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How Chip Manufacturers Can Learn From Pedestrians
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Clogging at Bottlenecks and “Faster-is-Slower Effect”

Physical interactions and friction effects 

due to uncontrolled rush and pushy behavior

Faster-is-slower effect Obstacles can improve outflow

Learning from pedestrians

D. H., I. Farkas, and T. Vicsek, Nature 407, 487 (2000).
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Practical Implications and Design Solutions

D. H. et al., 
Transpn. 
Science 39, 1 
(2005).

Without an obstacle one can observe clogging effects and a tendency of people to fall in panic situations 
(left).

The clogging effect can be significantly reduced by a suitable obstacle, which increases the efficiency of 
escape and diminishes the tendency of falling (right).
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Automated Guided Vehicles

Quelle: GEO

• Container transport from ship to storage and back
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Automated Guided Vehicles
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Illustration of a Wet-Bench

Chemical Water Chemical ChemicalWater Water Park PositionsDryer Input,
Output

GC

D. Fasold, Diplomarbeit, TU Dresden.
D. H., T. Seidel, S. Lämmer, K. Peters: Self-organization principles in supply
and production systems, in Socio- and Econophysics (2006).
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Slower-is-Faster Effect in Semiconductor Production

Slower-is-
faster effect

Old recipe:   
ca. 170/h

New recipe: 
ca. 230/h
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Implications

We found
non-stationary and non-periodic solutions
large sensitivity
unpredictible dynamics
inefficient production.

We reached
stable production
high throughputs.
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Hypothesis

Production systems are characterized 
by a complex (e.g. fractal) phase space

Possible dynamic solutions include 
unstable and chaotic solutions

(Phase) Transitions from one dynamic behavior 
to another one occur at  critical parameter thresholds

Methods developed to describe complex systems are 
required to understand and optimize the dynamics of 
production processes
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Modeling of Linear Supply Chains

The stock level (“inventory”) Nb at supplier b changes in time t according 
to

)()( 1 tQtQ
dt

dN
bb

b
+−=

… rate at which supplier b receives ordered products from 
supplier b – 1 

)(tQb

… rate at which supplier b delivers products to the next 
downstream supplier b + 1 

)(1 tQb+

D. H., New Journal of Physics 5.90, 1-28 (2003).
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Modeling of Linear Supply Chains

)]()([1 tQtW
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The temporal change of the delivery rate is proportional to the 
deviation of the actual de-livery or production rate from the desired 
one Wb (the order rate). Its adaptation takes on average some time 
interval τ:
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is a weighted mean value of the own stock level and the the ones of 
the next n upstream and n downstream suppliers. The weights wc
are normalized to one: n
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Dynamic Instability of Production Processes

Are small variations amplified as in stop-and-go traffic?

If yes, what would be the consequences?

- Unreliable forecasts and production schedules

- Unpredictable lead times

- Inefficient production
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Dynamics of a Sequential Supply Chain: 
Mode Selection and Synchronization
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Phase Transitions in Supply Systems

Nmin

Nmax

Nmin
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Management Strategy and 
Maximum Oscillation Amplitude
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Production and Logistics

Automobile 
manufacturer

Electronics

Car body

Interior equipment

Tires

Steel

Drapery

Vulcanized
rubber

Wholesaler
Europe

Wholesaler
USA

Cable

…

Material vendor Supplier Manufacturer Wholesaler

Car dealer A

Car dealer B

Car dealer X

Car dealer Y

…

…
…

…
…

Open questions:

• Inventory vs. just in time production?

• How important is the network topology?

Supply Chain as a network structure:



18

INSTITUTE  FOR TRANSPORT & ECONOMICS                            Dirk Helbing
Chair for Traffic Modeling and Econometrics

Modeling Macroeconomic Commodity Flows

Conservation of resources

Adaptation of prices

Adaptation of delivery rates

Consumption

D. H., U. Witt, S. Lämmer, T. Brenner, Physical Review E 70, 056118 (2004).
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Dynamic Behavior

Stationary Equilibrium

Linearized Equations

Eigenvalues

with

with
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Network-Induced Oscillatory Behaviour

Input matrices with real eigenvalues only

Overdamped behaviour possible.
Oscillations are never growing. 

Input matrices with complex eigenvalues

Always oscillating.
Growing oscillations are likely.



21

INSTITUTE  FOR TRANSPORT & ECONOMICS                            Dirk Helbing
Chair for Traffic Modeling and Econometrics

Empirical Supply Networks

Commodity flow (average of FRA, GER, JAP, UK, USA)Commodity flow (average of FRA, GER, JAP, UK, USA)

Network structureNetwork structure

D. H., U. Witt, S. Lämmer, T. Brenner, Physical Review E 70, 056118 (2004).
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An Alternative Explanation of Business Cycles

• Investigation of the network structure:

• Positive and negative feedbacks in production processes

• Time lags in the information flow and adaptation process

Business cycles because of the structure of production networks?

Input output matrix Related delivery 
network

Resulting oscillations 
in the gross domestic 
product
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Impact of the Supply Network’s Topology

D. H., New Journal of Physics 5.90, 1-28 (2003).
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Analogies to Production Networks

Directed Links:
– Road sections Buffers
– Travel- and delay time Cycle time
– Congestion, queues Full buffers
Nodes:
– Junctions Processing units
– Different origin-destination Different products flows
– Conflicting flows Conflicts in usage of 

gripper, transfer cars etc.
– Traffic light scheduling Production scheduling
– Green Wave ConWiP strategy
– Accidents Machine breakdowns

Road NetworksRoad Networks Production NetworksProduction Networks
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Adaptive Traffic Light Control

- for complex street networks

- for traffic disruptions (building sites, accidents, etc.)

- for particular events (Olympic games, pop concerts, etc.)
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Road Network as Directed Graph

Directed links are homogenous road sections

– Traffic dynamics: congestion, queues
Nodes are connectors between road sections

– Junctions: merging, diverging

Intersections
– Traffic lights: control, optimization

Traffic assignment 
– Route choice, destination flows

Local Rules,Local Rules,
Decentralization,Decentralization,
Self organizationSelf organization

D. H., S. Lämmer, J.-P. 
Lebacque, in C. Deissenberg
and R. F. Hartl (eds.) 
Optimal Control and 
Dynamic Games (Springer, 
2005).
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Fluid-Dynamic Traffic Model

Flow Q and density ρ are 
empirically correlated via the
fundamental diagram Qe(ρ)

Derivative Derivative QQee’ plays an ’ plays an 
important role!important role!
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Network Links: Homogenous Road Sections

Movement of congestion

Number of vehicles

Travel time
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Network Nodes: Connectors

Side Conditions

– Conservation

– Non-negativity

– Upper 
boundary

– Branching

Goal function
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Network Nodes: Special Cases

1 to 1:

1 to n: Diverging with branch weight αij

n to 1: Merging

D. H., J. Siegmeier, S. Lämmer, Networks and Heterogeneous Media (2007).
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Network Representation of Intersections
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Intersections: Modelling

Traffic light
– Additional side condition

Intersection
– Is only defined by a set of 

mutually excluding traffic lights
– Each intersection point gives

one more side condition
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Interdependence of Subsequent Intersections

Green Green 
wavewave

NonNon--optimal optimal 
phase shiftphase shift

Different Different 
cycle timescycle times

Stochastic Stochastic 
switchingswitching
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Self-Organized Traffic Light Control

Particular Challenges and Difficulties:
• Large variations in demand, turning rates, etc.
• Irregular networks, nodes with 5, 6, 7 links
• Switching times discourage frequent switches, reduce flexibility a lot!
• Queue front does not stay at service station (traffic light, intersection), 

instead propagates upstream and complicates queue dynamics
• Travel times are dependent on load/congestion level
• Delay times propagate in opposite directions 
• Variety of service/turning directions is costly: reduces the fraction of 

green time for each direction
• Congested subsequent roads can diminish the effect of green times
• Minimum flow property reduces throughput of shared lanes
• Optimal sequence of signal phases changes, optimal solutions are

aperiodic!
• Some directions may be served several times, while others are only 

served one time (i.e. it can make sense to split jobs!)
Optimization problem is dominated by non-linearities and NP hard!
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Operation Regimes of Traffic Light Scheduling

I. “Gaseous” Free-Flow Low-Density Regime

• Demand considerably below capacity

• Application of the first-in-first-out/first-come-first-serve principle

• Individual cars get green lights upon arrival at intersection

• Default state is a red light!

• All turning directions can be served

• Low throughput because of small vehicle arrival rate

D. H., T. Seidel, S. Lämmer, K. Peters: Self-organization principles in supply and 
production systems, in Socio- and Econophysics (2006).
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Operation Regimes of Traffic Light Scheduling

II. Droplet-/Platoon-Forming, Mutually Obstructed Regime

• Demand below and possibly close to capacity

• Simultaneous arrivals and, therefore, conflicts of usage likely

• Waiting times are unavoidable. Hence, vehicle platoons are forming

• The goal is to minimize waiting times

• Serving platoons rather than single vehicles increases throughput!

• Longer standing platoons are prioritized compared to shorter ones

• Moving platoons are prioritized compared to similarly long standing 

platoons. This is essential for traffic light synchronization and 

formation of green waves.
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Operation Regimes of Traffic Light Scheduling

III. Condensed, Congested, 
Queue-Dominated Regime

• Demand above capacity

• Goal becomes flow maximization, as 
queues form in all directions

• Application of flow bundling principle 
(similarly to platoon formation) is 
recommended: Reduction of 
service/turning directions, i.e. of 
heterogeneity, increases capacity
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Reduction of Traffic Phases 
Means Increase of Capacity
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Intersection-Free Designs

D. H., J. Siegmeier, S. Lämmer, Networks and Heterogeneous Media (2007).
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Operation Regimes of Traffic Light Scheduling

IV. Bubble Flow, Heavily Congested Gap 
Propagation Regime

• Demand considerably above capacity

• Almost all streets are more or less fully congested

• Gap propagation principle replaces vehicle propagation

• Goal is to avoid stopping of gap (“bubble propagation”)

• Larger and moving gaps are given priority

Best in terms of throughput is an approximately half-filled system. The 
load/occupancy corresponding to the maximum throughput should not be 
exceeded. The use of access control with traffic lights is, therefore, 
recommended. This defines a kind of CONWIP strategy for traffic.
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Partitioning into Sub-Networks

• Specification of core areas
(e.g. rectangular or hexagonal).

• Each core area is surrounded by 
a peripheral area.

• Size of peripheral area depends 
on optimization horizon and 
velocities on the links 
(e.g. 300-500 meters).

• Weights are assigned to the 
nodes. In the periphery, weight 
values should become smaller 
with increasing distance to the 
core area.

• Introducing node weights 
significantly improves the 
efficiency of the optimization 
process.
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Self-Organized Oscillations at 
Bottlenecks and Synchronization

• Pressure-oriented, autonomous, 
distributed signal control:

– Major serving direction 
alternates, as in pedestrian 
flows at intersections

– Irregular oscillations, but 
‘synchronized’

• In huge street networks:
– ‘Synchronization’ of traffic 

lights due to vehicle streams 
spreads over large areas
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Application Example: City Center of Dresden

Simulation “Pirnaischer Platz” (City center of Dresden)
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