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We use derivatives all day

• Looking for extrema:
f
′
(x) = 0

• Expressing conntection between quantities:

y
′
= f(y, x)

• Calculating norms or constaints:

‖f‖ =

Z
|∇f |
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Zenons Paradox

Zenon aus Elea [490 v. u. Z - 425 v. u. Z]:

A flying arrow isn’t moving. Because at every point of time,
the arrow takes over a place, which is similar to its shape. It
can neither take over a bigger place, nor be at two places at
the same time.
Since there is nothing between a moment and the next one
and because the arrow can not move at a point of time, it isn’t
moving at all.
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Different Lights on derivatives

• Dynamically as a limit:

f
′
(x) = lim

x0→x

f(x0)− f(x)

x0 − x
• Static as a linear approximation:

A linear mapping u is called derivative of f , if for every x0 holds:

∀ε > 0∃δ > 0 : ‖h‖ < δ =⇒ ‖f(x0 + h)− f(x0)− u(h)‖ < ε‖h‖

• Like a physicist as a quotient of infinitely small quantities:

f
′
=

df

dx

Or (especially for Ronny):

• As an inverse problem:

f
′
= A

−1
f where A is the compact operator A : f 7→

Z
f
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The Discovery of the Derivative

• NEWTON [1643 – 1727]

• LEIBNITZ [1646 – 1716]

• CAUCHY [1789 – 1857], WEIERSTRASS [1815 – 1897]
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NEWTON’s Fluxions

NEWTON called a variable quantity a fluent. He called their velocity (i. e. their derivatives) fluxi-
ons.
The third important term in the fluxion calculus is the moment of a fluxion. NEWTON defines it
as an just about noticeable increment to a quantity and denotes it with o.
So o is the moment of time, xo is the moment of the fluent x and ẋo is the moment of the
fluxion. Today this is known as the differential dx. The moment of the fluxion ẋo is the velocity
multiplied by an infinitesimal interval of time.

Example calculation in NEWTON’s style:
A point moves along the curve described by x2 − y = 0.
Substitute x + ẋo in place of x and y + ẏo in place of y and delete the term x2 − y which is
zero:

2xẋo + (ẋo)
2 − ẏo = 0 division by o gives: 2xẋ + (ẋ)

2
o− ẏ = 0.

Since o is an infinitesimal interval of time we have

2xẋ− ẏ = 0 which is in todays notation 2x =
ẏ

ẋ
=

ẏo

ẋo
=

dy

dx
.
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LEIBNITZ and infinitesimal numbers

LEIBNITZ imagines a subdivision of the real x-axis into infini-
tely many infinitesimal intervals with extremes x1, x2, x3, . . . .
He defines dx = xn+1 − xn.
On the curve and on the y-axis one has the corresponding
succesions s1, s2, s3, . . . and y1, y2, y3, . . . .
The area under the curve is the sum of infinitely many stripes
ydx and denoted by

R
ydx.

x

y

dx

dy ds

The symbols d and
R

applied to finite quantities generate infinitely small and infinitely great
quantities. So if x is a finite angle, dx is a infinitely small angle.
Thus the symbols d and

R
change the order of infinity but preserve the geometrical dimensi-

ons. (NEWTON’s dot-symbol do something else: If x is a flowing line, ẋ is its velocity.)
The symbols d and

R
can be iterated to obtain higher-order infinitesimals or higher-order infi-

nites. So ddx is infinitely small compared to dx and
RR

x is infinitely great compared to
R

x.
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Example calculation in LEIBNITZ’s style

The find the area under a curve we have to calculate
R

ydx.
This can be done by finding a z such that dz = ydx. Thus at
once Z

ydx =

Z
dz = d

Z
z = z.

x

y

dx

dy ds
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The Derivative in the 19th Century

The first definitions in infinitesimal calculus which are like today date back to CAUCHY [1789 –
1857]:

Definition 1 (Derivative, 1823). When a function y = f(x) remains continuous between
two given limits of the variable x, and when one assigns to such a variable a value enclosed
between the two limits at issue, then an infinitely small increment assigned to the variable
produces an infinitely small increment in the function itself. Consequently, if one puts ∆x = i,
the two terms of the ratio of differences

∆y

∆x
=

f(x + i)− f(x)

i

will be infinitely small quantities. But though these two terms will approach the limit zero inde-
finitely and simultaneously, the ration itself can converge towards another limit, be it positive
or be it negative. This limit, when it exists, has a definite value for each perticular value of
x; but it varies with x. . . ; The form of the new function which serves as the limit of the ratio
(f(x+ i)−f(x))/i will depend on the form of the proposed function y = f(x). In order to in-
dicate this dependance, one gives the new function the name derived function, and designates
it with the aid of an accent by the notation y′ or f ′(x).
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Today’s formalism: Epsilontik – Handcuffs for Analysis

CAUCHY and WEIERSTRASS developed the pecise notion with ε and δ.

Example Calculation: Differentiation of f(x) = x2:

f
′
(x) = lim

h→0

(x + h)2 − x2

h
= lim

h→0

2xh− h2

h

= lim
h→0

2x + h.

For every ε > 0 we chose h = ε/2 and so we have h = ε/2 < ε which shows limh→0 h = 0.
Thus f ′(x) = 2x.

Is a possible to do calculation with infinitesimal numbers in a mathematically
justified way?
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Non Standard Analysis

Construct a field ∗R which contains R and in addition infinitesimal numbers x ∈ ∗R, x 6= 0,
i. e.:

∀n ∈ N : 0 < x ≤
1

n

What we know: From Q to R:

1. Consider M = {(an) ∈ QN | (an) is a CAUCHY sequenz}
2. Define an equivalence relation: (an) ∼ (bn) ⇔ limn→∞(an − bn) = 0.

3. Let R = M/ ∼
4. Define the operations +,−, ∗,÷ via the members of the sequences and verify the rules of

calculation.
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From R to ∗R

Essential tool for the contruction: filters .
Definition 2. Let I be a set. F ⊂ P(I) is called filter, if

1. F 6= ∅ and ∅ /∈ F
2. A, B ∈ F =⇒ A ∩ B ∈ F
3. A ∈ F, A ⊂ B =⇒ B ∈ F

A filter which has no filter above (i. e. F ⊂ G =⇒ F = G) is called ultra filter.
Example 1. Let a ∈ I. The filter

Ua = {A ⊂ I | a ∈ A}.

is called neighborhood filter for a (actually an ultra filter).
Example 2. Let I be an infinite set (e. g. I = N). Then

F = {A ⊂ I | I \ A is finite}

is the so called filter of co-finite sets.
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From R to ∗R

Theorem 1. For every filter F the is an ultra filter which contains the filter F .

Beweis: Zorns lemma.

According to this theorem there is an ultra filter over N which contains the co-finite sets in N.
(Such a filter couldn’t been given explicit but there are a lot of them: As much as P(P(N)) has
elements.)

In the following F is such an ultra filter.

Construction of the hyperreals:

1. Consider α ∈ RN.
2. Define α ∼ β ⇔ {i ∈ N | α(i) = β(i)} ∈ F
3. Let ∗R = RN/ ∼.

Use representatives: For α ∈ RN let

α = {β ∈ RN | β ∼ α}
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Arithmetic in ∗R

Define the operations +,−, ∗,÷ for representatives. E. g. the new addition ∗+ :

α ∗+ β := α + β
∗− , ∗· , ∗≥ analogous.

(∗R, ∗+ , ∗· , ∗≥ ) is a complete, ordered field.

Theorem 2. 1. There are non zero infinitesimal elements in ∗R, i. e. there is an α, so that
|α| ≤ 1/n for every n ∈ N.

2. There are infinite elements in ∗R, i. e. there is α, so that |α| ≥ n for every n ∈ N.

Namely:
Let α(i) = 1/i. Then α 6= 0 and α is infinitesimal. β is infinite for β(i) = i.

Definition 3. If α− β is infinitely small, we say that α is an infinitesimal neighbor of β and we
write α ≈ β.
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∗R
• For every finite α ∈ ∗R there is one and only one r ∈ R, which is an infinitesimal neighbor

of α.
• For every r ∈ R there is the monad for r:

m(r) := {r ± ε | ε ≈ 0}

negatively infinite
finite

positively inifiter

. . .. . .

. . . . . . . . . . . .

r r + εr − ε

m(r)�

Notation:
fin(∗R) is the set of finite hyperreal numbers (i. e. not infinitely large).
If α ∈ fin(∗R), we write st(α) for the real number r with r ≈ α and call it the standard part of
α.
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Remarks on the Construction of ∗R

Why do we need an ultra filter?

(RN
/F, ∗+ , ∗· ) is a field =⇒ F is and ultra-filter.

Why this special filter?

RN
/F has an infinite element ⇔ F contains the co-finite sets

=⇒ RN
/F has an infinitesimal element different from zero.
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Functions on ∗R

For every function f : R → R we define ∗f : ∗R → ∗R via

∗f(α) = β where β(i) := f(α(i)) for i ∈ N.

Definition 4. f : R → R is continuous in x0 if`
x ∈ ∗R and x ≈ x0

´
=⇒ ∗f(x) ≈ f(x0).

Definition 5. f : R → R is differentiable in x0 with derivative f ′(x0) = c if

∗f(x0 + dx)− f(x0)

dx
≈ c for every 0 6= dx ≈ 0.

Or, with the help of the standard part:

f
′
(x0) = st

„ ∗f(x0 + dx)− f(x0)

dx

«
independent of 0 6= dx ≈ 0.
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• Thus R2 = R× R ∈ bR
• Any relation (like <) is an element of bR:

<:= {(a, b) ∈ R2 | a < b} ⊂ R2

18



Zentrum für
Technomathematik Fachbereich 3

Mathematik und Informatik

Transfer of Objects

Let a ∈ bR. We define

aN : N → bR via aN(n) := a for all n ∈ N

Now the corresponding object for a in non-standard analysis is

∗a = aN where aN is the equivalence class of aN defined similar to ∼

Example: There is a set of hypernatural numbers ∗N. This set contains infinitely large numbers
N ∈ ∗N \ N.
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Non-Standard Analysis of Sequences

For every sequence a : N → R there is the corresponding sequence ∗a : ∗N → ∗R.

The numbers ∗aN can be seen as the “last” numbers in the sequence:

c is the limit of a if ∗aN ≈ c for every N ∈ ∗N \ N.

Or
If a converges, the limit of a is given by st( ∗aN), N ∈ ∗N \ N.

The set
{st( ∗aN) | N ∈ ∗N \ N}

is the set of accumulation points of a.
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To the Very End: δ-Functions

Let f ∈ C(R), f ≥ 0 and
R

f(x)dx = 1. For every N ∈ ∗N \ N we have

δ(x) := N ∗f(Nx), for x ∈ ∗R
is a δ-function, i. e.

∗R
δ(x)dx = 1

∗ εR
−ε

δ(x)dx ≈ 1, for infinitesimal ε > 0
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