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Electron tomography

I Electron tomography (ET) is a tomographic method that can
be used for 3D imaging of biological macromolecules,
structures in cells etc.

I The specimen is in the form of a thin layer (∼ 100 nm thick),
cooled by liquid nitrogen.

I A series of images, a tilt series, is collected in a transmission
electron microscope. Due to the shape of the specimen, the
tilt range is typically restricted to ±60◦. We have a limited
angle problem.

I The specimen is damaged by too much radiation. This sets a
limit to the total electron dose that can be used. The images
collected are very noisy.
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ET images

A high dose ET image (left) and a part of an image from the tilt
series (right) of a specimen containing Tobacco Mosaic Virus
(TMV).



The forward operator in ET

I A common assumption is that the electrons scatter against
the electrostatic potential f of the specimen. An image is
obtained by projecting f onto a plane perpendicular to the
optical axis of the microscope.

I The projected image is convolved with a point spread
function. The forward operator T is defined as projection
followed by convolution.

I Each pixel of the recorded images is a random variable whose
expected value is (approximately) given by T (f ).
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Inverse problem in general

Forward operator T : X → Y .
Assume T is linear, Y is a Hilbert space.

I f true ∈ X is unknown.

I Measure g = T (f true) + gnoise ∈ Y .

I gnoise is a sample of a random vector Gnoise ∈ Y ,
E[Gnoise] = 0.

Inverse problem: Find f ∈ X approximating f true.
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Variational regularization

Let

f rec = Sλ(g) := arg minf ∈X Rλ(f ) +
1

2
‖W 1/2(T (f )− g)‖2

Y

W is a self-adjoint positive definite operator on Y .
Rλ : X → R is a regularization functional depending on parameters
λ.
For suitable choice of λ, we hope that f rec will be a good
approximation of f true.



L1 methods

Definition
Let us say that Rλ is of L1 type if it satisfies the following:

1. Convexity: Rλ(f ) is a convex function of f for each λ.

2. Homogeneity: Rλ(αf ) = |α|Rλ(f ) for α ∈ R.

3. Additivity: Rλ(f1 + f2) = Rλ(f1) + Rλ(f2) if f1 and f2 have
disjoint support.

Example

The total variation is an example of an L1 regularization functional:

Rλ(f ) = λ

∫
Ω
|∇f (x)| dx .
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Goals of regularization theory

A theory of L1 regularization should help us answer questions such
as

I How should the regularization parameter be chosen?

I How much noise would be expected in the reconstruction?

I How certain can we be that a feature in reconstruction really
comes from f true?

I Which features in f true can we hope to reconstruct?
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A simpler optimization problem

To help answer these questions, I will consider a much simpler
optimization problem:

αλ(f , g) := arg minα∈R Rλ(αf ) +
1

2
‖W 1/2(T (αf )− g)‖2.

The solution can be computed explicitly:

αλ(f , g) =



〈Wg ,T (f )〉−Rλ(f )

‖W 1/2T (f )‖2 if 〈Wg ,T (f )〉 > Rλ(f )

0 if |〈Wg ,T (f )〉| ≤ Rλ(f )

〈Wg ,T (f )〉+Rλ(f )

‖W 1/2T (f )‖2 if 〈Wg ,T (f )〉 < −Rλ(f )

.
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Main hypothesis

Knowing something about αλ(f , g) for a selection of “test
functions” f can tell us something about Sλ(g).



Connection between Sλ(g) and αλ(f , g)

To find rigorous connections between Sλ(g) and αλ(f , g) is not so
easy. At least we have the following:

Lemma
Sλ(g) = 0 if and only if αλ(f , g) = 0 for all f ∈ X.



Stochastics of the noise

I want to choose a set of test functions f and look at the
stochastic properties of αλ(f ,Gnoise).

Define for any f ∈ X :

σ(f ) = Var[〈WGnoise,T (f )〉]1/2.

If Rλ(f ) = 0 we would have

Var[αλ(f ,Gnoise)]1/2 =
σ(f )

‖W 1/2T (f )‖2
.

Recall that αλ(f , g) = 0 iff |〈Wg ,T (f )〉| ≤ Rλ(f ). For significant
reduction of the variance of αλ(f , g) we should have
sλ(f ) := Rλ(f )/σ(f ) � 1.
This suggests that for significant reduction of noise in Sλ(g) we
should have sλ(f ) � 1 for all the test functions.
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A more detailed analysis

We can make the analysis more precise. Suppose we have fixed
some a > 0 and consider every region where f rec > a as an object
found in the reconstruction. Of course, we want to avoid
reconstructing false objects.

Let’s assume that we are using characteristic functions of balls as
test functions; fD is the characteristic function of a ball of
diameter D. Let Ω ⊂ R3 be the region where the functions are
reconstructed. The number of disjoint balls in this region is
roughly |Ω|D−3.
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A more detailed analysis

Note that αλ(fD ,Gnoise) > a iff
〈WGnoise,T (fD)〉 > Rλ(fD) + a‖W 1/2T (fD)‖2.

Assuming that 〈WGnoise,T (fD)〉 has Gaussian distribution, the
number of balls with αλ(fD ,Gnoise) > a is approximately

|Ω|
2D3

erfc

(
Rλ(fD) + a‖W 1/2T (fD)‖2

√
2σ(fD)

)
.

We want this number to be small, which suggests that we should
have

sλ(fD) & smin(fD) :=
√

2 erfc−1

(
2D3

|Ω|

)
− a‖W 1/2T (fD)‖2

σ(fD)
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A numerical example

Let’s see how this works in practice. We will look at simulated
data from a simple phantom containing balls of varying size and
contrast.

Above is a section through the phantom (left) and one of the
projections (right).



Numerical example continued

I choose (rather arbitrarily) a = 0.5 and compute smin(fD) for a
range of diameters D. These are compared to sλ(fD) for some
different λ.

D smin s17 s20 s24 s28

2.00 4.35 3.12 3.68 4.41 5.15
2.40 4.12 3.05 3.58 4.30 5.02
2.88 3.72 2.42 2.85 3.42 3.99
3.46 3.31 2.37 2.78 3.34 3.90
4.15 2.61 2.09 2.46 2.95 3.44
4.98 1.76 1.91 2.24 2.69 3.14
5.97 0.36 1.69 1.99 2.38 2.78

With λ ≥ 24 we should be rather confident not to reconstruct false
objects.
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Reconstruction with λ = 28

True objects: 20
False objects: 0



Reconstruction with λ = 24

True objects: 24
False objects: 1



Reconstruction with λ = 20

True objects: 25
False objects: 21



Reconstruction with λ = 17

True objects: 28
False objects: 137



Discrepancy principle

One well-known method used to choose regularization parameters
is the discrepancy principle. The idea is to regularize so much that
the residual norm ‖T (f rec)− g‖ agrees with the estimated norm of
‖gnoise‖.

Here is what the residual norm looks like for our numerical
example:

λ ‖T (f rec)− g‖/‖g‖
28 0.999634
24 0.999659
20 0.999704
17 0.999728

For the discrepancy principle to be useful, ‖gnoise‖ would have to
be known with 4–5 digits accuracy!
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Example with real data

We apply the same analysis to the real data from the TMV
example.

D smin s30 s60
2.00 4.68 2.56 5.12
2.40 4.54 2.18 4.36
2.88 4.38 1.95 3.90
3.46 4.19 1.69 3.38
4.15 3.96 1.46 2.93
4.98 3.65 1.28 2.55
5.97 3.24 1.10 2.21
7.17 2.65 0.97 1.94
8.60 1.75 0.87 1.74
10.32 0.48 0.77 1.55

Even with the stronger regularization we should expect some false
objects.
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Reconstruction with λ = 60

TMVs: 2
Other objects: 17



Reconstruction with λ = 30

TMVs: 2
Other objects: 367



How to estimate Var[〈WG noise, T (f )〉]

The variance of 〈WGnoise,T (f )〉 in an ET tilt series can be
estimated, given only f , the measured data g , the model forward
operator T , and W .

This is based on the following circumstances:

1. Noise in different images of the tilt series is uncorrelated.

2. Noise in different parts of the same image is only weakly
correlated.

3. The noise is translation invariant.

4. In each image, the SNR is very low.

Let Y = Y1 ⊕ · · · ⊕ YN be the decomposition of the data space
into components corresponding to separate images.
Let Ti : X → Yi be the forward operator of the i-th projection.
Suppose W = W1 ⊕ · · · ⊕WN decomposes into operators on the
different images.
Let f1, . . . fm be (random) translations of f .
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into components corresponding to separate images.
Let Ti : X → Yi be the forward operator of the i-th projection.
Suppose W = W1 ⊕ · · · ⊕WN decomposes into operators on the
different images.
Let f1, . . . fm be (random) translations of f .



How to estimate Var[〈WG noise, T (f )〉], cont.

By the property 1,

Var[〈WGnoise,T (f )〉] =
N∑

i=1

Var[〈WiG
noise
i ,Ti (f )〉].

By 2 and 3, 〈Wgnoise
i ,Ti (f1)〉, . . . , 〈Wgnoise

i ,Ti (fm)〉 can be
regarded as independent samples of 〈WGnoise

i ,Ti (f )〉, so the
variance of 〈WGnoise

i ,Ti (f )〉 can be estimated as a sample
variance:

Var[〈WGnoise
i ,Ti (f )〉]

≈ 1

m − 1

m∑
j=1

(
〈Wgnoise

i ,Ti (fj)〉 −
1

m

m∑
k=1

〈Wgnoise
i ,Ti (fk)〉

)2

.

Finally, by 4, we can replace gnoise by g in the last expression.
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