

(aij(·, κ)
∂u

∂xj
+ ai(·, κ)u)νi = 0 on ΓN .(3.8)

Remarks 3.1. (i) (Existence results) Due to the above assumptions, ensuring in particular the
property (2.30) for the (whole) form a given by (3.1), the existence and uniqueness results of
subsection 2.4 are ensured.

(ii) (Global higher integrability of the gradient) Since the elliptic equation is linear and the
existence of a unique weak solution is ensured, the results of section 2.5 continue to hold.

(iii) (Only lower-order terms depend on κ) Special cases arise if some groups of coefficient functions,
say aij , do not depend on κ. Under this assumption, the study of the arising inverse problem of
identification of the parameter κ may be considerably easier. For instance, one can consider the
following equation.

−div (b(x)∇u) + c(x, κ)u = f in Ω in V ∗1 ,(3.9)

with suitable functions b : Ω→ R and c : Ω×K → R.

(iv) (Linear dependence on κ) In this case, one has aij(x, κ(x)) = aij0(x)κ(x) and corresponding
representations for the remaining coefficients ai, bi and b. Thus, for convenience one can define
new parameter functions, setting κij(x) := aij0(x)κ(x) etc. Clearly, these new functions have to
fulfil (3.2) - (3.4). To ensure admissibility, the components of Kad must form bounded sets in the
corresponding spaces given in (3.2) - (3.4). Moreover, they must ensure a suited uniform ellipticity
condition.

3.2 Linear elliptic systems of second order

Linear elliptic systems depending on a parameter can be dealt with in an analogous manner as in the
case of a single elliptic equation. However, the complexity can considerably increase, in particular, in
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practical applications and numerical calculations. For convenience we only write down a system without
lower order terms for u ∈ V looked for and V := (W 1,2(Ω))m analogous as in (2.24).

−
m∑
s=1

d∑
i,j=1

∂

∂xi

(
arsij (x, κ)

∂us

∂xj

)
= fr(x) in Ω. r = 1, . . . ,m(3.10)

The corresponding test-function spaces V0 and V1 can be chosen as in (2.25), (2.26), if all components
ui of u have the same boundary parts for Dirichlet and Neumann conditions, respectively. However,
generally, there can be individual boundary parts ΓDi ,ΓDNi ,ΓNi ⊂ ∂Ω for i ∈ {1, . . . ,m}, leading to
suitable test-function spaces V0 and V1. A parameter space K and an admissible set Kad can be chosen
in dependence of the behavior of the functions arsij like in the case (ii) in subsection 3.1.

3.3 Stationary linear anisotropic non-homogeneous elasticity

The stationary equations of linear anisotropic non-homogeneous elasticity lead to a special linear elliptic
system of PDE with linear parameter dependence. As show the formulations in (3.12) - (3.19), there is a
great similarity to the prototypical problems in subsection 2.1. In paragraph 3.3.4, see corollary 3.3, we
list up and comment the corresponding existence and regularity results.

For convenience we sketch main things in short and refer to the broad literature for linear elasticity,
see, e.g., Ciarlet (1988), Zeidler (1997) for mathematical aspects, and Haupt (2002), Bertram and Glüge
(2015) for mechanical aspects.

3.3.1 Preparations

Let Ω ⊂ Rd and its boundary parts as in (2.9) - (2.11), however, the case d ∈ {2, 3} is of practical
relevance. Now, the spaces V , V0 and V1 corresponding to these ones defined (2.24) - (2.26) are given as
vectorial variants, i.e., we set

V := (W 1,2(Ω))d, V0 := {ϕ ∈ V |ϕ = 0 on ΓD}, V1 := {ϕ ∈ V |ϕ = 0 on ΓD ∪ ΓDN}.(3.11)

For convenience we do not want to use new symbols. From the mechanical point of view, the closure Ω
is assumed to be the reference configuration of an elastic (stress-free) body. In the framework of small
deformations the boundary-value problems for determining the displacement vector u ∈ V0 (corresponding
to the prototypical problems (2.1) - (2.4) and (2.5) - (2.8)) read as

Problem I (“displacement-driven”) Find u with

−div (σ) = f in Ω,(3.12)

u = 0, on ΓD,(3.13)

σν = 0 on ΓN ,(3.14)

u = φ on ΓDN .(3.15)

Problem II (“traction-driven”) Find u with

−div (σ) = f in Ω,(3.16)

u = 0, on ΓD,(3.17)

σν = 0 on ΓN ,(3.18)

σν = τ on ΓDN .(3.19)

For simplicity we take homogenous boundary conditions on ΓD and ΓN . This is not an essential restric-
tion.

The notation is standard and in accordance with the general setting in section 2.3: σ - (Cauchy)
stress tensor, φ - displacement vector on ΓDN , τ - normal stress on ΓDN , f - volume densities of external
forces, ν - outer unit normal vector on ∂Ω. Sometimes, instead of f one writes % f with % being the mass
density in the reference configuration as well as with the mass density of external forces f (gravitational
acceleration, e.g.).
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3.3.2 Linear elastic behavior

In linear elasticity, the stress tensor, the linearized Cauchy-Green strain tensor ε and the displacement
vector u are connected in a characteristic manner.

σ = Eε, ε = ε(u) :=
1

2

(
∇u+ (∇u)T

)
.(3.20)

E is the fourth-order elasticity tensor (stiffness tensor). In the 3-dimensional case, being in the
focus here, its 81 components are generally position-dependent, and they suffice the following symmetry
conditions (cf. Haupt (2002), Bertram and Glüge (2015), e.g.).

∀ i, j, k, l ∈ {1, 2, 3} f.a.a x ∈ Ω : Eijkl(x) = Ejikl(x) = Eklji(x).(3.21)

Due to these symmetry conditions only maximally nai = 21 entries are independent. (ai for “anisotropic”.)
There are seven mechanically relevant values of nai standing for eight symmetry groups (see Bertram
and Glüge (2015), chapter 4.1 for details)

(3.22) nai ∈ {2, 3, 5, 6, 9, 13, 21}.

Moreover, for a fixed x ∈ Ω the elasticity tensor E linearly depends on these nai parameters generally
depending on x. Thus, we write in the sequel

E = E(κ), E(x) = E(κ)(x) f.a.a. x ∈ Ω.(3.23)

Another consequence of (3.21) is, that the elasticity tensor E can be expressed as a symmetric 6× 6
matrix by the Voigt representation. Writing the symmetric second-order tensors σ and ε as vectors with
six components, the material law (3.20) can be brought into a form more suitable for applications in
anisotropic elasticity (see Bertram and Glüge (2015), paragraph 2.1.15 for details). However, for our
mathematical investigations we do not need this representation.

It is well-known, that in the isotropic case nai = 2 the relation (3.20) is reduced to

(3.24) σ = E(κ)ε = 2µ ε+ λ tr(ε)I.

Hence, we have κ := (µ, λ). The Lamé coefficients µ > 0 and λ ≥ 0 are functions of x, if the material is
nonhomogeneous. Inserting (3.24) into the equation (3.20), one obtains the Lamé equations of stationary
linear isotropic elasticity.

3.3.3 Admissible set of material parameter functions

In accordance with (3.22) and (3.23) we define the set K of material parameter functions for the nonho-
mogeneous linear elasticity with anisotropy by

K := (L∞(Ω))nai .(3.25)

In order to underline the parameter dependence we write E(κ) for κ ∈ K. For fixed κ ∈ K the values
E(κ)(x) are defined point-wise almost everywhere on Ω and the tensor function E is supposed to fulfil

E ∈ L((L∞(Ω))nai , (L∞(Ω))81).(3.26)

Thus, there holds the estimate

∃ cE > 0 ∀κ ∈ K : ‖E(κ)‖(L∞(Ω))81 ≤ cE‖κ‖(L∞(Ω))nai .(3.27)

Any nonempty set

(3.28) Kad ⊂ K

is called a set of admissible parameter functions κ, if

∃M = M(K) > 0 : ‖κ‖(L∞(Ω))nai ≤M ∀κ ∈ K,(3.29)

∃ c0 = c0(K) > 0 : E(κ)ε : ε ≥ c0 ε : ε ∀κ ∈ K, ∀ ε ∈ Sym(3).(3.30)

Thus, Kad ⊂ K is bounded and closed. Moreover, (3.30) means that the set of E(κ) with κ ∈ Kad is
uniformly positive definite.

Remark 3.2. Obviously, the equations of stationary linear elasticity depend linearly on the parameter
κ ∈ Kad. However, it is thinkable, that κ on its part depends on a further parameter like temperature or
damage. In this case, one gets a more general setting like in subsection 2.1.
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3.3.4 Weak-formulation setting and main results

The trilinear form a (cf. (2.28)) corresponding to the elasticity equation is given by

a(κ, u, ϕ) :=

∫
Ω

E(κ) ε(u) : ε(ϕ) dx ∀ (κ, u, ϕ) ∈ K × V × V,(3.31)

Due to the assumption on E and Kad, (3.20) - (3.23), (3.25), (3.26), (3.28)- (3.30) as well as based on
Poincaré’s and Korn’s inequality, the properties (2.29), (2.30), (2.31) and (2.32) can be easily verified.

Thus, the stationary equations for the linear elasticity lead to an elliptic system in the sense that
the arising form a is coercive. Moreover, there is a great similarity to the prototypical problems with
linear parameter dependence, see subsection 2.1. Thus, the main results presented above concerning
weak solutions remain valid. We collect them in short.

Corollary 3.3. (Results concerning weak solutions in stationary linear elasticity)
Let be given the assumptions (2.9) - (2.11) for the domain Ω and its parts ΓD, ΓDN and ΓN as well
(3.11). Let the data φ, τ and f fulfil the vectorial variants of (2.34) - (2.36) as well as (2.37) and (2.42),
respectively. Moreover, we assume (3.20) - (3.23), (3.25), (3.26), (3.28) - (3.30) for the elasticity tensor.
Than there hold:
(i) (Existence, uniqueness and well-posedness) All results presented in section 2.4) hold with

slight technical modifications concerning the arising norms and constants.

(ii) (Higher integrability of the gradient) All results presented in section 2.5) hold under (2.70)
and analogous assumption for the data with slight technical modifications. Again, the scalar spaces
in (2.67) - (1.3.3) are replaced by their vectorial counterparts.
The result in Herzog et al. (2011) covers the extension of theorem 2.10 to linear elasticity. In Shi and
Wright (1994), an alternative proof for linear elasticity is presented. Note that the Lamé equations
of linear elasticity are a special elliptic system. Thus, particular difficulties can arise when proving
“analogous” assertions near the boundary (cf. Shi and Wright (1994), e.g.). Based on theorem
2.10, the results of theorem 2.12 follow easily for weak solutions of the Lamé equations.

(iii) (Generalized co-normal derivative) In the case of linear elasticity, the co-normal derivative is
formally given by E(κ)ε(u)|ΓDN · n and expresses the (distributional) normal stress on ΓDN . It is

only a function, if u ∈ (W 2,2(Ω))m (m ∈ {2, 3}) and κ ∈ C0,1(Ω).

(iv) (Fréchet differentiability of solution operators) Finally, the results in section 2.7 remain
valid. Additionally, due to the linear parameter dependence, the assertions of theorem 2.20 and
their proofs undergo some simplifications.

3.3.5 Special case - isotropic elasticity

In the case of isotropy, the general linear relation (3.20) is reduced to (3.24). The position dependence
of the Lamé coefficients leads to the setting κ = (µ, λ) ∈ Kmax := (L∞(Ω))2. There are the following
relations with Young’s modulus E, Poisson’s ratio ν and the compression (bulk) modulus k:

µ =
E

2(1 + ν)
, λ =

ν E

(1 + ν)(1− 2ν)
, k = λ+

2

3
µ,(3.32)

E =
µ(2µ+ 3λ)

µ+ ν
, ν =

λ

2(µ+ λ)
, k =

E

3(1− 2ν)
.(3.33)

Sometimes, it is useful to write the material law (3.24) in an equivalent form, dividing the stress into a
deviatoric and a spherical part:

(3.34) σ = E(κ)ε = 2µ ε∗ + k tr(ε)I.

(ε∗ = ε− 1/3 tr(ε)I - deviator of ε, tr(ε) - trace of ε). In Constantinescu (1995), this item was discussed
in relation to the identification problem. Here, we do not need this.

A suitable subset Kad ⊂ K can be easily obtained in the isotropic case. One can choose the follow-
ing (physically plausible) bounds for the Young modulus E and the Poisson ratio ν which have to be
determined by preliminary considerations or tests.

0 < E0 ≤ E(x) ≤ E1 <∞, 0 ≤ ν(x) ≤ ν1 < 1/2 for almost all x ∈ Ω.(3.35)
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Due to (3.32), bounds for µ and λ follow.

E0

3
≤ µ(x) ≤ E1

2
, 0 ≤ λ(x) ≤ ν1E1

1− 2ν1
for almost all x ∈ Ω.(3.36)

The isochoric case ν = 1/2 (this corresponds to λ = ∞) will be excluded. In this case divergence-free
displacement fields have to be considered. We refer to Widany and Mahnken (2012) for an application to
rubber-like material. The preceding considerations suggests the introduction of the bounded closed and
convex subset Kad ⊂ K:

(3.37) Kad = {(µ, λ) ∈ (L∞(Ω))2 |µ, λ fulfil (3.36)}.

Obviously, for this set some M > 0 and c0 > 0 exist such that the conditions (3.29) and (3.30) are
fulfilled.

3.3.6 Special case - elastic polycrystals and composite materials

In addition to the general case of anisotropy and non-homogeneity, the following extension covers com-
posite materials or polycrystals, e.g. We assume that the body can be decomposed into a number of
subbodies Ωi:

Ω =

N⋃
l=1

Ωl, Ωl - Lipschitz domain, Ωi ∩ Ωj = ∅ for i 6= j.(3.38)

Moreover, we assume that the body behaves linear elastic in each Ωl. Thus, for all l there exists an

elasticity tensor El with corresponding symmetry properties (3.21) as well as a subset Kad,l ⊂ (L∞(Ωl))
nlai

with properties analogous to (3.28) - (3.30). This leads to the following generalization of E:

E : Ω× (L∞(Ω1))n
1
ai × · · · × (L∞(ΩN ))n

N
ai → (L∞(Ω))81,(3.39)

E(x, κ) :=

N∑
l=1

χl(x)El(κl).(3.40)

χl - characteristic function of Ωl, κ = {κ1, . . . , κN} with κl ∈ (L∞(Ω1))n
l
ai . Thus:

f.f.a x ∈ Ω : E(x, ·) ∈ Hom
(
(L∞(Ω1))n

1
ai × · · · × (L∞(ΩN ))n

N
ai ; (L∞(Ω))81

)
.(3.41)

Moreover, a corresponding parameter set for E is given via

Kad := Kad,1 × · · · ×Kad,N ,(3.42)

and conditions like (3.28) - (3.30) are fulfilled. In polycrystals made of the same material, the tensors
El arise from each other by orthogonal rotations. In composite materials these tensors have generally
different grades of anisotropy.

3.4 Non-local linear elliptic problems

Many results concerning usual elliptic problems also remain valid in non-local situations. As an example,
we consider the following non-local equation with the boundary conditions (2.2) - (2.4) for problem I.

−div (b(x, κ)∇u) +

∫
Ω

c(x, y)u(y) dy = f in Ω.(3.43)

Clearly, this equation yields the corresponding form a being linear in u and ϕ:

a(κ, u, ϕ) :=

∫
Ω

b(x, κ)∇u · ∇ϕdx+

∫
Ω

∫
Ω

c(x, y)u(y)ϕ(x) dy dx ∀ (κ, u, ϕ) ∈ K × V × V(3.44)

with V , V0 and b, K and Kad as for the prototypical problems, see subsection 2.2. The function c ∈
L2(Ω× Ω) is assumed to have the property∫

Ω

∫
Ω

c(x, y)u(y)u(x) dy dx ≥ 0 ∀u ∈ L2(Ω).(3.45)

Clearly, the form a has the properties (2.29) - (2.32).
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4 Some inverse problems arising from linear elliptic equations

Under the assumptions of theorem 2.6 both prototypical problems I (2.38), (2.39) and II (2.43) have
uniquely determined weak solutions u = uκ ∈ V0 and v = vκ ∈ V0 for κ ∈ Kad, assuming the data as
given. If the underlying situation is described exactly by some κ (e.g., if the elastic behavior is correctly
described by some elasticity tensor E(κ) in the case of linear elasticity, see subsection 3.3.2), and if the
boundary data (2.34) and (2.35) belong to the same experiment, and if f ∈ V ∗0 , then both solutions uκ
and vκ coincide in theory. However, in real situations both solutions generally will be different. Based
on these discrepancies, cost functionals can be constructed in order to an optimal parameter κ.

Here, our interest is to consider cost functionals in integral form (“continuous” functionals) which take
both calculated solutions within the domain Ω into account. In some application-oriented contributions,
only discrete cost functionals are dealt with, often based on finite-element schemes for the underlying
problems.

We continue to consider the prototypical situation described in subsections 2.1 - 2.3. An essential item
is the special structure of the arising form a in (2.27). Thus, the subsequent investigations and results
cover linear second-order elliptic problems (for single equations and for systems of equations) without
lower-order terms and with possibly non-linear parameter dependence as described in subsection 2.2.
Hence, the case of linear elasticity is included (see subsection 3.3.2). With some care, some results can
be modified for general elliptic equations like in (3.1).

For convenience and for a better overview, if possible, we only formulate the results for our prototypical
situation with the scalar equation in (2.1). If necessary, remarks concerning linear elasticity will be given.

At first, in subsection 4.1, we introduce cost functionals which are capable to compare the solutions
of the prototypical problems within the domain Ω. Furthermore, in subsection 4.2, we relate the cost
functionals presented before with some other cost functionals in use. Finally, in subsection 4.3, we
prove some results concerning existence of minimizers. In subsection 4.4, we present some special results
connected with Fréchet differentiability. Finally, in subsection 4.5, for some completeness, we provide
general necessary and sufficient conditions for the existence of local minimizers for differentiable functional
on Banach spaces.

4.1 Cost functionals extending the approaches by Knowles as well as
Yun and Shang

The following first cost functional J
(1)
α extends an approach by Knowles (1998) (see also Jin et al. (2012))

for investigation of an inverse problem in electrical impedance tomography. There, the main essence
consists in comparison of the solutions of problems corresponding to our problems I and II above - but
with non-mixed boundary conditions - within the domain Ω (i.e., within the body in applications). This
Idea was applied by Yun and Shang (2011) in its discrete version and with mixed boundary conditions
to mechanical problems (see remarks 4.1 (i), (ii) for further comments and references). We continue to
consider linear elliptic problems with possibly non-linear parameter dependence defined in subsections
2.1 - 2.3, which are essentially given by the form a in (2.27). Under the assumptions of theorem 2.6 (for

both cases, with f ∈ V ∗0 ) we define two cost functional J
(i)
α (i = 1, 2) by

J (1)
α (κ, φ, τ, f) : = a(κ, uκ − vκ, uκ − vκ) + αΦ(1)(κ) =(4.1)

= a(κ, LI(f, φ, κ)− LII(f, τ, κ), LI(f, φ, κ)− LII(f, τ, κ)) + αΦ(1)(κ)

J (2)
α (κ, φ, τ, f) : = ‖uκ − vκ‖rW + αΦ(2)(κ) =(4.2)

= ‖LI(f, φ, κ)− LII(f, τ, κ)‖rW + αΦ(2)(κ)

with a regularization parameter α and with stabilizing functionals Φ(i) (i = 1, 2) fulfilling

α ≥ 0,(4.3)

Φ(i) : Kad → [0,∞], proper.(4.4)

as well as with an exponent r and with a function space W fulfilling

1 ≤ r <∞,(4.5)

V p0 ⊆W, continuously embedded.(4.6)
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(See (2.68) for V p0 ). Clearly, due to (4.4), the effective domains of Φ(i) are not empty. For convenience,
they are assumed to be subsets of Kad, i.e., there holds

∅ 6= D(Φ(i)) = {κ ∈ Kad |Φ(i)(κ) <∞}.(4.7)

These approaches for J
(i)
α , in particular the second one, are inspired by the so-called Tikhonov ap-

proach, see Hofmann et al. (2007) and Jin and Maaß (2012a), e.g. Usually, the Tikhonov approach
contains only one solution (forward) operator. The functionals Φ(i) are called stabilizing functional or,
sometimes, penalty or regularization term.

Moreover, the approach in (4.1) compares the solutions uκ and vκ, using the weak-formulation struc-
ture in the shape of the form a in (2.27) and (3.31), respectively: a is bilinear and coercive for a fixed

κ ∈ Kad. In the particular case of linear elasticity, the functional J
(1)
0 (i.e. for α = 0) can be interpreted

as the stored elastic energy related to the difference of the displacements uκ and vκ.
In many cases, the quantities φ, τ and f are kept fixed, while the parameter κ is assumed to vary.

Thus, if there will be not confusion, we will write J
(i)
α (κ) (i = 1, 2) instead of J

(i)
α (κ, φ, τ, f). Bearing this

in mind, mostly we consider J
(i)
α as (generally numeric) functions depending only on κ, i.e.

J (i)
α : Kad → R ∪ {∞}.(4.8)

Investigating the functionals J
(i)
α (i = 1, 2) in the inverse-problem context, important questions arise.

Some of them are:
(i) Question of identifiability : Are there different κ1 and κ2 leading to equal solutions uκ1

= uκ2
and

vκ1 = vκ2 , respectively, for fixed data φ, f1 and τ, f2? Clearly, for a positive answer the functionals

J
(i)
α (i = 1, 2) may have different minimizers, especially for α = 0. Even in the case of linear

parameter dependence this question is not trivial. In subsection 4.2.3, we return to this question in
short. For further discussion, partial results and references we refer to Kohn and Vogelius (1987),
Bonnet and Constantinescu (2005), Imanuvilov et al. (2012).

(ii) Question of existence of minimizers: Clearly, a minimizer can be interpreted as a best fit in ap-
plications. Due to the infinite dimension of the parameter space K, the admissible parameter set

Kad ⊂ K is only bounded and closed, and the continuity of J
(i)
α (i = 1, 2) generally does not ensure

the existence of a minimizer. One needs additional restrictions ensuring some kinds of compactness.
Moreover, it is of great interest to know, if an existing minimizer is unique. In subsection 4.4, we
return to this question. We exemplarily refer to Hofmann et al. (2007) and Jin and Maass (2012b).

(iii) Question of approximation: If there is a minimizer, in which way it can be approximated? What
happens if for all αn > 0 a minimizer exists and if αn tends to zero? Clearly, these questions are of
great importance in practical application. It is not in the focus here. Again, we exemplarily refer
to Daubechies et al. (2004) and Jin and Maass (2012b).

We end this subsection with some comments.

Remarks 4.1. (i) To our best knowledge, for the first time, an approach like in (4.1) with α = 0
appeared in Knowles (1998) in connection with an inverse problem in electrical impedance tomo-
graphy. The underlying mathematical problem consists of a scalar elliptic partial differential equa-
tion like in (2.1) with linear parameter dependence as in (2.19) completed with a pure Dirichlet
and, alternatively, with a pure Neumann boundary condition.

(ii) In Yun and Shang (2011), the idea of comparison of two calculated solutions to problems in me-
chanics of solids was applied, in particular to elasto-plastic behavior. The discrete cost functionals
introduced in Yun and Shang (2011), Shang and Yun (2012) (the “implicit objective function”)
compares both calculated solutions using their discrete values in the Gauß points of a finite-element
mesh. Further modifications and applications of this approach can be found in Shang et al. (2013),
Rahimi et al. (2012), Weaver (2015) as well as in Yun and Shang (2016).

(iii) Note that our proposal (4.1) (with α = 0) is not a continuous counterpart to Yun and Shang’s
discrete approaches. We use the idea of comparison of two calculated solutions inside the domain
Ω, following Knowles (1998) with respect to its mathematical realization.

(iv) As usual in inverse-problem theory, we consider the functionals in (4.1) and (4.2) with regularization
terms Φ(i). At this stage, α = 0 is allowed, especially for the functional in (4.1). Furthermore, the
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regularizing functionals Φ(i) (i = 1, 2) are general. Widely spread are approaches with norms in
suitable function spaces. An example may be given by

Φ(i)(κ) := ‖κ− κ∗‖Ls(Ω)(4.9)

with some estimated value κ∗ ∈ Kad and some 1 ≤ s ≤ ∞. Besides the classic Tichonov regular-
ization built up on an L2 norm (cf. Engl et al. (1996), e.g.), approaches in general Banach spaces
play an important role. We refer to Scherzer (2009) and Schuster et al. (2012).

(v) However, for identification of material parameters in mechanics a regularization term is frequently
avoided. Corresponding explanations can be found in Mahnken and Stein (1996b) and Thielecke
(1998), e.g. A problem is that the choice of a regularization term as well as the size of the parameter
α are a-priori not clear. And, moreover, the results depend on this choice.

(vi) In Constantinescu (1995), Geymonat and Pagano (2003) and Avril and Pierron (2007), cost func-
tionals in integral form were considered, related to problems in mechanics, in particular in linear
elasticity.

(vii) One encounters frequently discrete approaches for cost functionals in application-oriented papers.
See Avril and Pierron (2007), Cooreman et al. (2007), Lecompte et al. (2007), Kajberg and Wikman
(2007), e.g. for applications in mechanics.

4.2 Relations between our approaches and some other ones

Now it is the aim to relate the approaches presented in (4.1) and (4.2) with some others. At first, we
compare them with so-called Dirichlet-to-Neumann as well as Neumann-to-Dirichlet mappings playing an
important role in inverse-problem investigations. Often these mappings are considered for full boundary
conditions. Here, due to our mixed-boundary setting, we consider them related only to a part of the
boundary. For references and applications we refer to Kohn and Vogelius (1987), Constantinescu (1995),
Bonnet and Constantinescu (2005), Isakov (2006), Lukaschewitsch et al. (2009), Jin et al. (2011), Jin and
Maaß (2012a), Imanuvilov et al. (2012), Widany and Mahnken (2012), Mahnken and Dammann (2013)
e.g.

Moreover, we discuss the differences to full-field approaches. For trace operators we refer to Amann
(1993), Showalter (1997), e.g. Let the assumptions of theorem 2.6 be fulfilled in this subsection. For
a better overview, we do not use formulations based on higher integrability of the gradients of weak
solutions. Clearly, this can be done in the case of necessity.

4.2.1 Partial Neumann-to-Dirichlet mapping

Due to theorem 2.6 (ii), for given κ ∈ Kad, f and τ there exists a unique vκ ∈ V0 ⊂ W 1,2(Ω). Thus, it
makes sense to define a partial Neumann-to-Dirichlet mapping (abbreviated as pNtD mapping) as the
trace of vκ on the boundary part ΓDN :

GpNtD(f, τ, κ) := LII(f, τ, κ)|ΓDN = vκ|ΓDN .(4.10)

(vκ|ΓDN - trace of vκ on ΓDN .) Obviously, based on theorem 2.9 (see (2.65)) and the well-known trace
theorem (cf. Showalter (1997), e.g.) one gets

GpNtD :V ∗1 × (W
1
2 ,2(ΓDN ))∗ ×Kad → W

1
2 ,2(ΓDN )(4.11)

Lipschitz continuous on bounded subsets of V ∗1 × (W
1
2 ,2(ΓDN ))∗ ×Kad.

Since this mapping only refers to a part of the boundary, it is called partial NtD mapping.
The pNtD mapping may be the basis for the inverse problem of determining an optimal parameter

κ ∈ Kad. Assume that (besides given f) both boundary data on ΓDN , τ and φ are known. Thus, one
can seek a κ0 ∈ Kad such that the deviation between GpNtD(f, τ, κ) and φ becomes a minimum:

JpNtD(f, τ, φ, κ0) = min
κ∈Kad

{
JpNtD(f, τ, φ, κ)

}
(4.12)

with JpNtD(f, τ, φ, κ) := ‖GpNtD(f, τ, κ)− φ‖DN + αΦ(κ)

with a regularization parameter α ≥ 0 and with a functional Φ : Kad → [0,∞]. The expression ‖ · ‖DN
stands for a positive definite functional defined on W 1/2,2(ΓDN ), for instance, for squares of appropriate
norms.
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4.2.2 Partial Dirichlet-to-Neumann mapping

This mapping is defined in analogy to the pNtD mapping above. Due to theorem 2.6 (i), for given
κ ∈ Kad, f and φ there exists a unique uκ ∈ V0 ⊂ W 1,2(Ω). If f additionally fulfills (2.42), then the
normal stress on ΓDN corresponding to uκ is defined as a distribution, based on theorem 2.15. Thus,
under the given weak assumptions a pDtN mapping can be defined:

GpDtN (f, φ, κ) := ∂n(LI((f, φ, κ)).(4.13)

Obviously, based on theorems 2.9 (see (2.64)) and 2.15 one gets

GpDtN :V ∗1 ×W
1
2 ,2(ΓDN )×Kad → (W

1
2 ,2(ΓDN ))∗(4.14)

Lipschitz continuous on bounded subsets of V ∗1 ×W
1
2 ,2(ΓDN )×Kad.

Clearly, applying the pDtN mapping to the solution of problem II returns the given normal stress τ on
ΓDN . Contrary to the former pNtD mapping, the handling of the pDtN mapping is more difficult. Only
in the case of better regularity, the pDtN mapping yields a function in L2(ΓDN ).

Again, the pDtN mapping may be the basis for the inverse problem of determining a parameter
κ ∈ Kad. Assume that (besides given f) both boundary data on ΓDN , φ and τ are known. Thus, one
can seek a κ0 ∈ Kad such that the deviation between GpDtN (f, φ, κ) and τ becomes a minimum:

JpDtN (f, τ, φ, κ0) = min
κ∈Kad

{
JpDtN (f, τ, φ, κ)

}
(4.15)

with JpDtN (f, τ, φ, κ) := ‖GpDtN (f, φ, κ)− τ‖DN + αΦ(κ)

with a regularization parameter α ≥ 0 and with a functional Φ : Kad → [0,∞]. The expression ‖ · ‖DN
stands for a positive definite functional defined on (W 1/2,2(ΓDN ))∗.

4.2.3 Relations of our approaches to pNtD and pDtN mappings in the case α = 0

Now we consider the approaches in (4.1), (4.2), (4.12) and (4.15) without regularization terms, or in other

words, with α = 0. We assume that minimizers κ
(i)
0 ∈ Kad (i = 1, 2) of J

(i)
0 exist:

J
(i)
0 (f, τ, φ, κ

(i)
0 ) = min

κ∈Kad

{
J

(i)
0 (f, τ, φ, κ)

}
.(4.16)

Based on theorem 2.6, some straightforward assertions follow.

Lemma 4.2. Let the assumptions of theorem 2.6 be given. For all κ0 ∈ Kad and κ
(i)
0 ∈ Kad, respectively,

the following implications hold.

JpDtN (f, τ, φ, κ0) = 0 ⇔ JpNtD(f, τ, φ, κ0) = 0.(4.17)

JpDtN (f, τ, φ, κ
(i)
0 ) = 0 ⇔ J

(i)
0 (f, τ, φ, κ

(i)
0 ) = 0,(4.18)

J
(i)
0 (f, τ, φ, κ

(i)
0 ) = 0 ⇔ u

κ
(i)
0

= v
κ

(i)
0
.(4.19)

Thus, if some κ0 ∈ Kad is a null of one of these three functionals, then it is a null of the remaining
ones, and the corresponding solutions uκ0

and vκ0
coincide. Generally, one cannot expect that such a

null exists for arbitrarily given data (and a given set Kad).
The question whether a (possible) null κ0 ∈ Kad is unique is still open, in the case of linear parameter

dependence and in excess of the general case considered here. For example, choosing the function b in

(2.1) like b(κ) := 2 + sin(κ), the minimizers of Φ
(i)
0 cannot be unique. For the case ΓDN = ∂Ω, in Bonnet

and Constantinescu (2005), the authors present arguments letting guess a negative answer in the case of
non-homogeneous anisotropic linear elasticity. However, under some restrictions, uniqueness was proved
for isotropic elasticity by Imanuvilov et al. (2012) in the case of mixed boundary conditions.

4.2.4 Remarks on full-field approaches

In full-field approaches, the “full” solution of the direct problem is assumed to be given by measurements
(and interpolation in practical applications). For an overview we refer to Avril and Pierron (2007) and
the literature cited therein. The main idea means in the setting here, that a function z ∈ V0 is regarded
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as the known solution of problem I or II (in Gockenbach and Khan (2007), the z is regarded as a solution
of problem I). This choice depends on the availability of the boundary data on ΓDN . However, there is
no essential difference between these two cases. The task is to find a κ ∈ Kad, that the corresponding
solution uκ = LI(f, φ, κ) (or vκ = LI(f, τ, κ)) gives the best approximation “in Ω” of z ∈ V0 with z = φ
on ΓDN (or of z ∈ V0). To formulate the inverse problem, several functionals are in use. We present in
short three examples.

Output least-square approach: Referring to Gockenbach et al. (2008), Khan and Rouhani (2007) and
to the references therein, we define the functional (if Dirichlet data on ΓDN is available)

Jols(f, φ, κ, z) := ‖LI(f, φ, κ)− z‖Ω.(4.20)

Again, ‖ · ‖Ω is a positive definite functional on V , e.g., a norm in V . The main drawback is that this
functional is not convex.

Equation-error approach: Referring to Gockenbach et al. (2008) and to the references therein again,
we define the functional (if Neumann data on ΓDN is available)

Jeea(f, τ, κ, z) := ‖AII(κ, z)− FII(f, τ)‖Ω,(4.21)

with AII and FII given by (2.51) and (2.50), respectively. Now, ‖ · ‖Ω is a positive definite functional on
V ∗0 , i.e., on a space of distributions. This functional is convex (in special situations), in Gockenbach et al.
(2008), this approach was analyzed and applied to the 2d problem of an elastic membrane for determining
the Lamé coefficients. We also refer to Geymonat and Pagano (2003) for the two-dimensional case.

Modified output least-square approach: If Dirichlet data on ΓDN and a “measured” function z0 ∈ V0

are available, we define the functional

JImols(f, φ, κ, z) := a(κ, LI(f, φ, κ)− z, LI(f, φ, κ)− z).(4.22)

This functional is convex. We refer to Khan and Rouhani (2007), Gockenbach and Khan (2007), Gock-
enbach and Khan (2008) for further references and detailed investigations for the case of an underlying
scalar equation.

Analogously, assuming given Neumann data on ΓDN and a “measured” function w ∈ V0, we define
the functional

JIImols(f, τ, κ, w) := a(κ, LII(f, τ, κ)− w,LII(f, τ, κ)− w).(4.23)

Comparing with full-field methods, in the approaches (4.1) and (4.2) only a second calculated solution
is available but not a measured one. And, this calculated solution, say vκ = LII(f, τ, κ), clearly depends
on the parameter κ. Although our approach in (4.1) (with α = 0) arises formally from this one in (4.22),
changing z by vκ, one obtains an essentially different problem. As we will see in subsection ??, the
convexity of the functional J in (4.1) is not ensured. Thus, the methods applied in Khan and Rouhani
(2007), Gockenbach and Khan (2007) cannot be simply transferred to our setting.

4.2.5 Remarks on approaches with constraints

The cost functional in (4.1) is formulated without constrains (side conditions). Again, we consider the
case α = 0. In an equivalent way, a formulation with side conditions and Lagrange multipliers can be

chosen (cf. Ito and Kunisch (2008), e.g.). In doing so, in the functional J
(1)
0 in (4.1) instead of the

solutions uκ and vκ there are admissible arbitrary u, v ∈ V0 fulfilling certain suitable conditions. Thus,
in our case we get the new functional Φcon defined by

Jcon(κ, u, v) := a(κ, u− v, u− v)(4.24)

as well as the constraints

u = LI(f, φ, κ), v = LII(f, τ, κ).(4.25)

Clearly, up to now one has an equivalence between the formulations without and with constraints. How-
ever, the side conditions in (4.25) contain explicitly the solution operators. This drawback can be avoided.
We show this for the linear-elasticity problem (see subsection 3.3). Thus, we consider the functional

Ĵcon(κ,u,σ) :=

∫
Ω

(
E(κ)ε(u)− σ

)
:
(
E(κ)ε(u)− σ

)
dx(4.26)
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with the constraints

u ∈ Vadm := {u ∈ V0 |u = φ on ΓDN},(4.27)

σ ∈ Σadm := {σ ∈ [L2(Ω)]6 |σ = σT } fulfilling(4.28) ∫
Ω

σ : ε(ϕ) dx = 〈τ , ϕ〉
((W

1
2
,2(ΓDN ))3)∗(W

1
2
,2(ΓDN ))3

+ 〈f , ϕ〉V ∗0 V0
∀ϕ ∈ V0.(4.29)

Now, due to the mixed boundary conditions, an equivalence between the unconstraint form (4.1) and the
constraint form (4.26) - (4.28) is only easily seen if the functionals have zero minimums. Contrary to the
case ΓDN = ∂Ω (full displacement vs. full traction, e.g. see Constantinescu (1995)), now, the field u is
not restricted on ΓN and the field σ is not restricted on ΓD.

4.3 Existence of minimizers for J
(i)
α

Now, we will present some first results concerning existence of minimizers for the cost functionals intro-
duced in subsection 4.1. In the sequel, for convenience, we formulate detailed results for the prototypical
problems given in (2.1) - (2.4) and (2.5) - (2.8), respectively, in the framework of weak solutions. As
already pointed out (see corollary 3.3, too), there hold analogous results for stationary linear elasticity.
Thus, we give only comments at some places, if needed.

4.3.1 Continuity of the functionals J
(i)
α

Based on the continuity results concerning the solution operators in theorem 2.12 as well as on Lemma
2.17, one easily proves first basic results. For convenience, we deal ad once with the case of higher
integrability of the gradients.

Theorem 4.3. (Continuity of the functionals) Let the assumptions of theorem 2.10 (cases I and II,

respectively) as well as f ∈ (V p
′

0 )∗ be given. Moreover, let be given (4.7) and

Φ(i) : D(Φ(i))→ R continuous w.r.t. L∞ topology.(4.30)

Then there hold for all p ∈ [2, p], s ∈ [ 2p
p−2 ,∞], for all α ≥ 0 and for i = 1, 2

∀κ ∈ Kad : J (i)
α (κ) ≥ 0,(4.31)

∀κ ∈ D(Φ(i)) ⊂ Kad : J (i)
α (κ) ∈ R,(4.32)

J (i)
α : D(Φ(i)) ⊂ Kad ⊂ Ls(Ω)→ R continuous w.r.t. Ls topology,(4.33)

J
(1)
0 (κ) =

〈
∂n(LI(f, φ, κ))− τ , φ− vκ|ΓDN

〉
((W

1
p
,p

(ΓDN ))m)∗(W
1
p
,p

(ΓDN ))m
.(4.34)

Proof. (i) The structure of J
(i)
α (i = 1, 2) defined in (4.1) and (4.2) as well as the (4.3) and (4.4)

immediately lead to (4.31) and (4.32).
(ii) Clearly, the continuity of the solution operators LI and LII from Ls(Ω) to V p (see theroe 2.12 (ii))

and the structure of J
(i)
α (i = 1, 2) as well as (4.7) and (4.30) yield the asserted continuity.

(iii) The relation (4.34) follows from (2.88).

4.3.2 Existence of minimizers - I

Now, we will investigate the functionals J
(i)
α (i = 1, 2) on the existence of minimizers. Due to (4.31),

the functionals obviously have an infimum over all non-emty subsets of Kad (including Kad). However,
the existence of a minimum (and therefore of a minimizer) is generally not ensured, even on closed and
bounded subsets of Kad. Note, that due to (2.12), (2.17) and (2.18) the admissible parameter set Kad for
our prototypical problems is bounded, closed and convex in L∞(Ω). For linear elasticity, due to (3.25),
(3.28) - (3.30) the admissible parameter set Kad is bounded and closed in (L∞(Ω)nai . However, in both
cases, the set Kad is not compact. Besides, in the case of elasticity, the convexity of Kad has to be
additionally assumed, if it is needed (see also subsection 3.3.5 concerning the isotropic case).

Summing up these findings, it is useful to restrict the domain of definition of the solutions operators
LI and LII (see (2.56) - (2.59)). Thus, let be LI and LII restricted to a common new domain

∅ 6= D(L) ⊆ Kad.(4.35)
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In other situations, it can be helpful to restrict the co-domain of the solutions operators, see Jin and
Maass (2012b) (Chapt. 6).

Obviously, Weierstrass’ theorem ensures the existence of a minimizer, if additionally compactness of
D(L) is assumed. More precisely, there hold the following assertion.

Theorem 4.4. (Existence of minimizers under compactness assumption) Under the assumptions
of theorem 4.3 let be additionally given:

∅ 6= D := D(Φ(i)) ∩D(L) compact.(4.36)

Then the functionals J
(i)
α (i = 1, 2) have a minimizer κ† ∈ D (⊂ Kad), i.e.

J (i)
α (κ†) = inf

κ∈D
{J (i)
α (κ)},(4.37)

as well as a minimizing sequence (κm) in D, being convergent in Ls(Ω) for 1 ≤ s <∞ to κ†.
And, additionally, the corresponding sequences of images LI(κm) and LII(κm) converge to LI(κ

†) and
LII(κ

†), respectively, in V p for p ∈ [2, p].

There are some possibilities to chose a compact set D(L), depending on concrete applications.

Examples 4.5. (Suitable compact sets)
(i) (Piece-wise constant functions) We consider a representation of the (bounded) domain Ω like

in (3.39) in connection with polycrystalls, i.e., we assume

Ω =

N⋃
l=1

Ωl, Ωl - Lipschitz domain, Ωi ∩ Ωj = ∅ for i 6= j.(4.38)

Furthermore, we define the subset of (all most) piece-wise constant functions of Kad:

Dconst(L) := {w ∈ Kad | ∀ j ∈ {1, . . . , N} : w|Ωj = const.}.(4.39)

Obviously, for any N ∈ N Dconst(L) is a compact subset of Kad, and, if D(Φ(i)) ∩Dconst(L) 6= ∅,
theorem 4.4 is applicable.

(ii) (Special triangulation of Ω) If the domain Ω is polygonal, then the subdomains Ωj in (4.38)
can be chosen as simplexes. Additionally, in numerics, in particular in finite-elements theory, only
an admissible decomposition (or conform triangulation) is allowed, see Knabner and Angermann
(2000), e.g. Again, the set of (all most) piece-wise constant parameter functions Dconst(L) can be
chosen as in (4.39).
Sometimes, for further investigations one considers a sequence of decreasing to zero regularization
parameters αm. Then it is possible to chose a corresponding sequence of nested conform triangu-

lations (Ω
(m)
j ) (j ∈ {1, . . . , N(m)}) with maximal diameters d(m) := αm, tending also to zero.

Instead of piece-wise constant functions, one can take piece-wise linear or quadratic functions (“fi-
nite elements”).

4.3.3 Existence of minimizers - II

Existence results can be also achieved under alternative assumptions in the framework of weak-sequential
continuity and closedness, respectively. We present some general results, adopting arguments in Hofmann
et al. (2007) and Jin and Maass (2012b) for analogous settings for slightly different functionals.

A first inspection shows that there are some differences between cost functionals J
(1)
α and J

(2)
α , re-

quiring different assumptions. Thus, we present the results consecutively.

Theorem 4.6. (Existence of a minimizer for J
(2)
α ) Let the assumptions of theorem 2.10 (cases I and

II, respectively), f ∈ (V p
′

0 )∗ and (2.12), (2.17) and (2.18) for Kad ⊂ K be given. Moreover, let Φ(2) fulfil
(4.3), (4.4), and let (4.5), (4.6) be given. Moreover, we assume

Φ(2) : D(Φ(2)) ⊂ Kad → R weakly∗ sequentially lower semi-continuous,(4.40)

LI , LI : D(L) ⊂ Kad → V weakly∗ sequentially closed,(4.41)

D := D(Φ(2)) ∩D(L) 6= ∅.(4.42)
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Then there exist a minimizer κ† ∈ D (⊂ Kad), i.e.

J (2)
α (κ†) = inf

κ∈D
{J (2)
α (κ)},(4.43)

as well as a minimizing sequence (κm) in D, being weakly∗ convergent in L∞(Ω) and weakly convergent
in Ls(Ω) for 1 ≤ s <∞ to κ†.
And, additionally, the corresponding sequences of images LI(κm) and LII(κm) weakly converge to LI(κ

†)
and LII(κ

†), respectively, in V p for p ∈ [2, p].

Proof. (i) (Existence of a minimizing sequence) Due to (4.42) there exists an κ̂ ∈ D(⊂ Kad) with

J
(2)
α (κ̂) < +∞. Moreover, due to J

(2)
α (κ) ≥ 0 for all κ ∈ D we get

0 ≤ d0 := inf
κ∈D
{J (2)
α (κ)} ≤ J (2)

α (κ̂) < +∞.(4.44)

Thus, there exists a minimizing sequence (κm) in D with

0 ≤ d0 = lim
m→∞

J (2)
α (κm).(4.45)

(ii) (Choice of weakly convergent subsequences) Due to (2.12), (2.17) and (2.18) the subset Kad ⊂
K is bounded, closed and convex. Hence, there exists a weakly∗-convergent subsequence in Kad ⊂ L∞(Ω),
without any loss of generality also named by (κm), i.e., there exists κ̃ ∈ Kad with

κ̃ = lim
m→∞

κm (weakly∗ convergence in L∞(Ω)).(4.46)

Clearly, this subsequence is bounded L∞(Ω) (more precisely inKad) as well as in Ls(Ω) for any 1 ≤ s <∞.
Due to (4.40) and (4.4) one has Φ(2)(κ̃) ≤ lim infm→∞Φ(2)(κm) < +∞, therefore follows κ̃ ∈ D(Φ(2)).
Due to theorem 2.10, the sets of images of the solutions operators, {LI(κm)} and {LII(κm)}, are bounded
in V p(= W 1,p(Ω)). Therefore, one can choose a further subsequence of (κm), again named as before,
such that the corresponding subsequences (LI(κm)) and (LII(κm)) are weakly convergent in V p. Thus,
there exist elements ũ, ṽ ∈ V p being weak limits, i.e., there hold

ũ = lim
m→∞

LI(κm), ṽ = lim
m→∞

LII(κm) (weak convergence in )V p.(4.47)

Clearly, this subsequence (κm) fulfills (4.46), too. Hence, the assumption (4.41) on weak sequential
closedness yields κ̃ ∈ D as well as ũ = LI(κ̃) and ṽ = LII(κ̃).
(iii) (Limit process and existence of a minimizer) The assumptions (4.40) together with (4.47)
and the well-known weak sequential lower semi-continuity of a norm (see Edwards (1965), Yosida (1965),
e.g.) yield

d0 ≤ J (2)
α (κ̃) = ‖LI(κ̃)− LII(κ̃)‖p + αΦ(2)(κ̃) ≤(4.48)

≤ lim inf
m→∞

‖LI(κm)− LII(κm)‖p + α lim inf
m→∞

Φ(2)(κm) ≤ lim inf
m→∞

J (2)
α (κm) = d0.

Thus κ† := κ̃ is a minimizer of J
(2)
α , and (κm) is weakly∗ convergent in L∞(Ω) to κ†. Finally, a sequence

being weakly∗ convergent in L∞(Ω) is also weakly convergent in Ls(Ω) for any 1 ≤ s < ∞ due to the
boundedness of Ω.

Corollary 4.7. (Existence of a minimizer in the case of linear elasticity) An inspection of the
proof shows, that theorem 4.6 remains valid under analogous assumptions concerning the stationary linear
elasticity, if additionally the convexity of Kad is assumed (see also corollary 3.3).

A typical difficulty consists in proving weakly∗ sequentially closedness of the solution operators. Note
that their (strong) closedness or continuity does not imply the corresponding weak properties.

Moreover, a simple transfer of theorem 4.6 to the cost functional J
(1)
α is not possible, due to the

special structure of the form a in (2.27), even in the case of linear parameter dependence like in (2.19).
The form a(κ, u, u) is only a norm on V for a fixed κ ∈ Kad. Thus, under analogous assumptions for the

cost functional J
(1)
α , either the convergence of (κm) or the convergence of LI(κm) and LII(κm) must be

better. Thus, theorem 4.6 becomes valid for the functional J
(1)
α , if the solutions operators exhibits a type

of reinforced continuity which maps weakly∗ sequentially convergent sequences in L∞(Ω) into convergent
ones in V p. Of course, such a property is difficult to prove.

A way out consists in choosing a compact subset D  Kad like in the examples 4.5. In this case, the
(strong) continuity of the solution operators ensures their weak∗ sequential closedness (and, moreover,

their reinforced continuity), and theorem 4.6 becomes valid for both functionals J
(i)
α (i = 1, 2).
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4.4 Some results concerning the functionals J
(i)
α in a special case

We present some results connected with the Fréchet differentiability of the special cost functional J
(1)
0 .

For convenience, we only deal with the case of linear parameter dependence like in (2.19).
As before, the prototypical problems given in (2.1) - (2.4) and (2.5) - (2.8), respectively, are in the

focus. Analogous results for stationary linear elasticity will be only commented at some places.

4.4.1 Fréchet differentiability of the cost functional J
(1)
0

We want to investigate the Fréchet differentiability of the special cost functional J
(1)
0 (see (4.1)). For

convenience, we only deal with the case of linear parameter dependence like in (2.19). Clearly, under
additional conditions on the function b, the general case can be investigated (cf. subsection 2.7.2).

Furthermore, in the case of linear parameter dependence, the subsequent results can be transferred
in full analogy to the case of linear elasticity.

Due to the trilinearity of the form a and the differentiability results for the solution operators LI and

LII in subsection 2.7, the Fréchet differentiability of the cost functional J
(1)
0 can be easily proved. As

above, the dependence of J
(1)
0 on the fixed given data f , φ and τ is not explicitly mentioned.

Theorem 4.8. Let the assumptions of theorem 2.20 (cases I and II, respectively) as well as f ∈ (V p
′

0 )∗

be given. Let the form a be given as in (2.27) with b in accordance with (2.19). Then the cost functional

J
(1)
0 : Kad ⊂ Ls(Ω) → R defined in (4.1) is twice continuously Fréchet differentiable on Kad for all

2 ≤ p < min{p, 4} and s ∈ [2p/(p−2),∞]. Moreover, there hold:
(i) The Fréchet differential is given for all κ0 ∈ Kad and κ ∈ Lκ0

by

∂J
(1)
0

∂κ
(κ0)κ = a(κ, uκ0 − vκ0 , uκ0 − vκ0) + 2a(κ0,

∂LI
∂κ

(κ0)κ− ∂LII
∂κ

(κ0)κ, uκ0 − vκ0) =(4.49)

= −a(κ, uκ0
− vκ0

, uκ0
− vκ0

) + 2
〈
∂n(

∂LI
∂κ

(κ0)κ) , φ− vκ0

〉
((W

1
p
,p

(ΓDN ))m)∗(W
1
p
,p

(ΓDN ))m
,

∂J
(1)
0

∂κ
(κ0)κ = a(κ, uκ0

, uκ0
)− a(κ, vκ0

, vκ0
).(4.50)

(ii) The (special) second Fréchet differential is given for all κ0 ∈ Kad and κ ∈ Lκ0
by

∂2J
(1)
0

∂κ2
(κ0)(κ, κ) =a(κ,

∂LI
∂κ

(κ0)κ− ∂LII
∂κ

(κ0)κ,
∂LI
∂κ

(κ0)κ− ∂LII
∂κ

(κ0)κ)+(4.51)

+ 2
〈
∂n(

∂2LI
∂κ2

(κ0)(κ, κ)) , φ− vκ0

〉
((W

1
p
,p

(ΓDN ))m)∗(W
1
p
,p

(ΓDN ))m
,

∂2J
(1)
0

∂κ2
(κ0)(κ, κ) =2a(κ,

∂LI
∂κ

(κ0)κ, uκ0
)− 2a(κ,

∂LII
∂κ

(κ0)κ, vκ0
).(4.52)

Proof. The assertions (4.49) and (4.51) follow after simple calculations, repeating arguments from the
proofs of theorems 2.20 and 2.25 using the trilinearity and symmetry of a. The relation (4.50) (after that
in an easy manner (4.52)) can be proved, using some tricks and re-arrangements.

J
(1)
0 (κ0 + κ)− J (1)

0 (κ0) = a(κ0 + κ, uκ0+κ − vκ0+κ, uκ0+κ − vκ0+κ)− a(κ0, uκ0 − vκ0 , uκ0 − vκ0) =

(4.53)

=a(κ0 + κ, uκ0+κ − vκ0+κ, uκ0+κ − uκ0 − vκ0+κ + vκ0)+

+ a(κ0 + κ, uκ0+κ − uκ0 − vκ0+κ + vκ0 , uκ0 − vκ0) + a(κ, uκ0 − vκ0 , uκ0 − vκ0) =

= a(κ0 + κ, uκ0+κ − uκ0 , uκ0+κ − vκ0+κ + uκ0 − vκ0)+

− a(κ0 + κ, vκ0+κ − vκ0 , uκ0+κ − vκ0+κ + uκ0 − vκ0) + a(κ, uκ0 − vκ0 , uκ0 − vκ0).

Exploiting the fact that uκ0+κ − uκ0
∈ V1 is an admissible test function for the Dirichlet problem and

that uκ0+κ−vκ0+κ+uκ0−vκ0 ∈ V0 is an admissible test function for the Neumann problem, one obtains:

J
(1)
0 (κ0 + κ)− J (1)

0 (κ0) =a(κ, uκ0+κ − uκ0 , uκ0 − vκ0) + a(κ, uκ0 − vκ0 , uκ0 − vκ0)+(4.54)

+ a(κ, vκ0 , uκ0+κ − vκ0+κ + uκ0 − vκ0) =

= a(κ, uκ0 + vκ0 , uκ0 − vκ0) + 2a(κ, uκ0+κ − uκ0 , uκ0 − vκ0)+

+ a(κ, uκ0 − vκ0 , vκ0+κ − vκ0) + a(κ, uκ0 , uκ0+κ − uκ0 − vκ0+κ + vκ0).
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Due to (2.75), the last three terms are o(κ) with respect the Ls norm. The first term is linear in κ and
represents the Fréchet differential. Hence, one gets (4.11), and, after that (4.13).

Remarks 4.9. (i) Using the relations (2.102) and (2.105) as well as (2.155) and (2.158) for the first
and second differentials of the solution operators LI and LII , the first two Fréchet differentials of

the cost functional J
(1)
0 can be written, using merely the solution operators and not their Fréchet

differentials.

(ii) Higher Fréchet differentiability can be proved in an analogous manner, yielding more complex
formulas.

4.4.2 Comparison of J
(1)
0 with the full-field approach

We continue to deal with the cost functional J
(1)
0 defined in (4.1). In order to demonstrate the difference

between Knowles’ approach and the seemingly similar full-filled approaches in the case of the modified
output least-square approach we come back to the cost functionals in (4.22) and (4.23) (see subsection
4.2.4):

ΦImols(f, φ, κ, z) := a(κ, LI(f, φ, κ)− z, LI(f, φ, κ)− z) = a(κ, uκ − z, uκ − z),(4.55)

ΦIImols(f, τ, κ, w) := a(κ, LII(f, τ, κ)− w,LII(f, τ, κ)− w) = a(κ, vκ − w, vκ − w),(4.56)

with z ∈ V0 and z = φ on ΓDN as well as w ∈ V0 being a “measured” solutions of problem I and II,
respectively, for the same fixed data f, φ and f, τ , respectively. Therefore, uκ − z ∈ V1 and vκ − w ∈ V0

are admissible test functions for problem I and II, respectively. Similarly as in subsection 4.4, we can
prove Fréchet differentiability of ΦImols and ΦIImols, with respect to the Ls norm in the case of a better z
and w, respectively. The following results generalize corresponding ones in Gockenbach and Khan (2007)
for a scalar case corresponding to problem I with the parameter space  L∞(Ω). Moreover, we obtain more

convenient formulas as in the case of the cost functional J
(1)
0 in (4.1) (with α = 0).

At first we formulate a corresponding result to theorem 4.3. The data f, φ and f, τ are regarded as
fixed. Again, it is evident, that the subsequent assertions can be simply transferred to linear elasticity.

Theorem 4.10. Let the assumptions of theorem 2.10 (cases I and II) as well as z, w ∈ V0 with z = φ on
ΓDN and ∇z,∇w ∈ (Lp(Ω))d be given. Then there hold for all p ∈ [2, p], s ∈ [ 2p

p−2 ,∞]

∀κ ∈ Kad : ΦImols(κ) ≥ 0, ΦImols(κ) ≥ 0,(4.57)

ΦImols,Φ
II
mols : Kad ⊂ Ls(Ω)→ R continuous w.r.t Ls topology,(4.58)

ΦImols(κ) =
〈
f , uκ − z

〉
(V p
′

1 )∗,V p
′

1

− a(κ, z, uκ − z),(4.59)

ΦIImols(κ) =
〈
τ , vκ − w

〉
W

1
p
,p

(ΓDN )∗W
1
p
,p

(ΓDN )
+
〈
f , vκ − w

〉
(V p
′

0 )∗,V p
′

0

− a(κ,w, vκ − w).(4.60)

The following theorem holds in full analogy for both functionals ΦImols and ΦIImols. Thus, we do not
repeat the assertions for ΦIImols.

Theorem 4.11. Let the assumptions of theorem 2.20 (case I) be given. Let be z ∈ V0 with z = φ on
ΓDN and ∇z ∈ (Lp(Ω))d. Then the cost functional Φmols : Kad ⊂ Ls(Ω)→ R defined in (4.55) is twice
continuously Fréchet differentiable on Kad for all 2 ≤ p < min{p, 4} and s ∈ [2p/(p−2),∞].
(i) The Fréchet differential is given for all κ0 ∈ Kad and κ ∈ Lκ0

by

∂Φmols
∂κ

(κ0)κ = −a(κ, uκ0 + z, uκ0 − z).(4.61)

(ii) The (special) second Fréchet differential is given for all κ0 ∈ Kad and κ ∈ Lκ0 by

∂2Φmols
∂κ2

(κ0)(κ, κ) = 2a(κ0,
∂LI
∂κ

(κ0)κ,
∂LI
∂κ

(κ0)κ) ≥ α0

∥∥∥∂LI
∂κ

(κ0)κ
∥∥∥2

V
.(4.62)

(iii) If Kad ⊂ L∞(Ω) is convex, then Φmols : Kad ⊂ L∞(Ω)→ R is a convex functional.
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Proof. Here, we only derive the formulas. The continuity assertions with respect to the arising Banach
spaces are very similar to the corresponding assertions in theorem 4.8.
(I) Taking uκ − z ∈ V1 into account, differentiating of Φmols and using the relation (2.101) yields

∂Φmols
∂κ

(κ0)(κ) = a(κ, uκ0
− z, uκ0

− z) + 2a(κ0,
∂LI
∂κ

(κ0)κ, uκ0
− z) =(4.63)

= a(κ, uκ0 − z, uκ0 − z)− 2a(κ, uκ0 , uκ0 − z) = −a(κ, uκ0 + z, uκ0 − z).

(II) Starting with the last relation and differentiating again, one obtains

∂2Φmols
∂κ2

(κ0)(κ, κ) = −a(κ,
∂LI
∂κ

(κ0)κ, uκ0
− z)− a(κ, uκ0

+ z,
∂LI
∂κ

(κ0)κ) =(4.64)

= −2(κ, uκ0
,
∂LI
∂κ

(κ0)κ) = 2a(κ0,
∂LI
∂κ

(κ0)κ,
∂LI
∂κ

(κ0)κ).

Finally, the assumption (2.30) gives the estimate in (4.62)
(III) If Kad ⊂ L∞(Ω) is convex, the convexity of Φmols follows from (4.62) by standard arguments.

The structure of the
∂2J

(1)
0

∂κ2 (κ0)(κ, κ) in (4.51) essentially differs from
∂2ΦImols
∂κ2 (κ0)(κ, κ) in (4.62).

Thus, the functional ΦImols is convex (as a functional on Kad ⊂ L∞(Ω) for a convex Kad).

However, it remains unclear whether from the representation (4.51) the convexity of J
(1)
0 can be

derived. And, as a consequence, the methods and results connected with the modified output least-
square approach cannot be simply adopted to the Knowles’ approach which compares two calculated
solutions within the domain Ω.

Based on lemma 2.24 we obtain the following corollary. Again, only the functional ΦImols will be
considered.

Corollary 4.12. Under the assumptions of theorem 2.20 (cases I), z ∈ V0 with z = φ on ΓDN , (2.32)
and f 6= 0 there holds

∀κ0 ∈
◦
Kad :

∂2Φmols
∂κ2

(κ0) 6= 0.(4.65)

In particular, there holds

∀κ0 ∈
◦
Kad :

∂2Φmols
∂κ2

(κ0)(κ0, κ0) 6= 0.(4.66)

Finally, due to (4.62) and (2.150), in inner points of Kad, the cost functional Φmols is strictly convex.

4.5 Necessary and sufficient conditions for a local minimum of cost function-
als in terms of Fréchet differentials

General necessary and sufficient conditions for the existence of a local minimum follow from general results
for real functions on Banach spaces (see for instance Showalter (1997)). However, the difficulty consists
in verifying these conditions in concrete applications, in particular in infinitely-dimensional spaces. Nev-

ertheless, we provide them here in short. We only formulate a result for the cost functional J
(1)
α . Clearly,

under Fréchet differentiability it holds for J
(2)
α , too.

Theorem 4.13. (Necessary condition for a local minimum) Let the assumptions of theorem 2.10

and (2.96) - (2.100) be given. Let the cost functional J
(1)
α given by (4.1), (4.3), (4.4), (4.7). Moreover,

let be

J (1)
α : D(J (1)

α → [0,∞[ Fréchet differentiable.(4.67)

If J
(1)
α has a local minimum in κ0 ∈ Kad, then there holds

∀κ ∈ Kad :
∂J

(1)
α

∂κ
(κ0)(κ− κ0) ≥ 0.(4.68)

Remarks 4.14. (i) This general result also remains valid under the weaker assumption of Gâteaux
differentiability (see Showalter (1997), Zeidler (1986), e.g.).
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(ii) For inner points, i.e., for κ0 ∈
◦
Kad (4.68) renders the necessary condition in form of an equation:

∀κ ∈ K :
∂J

(1)
α

∂κ
(κ0)κ = 0.(4.69)

By means of the first and second Fréchet differentials a sufficient criterion for a local minimum can
be formulated.

Theorem 4.15. (Sufficient condition for a local minimum) Under the assumptions of theorem 4.13

let the functional J
(1)
α be twice Fréchet differentiable. Than J

(1)
α has a local minimum in κ0 ∈

◦
Kad, if,

besides (4.68) the following condition holds.

∃ c0 > 0 ∀κ ∈ K :
∂2J

(1)
α

∂κ2
(κ0)(κ, κ) ≥ c0 ‖κ‖2L∞(Ω).(4.70)

The representations in (4.51) and (4.52) of ∂
2J(1)
α /∂κ2(κ0)(κ, κ) for the case of linear parameter depen-

dence (2.19) do not show how to apply practically this sufficient condition in a convenient way.

5 Outlook

In this study, we have dealt with special inverse problems arising from boundary-value problems for linear
second-order equations with a parameter. Applications in stationary linear elasticity and in electrical
impedance tomography, e.g. may lead to such problems. We have given a sound basis in the framework
of weak solution theory under mild assumptions.

In the focus are two prototypical problems (2.1) - (2.4) and (2.5) - (2.8) only differing in the boundary
condition at some part of the boundary. Hence, each prototypical problem has a uniquely determined (or
“calculated”) solution. The comparison of these solutions within the domain may be the basis of inverse
problems for identification of the parameter (see subsection 4.1).

The properties of the solution operators have been studied in detail (continuity, higher integrability
of the gradient of weak solutions, Fréchet differentiability). At many places we have followed Jin and
Maaß (2012a), Jin et al. (2012) with modifications and extensions.

Special items in this study are:

(i) non-linear parameter dependence within the PDE,

(ii) mixed boundary conditions,

(iii) use of higher integrability of the gradient of weak solutions up to the boundary.

Analogously as Jin and Maaß (2012a), Jin et al. (2012), the Lipschitz continuity of the Fréchet
derivatives of the solution operators w.r.t. some Ls topology for s < ∞ has been established. This is
essential for further investigation concerning convergence rates of regularization methods, e.g. This is not
the topic in this study, we refer to Jin and Maaß (2012a), Hofmann et al. (2007) and for the references
cited therein.

Furthermore, we have introduced some cost functionals comparing the two calculated solutions within
the domain. This is based on approaches due to Knowles (1998) as well as to Yun and Shang (2011).

Detailed studies on existence of minimizers, convergence rates of regularization methods and applica-
tions, to problems in elasticity, e.g., remain for future work.
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Gröger, K. and Rehberg, J. (1989). Resolvent estimates inw- 1, p for second order elliptic differential
operators in case of mixed boundary conditions, Mathematische Annalen 285(1): 105–113.

Haller-Dintelmann, R. and Rehberg, J. (2008). Maximal parabolic regularity for divergence operators
including mixed boundary conditions, WIAS Preprint 1288, WIAS Berlin.

Haupt, P. (2002). Continuum Mechanics and Theory of Materials, 2nd Ed., Springer-Verlag.

Herzog, R., Meyer, C. and Wachsmuth, G. (2011). Integrability of displacement and stresses in lin-
ear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and
Applications 382(2): 802–813.

Herzog, R., Meyer, C. and Wachsmuth, G. (2012). C-stationarity for optimal control of static plasticity
with linear kinematic hardening, SIAM Journal on Control and Optimization 50(5): 3052–3082.

Herzog, R., Meyer, C. and Wachsmuth, G. (2013). B-and strong stationarity for optimal control of static
plasticity with hardening, SIAM Journal on Optimization 23(1): 321–352.

43



Hofmann, B., Kaltenbacher, B., Poeschl, C. and Scherzer, O. (2007). A convergence rates result for
tikhonov regularization in banach spaces with non-smooth operators, Inverse Problems 23(3): 987–
1010.
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