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Abstract. This paper presents the optimization of a dry ma-
chining process, where thermo-mechanical effects, like shape devi-
ations, and a time dependent domain are major challenges. First,
the simulation model to compute finite element approximations to
a general milling process is presented. The model includes a sub-
model (dexel model) for material removal and process forces and
heat flux introduced by the machining tool. In a second part, we
present an optimization algorithm based in metamodels that serve
as a tool to improve processes with different performance measures
that exhibit conflicting behavior. With this metamodel-based op-
timization we avoid the use of a large number of high-fidelity com-
puter simulations, which are commonly expensive.

The approach is tested on two case studies for optimizing (a)
workpiece deformation and equivalent stress after milling, and (b)
equivalent stress and milling process time.

1. Introduction

For manufacturing businesses to be successful in the global market,
they must strive to deliver high quality products at the lowest possi-
ble cost. One approach to select the processing conditions to achieve
these goals is to run experiments on the manufacturing floor. Such
experimentation is usually costly and requires considerable amount of
time and effort, which may not be feasible during production [5]. Al-
ternatively, advanced computer simulations can be used to represent
the processes. Such computer simulations along side with optimization
methods are used to identify the values of the controllable processing
variables that optimize the relevant performance measures (PMs). In
this work, we present an integrated framework to find optimal process
parameters for a milling operation using a combination of metaheuris-
tic optimization models and thermomechanical finite element (FEM)
simulations.

Milling of metallic components is a machining operation based on
the removal of material using a multi-edged rotating tool and a rela-
tive motion of the tool and the component that generates the so-called
feed of the milling process, [15, 17]. Commonly, the feed and turning
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velocities of the machining process are operated using a Computer Nu-
merical Control (CNC) system on what is called NC machining centers.
The resulting geometry of the milled component is determined by the
feed trajectory of the machining process, removing a chip of material
in each pass of the cutting insert, [2–4]. The left draw on Figure 1.1
illustrates a milling rotating tool and its main parameters.

Figure 1.1. Left: Milling rotating tool and its main
parameters illustrated over the original geometry of the
component. Right: Illustration of thermomechanical ef-
fects on the component resulting in thermal expansion
and stress

It is well known that the cutting of material chips and friction of
the cutting tool with the component produces heat. In some cases, the
reached temperatures may lead to non-controlled material deformation
and results in undesired deflections on the machined product. The
drawing on the right side of Figure 1.1 shows the thermomechanical
deformation effect of a milled part. Then, there is big interest on
generating simulative tools to better understand the thermal effects
arising during the milling process.

In this sense, a thermomechanical simulation in which the temper-
ature generated is used as input to simulate the thermal expansion
and the corresponding mechanical deformation of the components is
needed, [2]. In this work, we consider Adaptive FEM simulations im-
plemented in ALBERTA [13] which share the coupled thermomechan-
ical spirit of previous works on heat treatment [16], laser welding [8],
and forming [9].

Joining simulation and optimization for defining the best possible
process parameters is an actual need in current engineering practice
[19, 21, 22]. This often comes together with the issue of evaluating
an optimization functional that request to run a complete simulation
which is computationally expensive at every candidate solution [6]. As
for many other real processes, the milling simulation can require a large
amount of computations and, in dependence of the process complexity,
a single simulation evaluation can take minutes to even days.

For this type of problems, optimization methodologies for simula-
tion outputs are typically based on surrogate models (or metamodels)
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which are mathematical models that try to mimic the behavior of the
simulation model based on a limited number of observations [1, 7, 21].
Metamodels help reduce the computational effort required to evaluate
the performance measures at different process conditions, as they are
faster to evaluate than the simulation model. Surrogate models are
also convenient for cases when it is only possible to use experimental
data and a single process evaluation is expensive and time consuming.
Therefore, by utilizing surrogate models it is possible to use an opti-
mization technique that requires the evaluation of the process at a high
number of processing conditions. The most commonly used surrogate
models are Response Surface, Kriging, Radial Basis Function (RBF),
and Artificial Neural Networks. Reviews of surrogate models used in
optimization via simulation can be found in [1, 7, 14, 21].

In the following sections, the milling process and its thermomechan-
ical simulation (Section 2), the metamodel-based optimization method
(Section 3), and two case studies where simulation and optimization
are merged to obtain the set of optimal PMs (Section 4) are presented.
Finally, we present some conclusive remarks in Section 5.

2. Numerical process simulation

We use an Adaptive FEM simulation for the milling process consid-
ering the connection of a dexel model and the thermal and mechanical
equations as presented in [2]. The models consist of an extension of a
classical NC-Simulation to emulate thermomechanical effects making a
difference between the model for the workpiece and the process model
(see Figure 2.1).

Figure 2.1. Detailed information flow of simulation system
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The workpiece model describes the current state of the workpiece
in geometrical and thermomechanical aspects (Figure 2.1 left). A ma-
terial removal simulation via a dexel model allows to represent the
change of the geometrical representation during the process. A FE-
model calculates temperature and linear deformation to represent the
thermomechanical workpiece behavior.

The process model has several calculation steps (Figure 2.1, right).
The cutting conditions are calculated from the geometrical intersec-
tion of the tool and the workpiece. With this data, the cutting force
and heat flux are predicted and the mechanical and thermal loads are
calculated. This changes the boundary conditions of the FE-model.
The shape deviations generated by the material cutting process are
predicted based on the calculated temperature and deformation be-
havior of the workpiece. For detailed descriptions of these calculations
see [2–4,10].

(a) t = 4s (b) t = 4s

(c) t = 142s (d) t = 142s

(e) t = 174s (f) t = 174s

(g) t = 240s (h) t = 240s

Figure 2.2. Simulation of milling at different process
times. Left: Temperature, Right: Deformation using a
scaling factor of 100

2.1. Simulation of milling processes. Now we present the simu-
lated milling process and some FEM simulation results that serve to
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determine a reduced geometry to be used to estimate the performance
measures values for the optimization in Section 3.

2.1.1. Reference process. The machining of a thin walled part made
of 1.1191 Steel has been chosen as reference process and it has been
used in different works, [3,4,10]. The blank part is a rectangular work-
piece 40mm width, 40mm thick and 195mm of length. The percent-
age machined material is about 60% (see Figure 2.2). The workpiece
is clamped on two sides, with one degree of freedom for torsion and
translation. The sides are fixed on a dynamometer, which allows to
measure the fixture forces. The machining strategy is z-level constant,
the roughing process is divided in different steps for every level and a
finishing step of the thin wall is performed in one cut and with different
number of levels, [4].

2.1.2. Simulation results. The mathematical model to simulate the ther-
momechanical behavior of the workpiece during the machining process
has been presented in [10]. It includes the description of the heat
equation and the quasi-stationary linear elasticity equation on a time-
dependent domain with boundaries changing in every time step. This
coupled system is implemented using the Adapted Finite Element Tool-
box ALBERTA [13].

(a) t = 385s (b) t = 385s

(c) t = 507s (last timestep) (d) t = 507s (last timestep)

Figure 2.3. Simulation of milling during finishing and
at the process’ end. Left: Temperature, Right: Deforma-
tion using a scaling factor of 100

The milling process is divided into two parts, a roughing and a fin-
ishing part. Roughing is the removal of large portions of material out
of the workpiece, while the finishing step is a detailed material removal
of only few µm and it is performed at the end.

Figures 2.2 and 2.3 show the simulation results for temperature and
mechanical deformation at some fixed times. The roughing is shown in
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Figure 2.2 and the finishing step in Figure 2.3 (a)-(b). Finally, Figure
2.3 (c)-(d) show the simulated workpiece at the end of the process.

The simulation results have shown to be in accordance with experi-
mental data for both temperature and deformation [4]. The thermome-
chanical implementation has also been used to simulate more detailed
milling processes with thin walled workpieces for lightweight structures.

2.2. Simulation setting for optimization. In practice, when the
produced workpieces present geometric deviations above the allowed
tolerances, a costly correction step is needed, and it might even be
necessary to adjust the process parameters, [11,12]. In order to improve
the results of a milling process, we intend to connect the simulation
model with an optimization procedure.

For this, we consider some input parameters like the cutting width
ae, cutting depth ap, cutting velocity vc, feed rate vf , among others.
Different process parameter will result in different material removal
conditions which change the shape of the current workpiece Ωt. As
process output, we consider the geometric change in the domain Ωt as
well as the effects on thermal expansion on the face where the cut is
done. These thermomechanical undesired effects can be observed by
measuring the resulting deformation and stress.

Additionally, in order to maintain the simulation affordable, we re-
duced the analyzed workpiece to a subdomain of the complete geometry
defined as a slice 5mm thick located in the longitudinal center of the
workpiece, as illustrated in Figure 2.4. The slice is an L-shaped geom-
etry after the milling process is performed. Within this small domain
we want to find the optimal process parameters to obtain the smallest
deformation and stress.

Figure 2.4. Model process for optimization, L-shaped domain

3. Multiobjective Optimization Method

Real manufacturing problems often involve different PMs that ex-
hibit conflicting behavior. For example, the processing conditions that
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provide the best quality product may not correspond to the lowest pro-
duction cost. Such situations are strongly present in the milling process
that was presented in Section 2. For this reason, we are interested in a
methodology to get improvements of a generalized form of performance
where several criteria can be studied together.

When multiple conflicting PMs are involved, optimizing a single ob-
jective can result in solutions that perform poorly for other objectives.
Thus, it is not the best approach to obtain a single solution but rather
the set of solutions corresponding to the best compromises. For this,
we use the following definition of Pareto solutions:

3.1. Definition. A feasible solution x1 of the optimization problem
minimize (f1(x), f2(x), . . . , fm(x)) is said to dominate x2 if: fi(x1) ≤
fi(x2) for i = 1, . . . ,m, and fi(x1) < fi(x2) for some i ∈ {1, . . . ,m}.
The non-dominated solutions are known as Pareto solutions. The set
of Pareto solutions is known as Pareto Set (Pset) and the corresponding
output values form the so called Pareto Front (Pfront).

Given a problem with conflicting PMs, we can focus our attention
on finding the Pareto set, and then a decision maker can select the best
one on a particular moment of the process. This allows for the decision
maker to give different importance to the PMs at any time, once the
set of non-dominated solutions is known.

In this work, we use an adapted version of the metamodel-based
multiobjective simulation optimization method introduced in [18] to
optimize two case studies for a milling process.

The method is schematically shown on Figure 3.1 and starts by per-
forming an experimental design to collect a set of initial data points,
and a simulation run is performed at each point. Then the set of best
compromises between all performance measures is found using Defini-
tion 3.1, and it is called Incumbent Pareto Front. Using this, the main
iteration steps are the following:

(1) Use all available simulated data to fit a metamodel for each
PM.

(2) Use the metamodels to estimate the value of the PMs for a large
set of input combinations.

(3) Identify the best compromises between all PMs. Call the cor-
responding Pareto Front, Predicted Pareto Front. The corre-
sponding controllable variables settings are the predicted Pareto
Set (P̃set).

(4) Evaluate the predicted Pareto Set using the simulation code.
(5) Update the incumbent Pareto Front (based on simulated data)

using the new information.
(6) Evaluate stopping criteria.
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Start

Run initial computer experiment

Found incumbent Pareto Front

Form a surrogate model per PM

Evaluate surrogate models at a uni-
form grid of input combinations

Found predicted Pareto Set and Front

|P̃set| ≤ N left
sim

or
|P̃set| ≤ Nmax

sim

Evaluate simulation code at pre-
dicted Pareto Solutions (or selected)

Selected a sub-
set of min

{N left
sim , Nmax

sim } points

Update incumbent Pareto Front

Satisfy a Stop-
ping Criteria?

Add newly simulated
points to design matrix

Stop

yes

no

no yes

Figure 3.1. Multiobjective optimization method flow diagram
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It is important to mention that at step 4, if the number of solu-
tions on the predicted Pareto Set is larger than the remaining num-
ber of simulation runs allowed (N left

sim ), or it is larger than the maxi-
mum number of simulations allowed per iteration (Nmax

sim ), a subset of

min{N left
sim , N

max
sim } solutions is selected based on a Maximin distance

criterion using the predicted Pareto Front. A value of 5n, where n is
the number of controllable variables, is recommended for Nmax

sim .
Using these iterative steps, the metamodels are updated and are

used to approximate a new Pareto Set. The updated models are able
to obtain good approximations of the output responses near the Pareto
Front at each iteration.

At each iteration a series of stopping criteria are evaluated and if at
least one is met, the method stops and reports the incumbent Pareto
Solutions, otherwise, the new simulated points are added to the existing
set of data points and a new iteration begins. The stopping criteria we
used in this implementation are:

• Stop if the total number of simulation (N total
sim ) allowed is reached

• Stop if the coefficient of determination R2 of all models is larger
than 1− ε
• Stop if no new Pareto solutions are found

It has been demonstrated in [18] that this multiobjective optimiza-
tion method is able to approximate a set of Pareto solutions without
having to evaluate a large number of simulations. 15n has been shown
to be a good upper limit for the total number of simulations (N total

sim ).
In [20], the method was used to solve two case studying on an injection
molding process. The results were compared with an approach based
on Gaussian process metamodels and it was shown that both methods
perform comparably.

4. Case Studies

In machining operations, the produced heat results in thermome-
chanical distortion of the workpiece and thereby in incorrect material
removal by the cutting tool. Especially in machining thin walled parts
for lightweight structures, an additional finishing step is needed if the
resulting shape deviations are large. In this context, the aim for math-
ematical optimization of a milling process is to minimize the resulting
distortion in the produced workpiece.

In this Section, we present two optimization case studies of a milling
process with two process’ PMs simultaneously.

4.1. Case Study 1: Deformation and stress. The optimization on
this case study has two PMs and two process controllable variables.
The considered optimization goals are minimize deformation (u) and
minimize equivalent stress (σvM). As process controllable variables we
considered cutting velocity (vc) and axial cutting depth (ap). The ranges
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used for the controllable variables are [100, 300] (m/min) and [5, 30]
(mm) for vc and ap, respectively.

The rest of the process variables are considered as fixed considering
the values as the ones listed in Table 1. Other typically considered
variables (like spindle speed, feed speed and feed per revolution) can
be calculated from the value of the cutting velocity vc and the values
in Table 1.

Variable Value
Radial depth of cut ae = 20 [mm]
Number of teeth z = 4 [-]
Feed rate per tooth fz = 0.20 [mm/tooth]
Cutter diameter D = 40 [mm]
Average chip thickness hm = 0.20 [mm]

Table 1. Process simulation setting values of fixed vari-
ables for Case Study 1 and 2

Deformation u is calculated as the average of the Euclidean Norm of
3 given points on the outer side of the thin wall near the inner corner
of the final workpiece and stress is given as the volume average of the
Von Mises stress σVM in a cylinder with radius 1mm around the inner
corner point of the final workpiece.

The process simulations are running on a workstation with four
CPUs (Intel i7-3770, 3.4 GHz) by using one CPU for the finite ele-
ment simulation and one CPU for the material removal. All processes
start with 242 degrees of freedom (DOFs), 600 active elements inside
and zero non-active elements outside the workpiece. During the process
the number of DOFs and elements decrease by the adaptive approxi-
mation of the geometry change in average up to 22 000 DOFs, 95 800
non-active elements outside and 17 800 active elements inside the final
workpiece. The simulation time and timesteps depends on the varying
vc and ap.

For the multiobjective optimization algorithm we used the following
parameters: as suggested in [18], the maximum number of evaluations
allowed was set to N total

sim = 30; the maximum number of runs per
iteration was set as Nmax

sim = 10; and the lower bound for R2 was set at
99% (ε = 0.01).

The optimization procedure is as follows:

Initialization

(1) Run initial experimental design
The first step of the method is to design and run an experiment
to get an initial sample of data points: as suggested in [20]
a Central Composite Design is used. The values of the con-
trollable variables and corresponding performance measures are
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Run vc [m/min] ap [mm] σvM [MPa] ‖u‖2 [mm] Proc. time [min]
1 100.00 17.50 477.29 0.0709 4.97
2 129.29 8.66 562.30 0.1102 7.13
3 129.29 26.34 346.23 0.0357 2.75
4 200.00 5.00 300.25 0.1085 6.73
5 200.00 17.50 296.99 0.0334 2.48
6 200.00 30.00 249.59 0.0252 1.80
7 270.71 8.66 353.52 0.0460 3.41
8 270.71 26.34 215.12 0.0228 1.32
9 300.00 17.50 219.31 0.0243 1.66

Table 2. Results of initial experimental design

shown on Table 2. Figures 4.1 and 4.2 show in black dotes (1
to 9) the controllable variables and PMs values, respectively.

(2) Find incumbent Pareto Front
After all data has been collected, the incumbent Pareto Front
is identified. The incumbent Pareto solutions, from the initial
points, is solution 8 (see Figure 4.2).

Figure 4.1. Case Study 1: Controllable pro-
cess variables values of initial experiment (black dotes,
{1, 2, . . . , 9}) and extra runs (stars, {10, 11, . . . , 19})
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Figure 4.2. Case Study 1: PMs values of initial exper-
iment (black dotes, {1, 2, . . . , 9}) and extra runs (stars,
{10, 11, . . . , 19})

Main Iteration

(1) Form a surrogate model per performance measure
A surrogate model is fitted for each PM using all available ex-
perimental data. The fitted models used here are Multiple Lin-
ear Regression (MLR) models with one degree of freedom. The
coefficients of determination R2 of the surrogate models are
R2

1 = 0.9395 (stress) and R2
2 = 0.9974 (deformation).

(2) Evaluate surrogate models at a uniform grid of input combina-
tions
The surrogate models are evaluated at a uniform grid of 201x51
input combinations. Figure 4.3 shows the evaluation of the
models; where, f̂1 estimates (interpolates) stress and f̂2 esti-
mates deformation.

(3) Found approximated Pareto Set and Front
Now, the Pareto Front of the predicted solutions is found. The
predicted Pareto Front has 118 solutions. However, since the
maximum number of simulations allowed per iteration Nmax

sim =
10, 10 solutions were selected using a max-min distance crite-
ria algorithm with 1000 iterations. This is, 1000 subsets of 10
points were randomly selected out of the 118 points and the set
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Figure 4.3. Case Study 1: (a) Predictions of meta-
models with selected predicted Pareto Solutions (circled
solutions)

which minimum distance between two points is the maximal
was selected. The circled solutions on Figure 4.3 are the 10
selected predicted Pareto solutions.

(4) Evaluate selected predicted Pareto Solutions
Table 3 shows the input and output values of the 10 new runs.
Figures 4.1 and 4.2 show the results graphically as red stars
(solutions 10 to 19). The simulations were carried out using
the same fixed parameters as the initial runs.

(5) Update Incumbent Pareto Front
The Incumbent Pareto Front is updated comparing the initial
incumbent Pareto Front (solution 8) and the 10 new additional
runs. The new Pareto solutions are 12 and 14.

(6) Evaluate Stopping Criteria
Next the stopping criteria are evaluated. The criteria used here
are: (1) stop if the maximum number of simulation allowed was
reached (no, 19 < 30); (2) stop if R2 of all models is larger than
1 − ε = 0.9900 (no, R2

1 = 0.9395 and R2
2 = 0.9974); (3) stop

if no new Pareto solutions were found (no, new solutions were
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Run vc [m/min] ap [mm] σvM [MPa] ‖u‖2 [mm]
10 281.00 23.50 207.35 0.0221
11 235.00 24.00 221.27 0.0236
12 264.00 24.00 212.13 0.0218
13 286.00 24.00 203.56 0.0223
14 293.00 24.50 199.60 0.0219
15 295.00 25.00 208.83 0.0219
16 298.00 26.00 201.57 0.0232
17 300.00 27.00 205.51 0.0227
18 300.00 28.00 203.35 0.0219
19 299.00 30.00 201.92 0.0236

Table 3. Case Study 1: Evaluation of selected pre-
dicted Pareto solutions

Run vc [m/min] ap [mm] σvM [MPa] ‖u‖2 [mm]
12 264.00 24.00 212.13 0.0218
14 293.00 24.50 199.60 0.0219
Table 4. Case Study 1: Final Pareto Solutions

found). Since none of the stopping criteria were met, a new
(main) iteration begins.

Second iterations
On the second iteration, new metamodels were fitted using all
available data (19 simulations). The R2 of the new models are
R2

1 = 0.9997 and R2
2 = 0.9999. Later, the models were used

to predict a new Pareto front which only has one new solution,
x20 = (100, 30). Then, a simulation run was performed using
x20 and the corresponding outputs are f20 = (394.08, 0.0482).
Afterwards, the incumbent Pareto front was update but did not
changed. Then, the stopping criteria were evaluated and since
the R2 of both models are larger than 0.99 the method stopped
and the final Pareto solutions are reported.

Report Final Incumbent Solutions
The final Pareto solutions are shown on Table 4. From this
table it can be noticed that both solutions have similar perfor-
mance and the axial depth is similar too. However, solution
12 requires a slower cutting velocity than solution 14 but it
generates higher stress. In a practical application, the specific
component production will always include some extra informa-
tion given by the decision maker and is in this form that we are
able to select one Pareto solution and dismiss the others.
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4.2. Case Study 2: Time efficiency and stress. To further in-
vestigate the optimization of the milling process, now we consider the
time spent to perform one complete milling process together with the
resulting workpiece stress.

As in Case Study 1, the optimization was conducted following the
flow chart in Figure 3.1, using the same controllable variables and pro-
cess parameters. The initial design of experiments is the same Central
Composite Design as Case Study 1. For this input values, Table 2
shows the values of the PMs: stress and processing time. The PMs
values are also shown graphically on Figure 4.4 as black dotes. The
initial Pareto solution is solution 8.

Figure 4.4. Case Study 2: PMs values of initial ex-
periment (black dots, {1, 2, . . . , 9}) and extra runs (red
stars: 10 to 19 (iteration 1) and 20 to 29 (iteration 2)

Then, saturated MLR models were fitted to estimate stress and pro-
cess time. The R2 of the metamodel for stress is 0.9395 and 0.9990
for process time. The performance measures values of 10,251 (201 x
51) solutions were calculated and the predicted Pareto Front identified.
The predicted Pareto Front has 101 solutions but only 10 were selected
and simulated. Table 5 shows the results of the 10 additional runs
(solutions 10 to 19).

Now the incumbent Pareto Front is updated comparing the initial
Pareto Front (solution 8) and the additional 10 simulations. The new
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Run vc [m/min] ap [mm] σvM [MPa] Proc. time [min]
10 272.00 24.00 202.84 1.30
11 281.00 24.00 208.07 1.26
12 259.00 24.50 204.43 1.37
13 289.00 25.00 205.04 1.23
14 296.00 25.00 217.38 1.20
15 300.00 25.00 202.62 1.18
16 300.00 26.00 206.87 1.19
17 298.00 27.00 205.52 1.20
18 298.00 28.00 205.23 1.20
19 300.00 29.00 209.47 1.20
20 255.00 14.50 294.47 2.51
21 255.00 16.50 246.26 1.95
22 165.00 29.50 279.08 2.18
23 169.00 29.50 288.69 2.12
24 106.00 30.00 387.52 3.39
25 116.00 30.00 356.80 3.10
26 129.00 30.00 344.63 2.78
27 134.00 30.00 342.61 2.68
28 154.00 30.00 325.50 2.33
29 284.00 30.00 219.06 1.27
Table 5. Case Study 2: Evaluation of selected pre-
dicted Pareto solutions. Iteration 1: solutions 10 to 19,
Iteration 2: 20 to 29

Run vc [m/min] ap [mm] σVM [MPa] Proc. time [min]
15 300.00 25.00 202.62 1.18

Table 6. Case Study 2: Final Solution

incumbent Pareto solutions are solution 15. Then, the stooping crite-
ria of the method are evaluated. Since one of the R2 values for the
metamodels is lower than 0.9900, then method continues iterating.

On the second iteration, the R2 of the new models are 0.9995 and
1 for stress and process time respectively. The new predicted Pareto
Solutions (20 to 29) are listed on Table 5. The incumbent Pareto
Front was updated but no new Pareto solutions were identified. At
this iteration the method stopped and the final Pareto Set and Front
are reported on Table 6. On this application a unique solution that
minimizes both objectives (stress and process time) was identified.
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5. Conclusion

In summary, we presented the thermo-mechanic problem on a milling
process and used a sequential surrogate based multiobjective simula-
tion optimization method to solve two case studies of this machining
process. The goal was to find the controllable process variables that
optimize two performance measures of the milling process simultane-
ously. In general, the method was able to approximate a Pareto Front
in a modest number of evaluations, which is critical for the cases of
interest where a single simulation or experimental run can be costly
and time consuming.

As future work, we will apply the optimization method to thermome-
chanical case studies with more than 2 PMs. Also, we will investigate
how to account for process variability in the optimization method.
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