L^1 regularization in electron tomography

Hans Rullgård

February 12, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Electron tomography (ET) is a tomographic method that can be used for 3D imaging of biological macromolecules, structures in cells etc.

- Electron tomography (ET) is a tomographic method that can be used for 3D imaging of biological macromolecules, structures in cells etc.
- ► The specimen is in the form of a thin layer (~ 100 nm thick), cooled by liquid nitrogen.

- Electron tomography (ET) is a tomographic method that can be used for 3D imaging of biological macromolecules, structures in cells etc.
- ► The specimen is in the form of a thin layer (~ 100 nm thick), cooled by liquid nitrogen.
- ► A series of images, a tilt series, is collected in a transmission electron microscope. Due to the shape of the specimen, the tilt range is typically restricted to ±60°. We have a limited angle problem.

- Electron tomography (ET) is a tomographic method that can be used for 3D imaging of biological macromolecules, structures in cells etc.
- ► The specimen is in the form of a thin layer (~ 100 nm thick), cooled by liquid nitrogen.
- ► A series of images, a tilt series, is collected in a transmission electron microscope. Due to the shape of the specimen, the tilt range is typically restricted to ±60°. We have a limited angle problem.
- The specimen is damaged by too much radiation. This sets a limit to the total electron dose that can be used. The images collected are very noisy.

ET images

A high dose ET image (left) and a part of an image from the tilt series (right) of a specimen containing Tobacco Mosaic Virus (TMV).

(日)、

The forward operator in ET

A common assumption is that the electrons scatter against the electrostatic potential *f* of the specimen. An image is obtained by projecting *f* onto a plane perpendicular to the optical axis of the microscope.

The forward operator in ET

- A common assumption is that the electrons scatter against the electrostatic potential f of the specimen. An image is obtained by projecting f onto a plane perpendicular to the optical axis of the microscope.
- ► The projected image is convolved with a point spread function. The forward operator *T* is defined as projection followed by convolution.

The forward operator in ET

- A common assumption is that the electrons scatter against the electrostatic potential f of the specimen. An image is obtained by projecting f onto a plane perpendicular to the optical axis of the microscope.
- ► The projected image is convolved with a point spread function. The forward operator *T* is defined as projection followed by convolution.
- Each pixel of the recorded images is a random variable whose expected value is (approximately) given by T(f).

Inverse problem in general

Forward operator $T : X \rightarrow Y$. Assume T is linear, Y is a Hilbert space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Inverse problem in general

Forward operator $T : X \rightarrow Y$. Assume T is linear, Y is a Hilbert space.

• $f^{\text{true}} \in X$ is unknown.

• Measure
$$g = T(f^{\text{true}}) + g^{\text{noise}} \in Y$$
.

• g^{noise} is a sample of a random vector $G^{\text{noise}} \in Y$, $E[G^{\text{noise}}] = 0$.

Inverse problem in general

Forward operator $T : X \rightarrow Y$. Assume T is linear, Y is a Hilbert space.

• $f^{\text{true}} \in X$ is unknown.

• Measure
$$g = T(f^{\text{true}}) + g^{\text{noise}} \in Y$$
.

• g^{noise} is a sample of a random vector $G^{\text{noise}} \in Y$, $E[G^{\text{noise}}] = 0$.

Inverse problem: Find $f \in X$ approximating f^{true} .

Variational regularization

Let

$$f^{
m rec} = S_{\lambda}(g) := \arg\min_{f \in X} R_{\lambda}(f) + \frac{1}{2} \|W^{1/2}(T(f) - g)\|_{Y}^{2}$$

W is a self-adjoint positive definite operator on *Y*. $R_{\lambda}: X \to \mathbb{R}$ is a *regularization functional* depending on parameters λ .

For suitable choice of λ , we hope that f^{rec} will be a good approximation of f^{true} .

L^1 methods

Definition

Let us say that R_{λ} is of L^1 type if it satisfies the following:

- 1. Convexity: $R_{\lambda}(f)$ is a convex function of f for each λ .
- 2. Homogeneity: $R_{\lambda}(\alpha f) = |\alpha|R_{\lambda}(f)$ for $\alpha \in \mathbb{R}$.
- 3. Additivity: $R_{\lambda}(f_1 + f_2) = R_{\lambda}(f_1) + R_{\lambda}(f_2)$ if f_1 and f_2 have disjoint support.

L^1 methods

Definition

Let us say that R_{λ} is of L^1 type if it satisfies the following:

- 1. Convexity: $R_{\lambda}(f)$ is a convex function of f for each λ .
- 2. Homogeneity: $R_{\lambda}(\alpha f) = |\alpha| R_{\lambda}(f)$ for $\alpha \in \mathbb{R}$.
- 3. Additivity: $R_{\lambda}(f_1 + f_2) = R_{\lambda}(f_1) + R_{\lambda}(f_2)$ if f_1 and f_2 have disjoint support.

Example

The total variation is an example of an L^1 regularization functional:

$$R_{\lambda}(f) = \lambda \int_{\Omega} |\nabla f(x)| \, dx.$$

A theory of L^1 regularization should help us answer questions such as

How should the regularization parameter be chosen?

A theory of L^1 regularization should help us answer questions such as

- How should the regularization parameter be chosen?
- ▶ How much noise would be expected in the reconstruction?

A theory of L^1 regularization should help us answer questions such as

- How should the regularization parameter be chosen?
- How much noise would be expected in the reconstruction?
- How certain can we be that a feature in reconstruction really comes from f^{true}?

A theory of L^1 regularization should help us answer questions such as

- How should the regularization parameter be chosen?
- How much noise would be expected in the reconstruction?
- ► How certain can we be that a feature in reconstruction really comes from f^{true}?

• Which features in f^{true} can we hope to reconstruct?

A simpler optimization problem

To help answer these questions, I will consider a much simpler optimization problem:

$$lpha_\lambda(f,g) := rgmin_{lpha \in \mathbb{R}} R_\lambda(lpha f) + rac{1}{2} \|W^{1/2}(T(lpha f) - g)\|^2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A simpler optimization problem

To help answer these questions, I will consider a much simpler optimization problem:

$$lpha_\lambda(f,g) := rgmin_{lpha \in \mathbb{R}} R_\lambda(lpha f) + rac{1}{2} \|W^{1/2}(T(lpha f) - g)\|^2.$$

The solution can be computed explicitly:

$$\alpha_{\lambda}(f,g) = \begin{cases} \frac{\langle Wg, T(f) \rangle - R_{\lambda}(f)}{\|W^{1/2}T(f)\|^2} & \text{if } \langle Wg, T(f) \rangle > R_{\lambda}(f) \\ 0 & \text{if } |\langle Wg, T(f) \rangle| \le R_{\lambda}(f) \\ \frac{\langle Wg, T(f) \rangle + R_{\lambda}(f)}{\|W^{1/2}T(f)\|^2} & \text{if } \langle Wg, T(f) \rangle < -R_{\lambda}(f) \end{cases}$$

Main hypothesis

Knowing something about $\alpha_{\lambda}(f,g)$ for a selection of "test functions" f can tell us something about $S_{\lambda}(g)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Connection between $S_{\lambda}(g)$ and $\alpha_{\lambda}(f,g)$

To find rigorous connections between $S_{\lambda}(g)$ and $\alpha_{\lambda}(f,g)$ is not so easy. At least we have the following:

Lemma $S_{\lambda}(g) = 0$ if and only if $\alpha_{\lambda}(f,g) = 0$ for all $f \in X$.

I want to choose a set of test functions f and look at the stochastic properties of $\alpha_{\lambda}(f, G^{\text{noise}})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I want to choose a set of test functions f and look at the stochastic properties of $\alpha_{\lambda}(f, G^{\text{noise}})$. Define for any $f \in X$:

$$\sigma(f) = \operatorname{Var}[\langle WG^{\operatorname{noise}}, T(f) \rangle]^{1/2}.$$

If $R_{\lambda}(f) = 0$ we would have

$$\operatorname{Var}[\alpha_{\lambda}(f, G^{\operatorname{noise}})]^{1/2} = \frac{\sigma(f)}{\|W^{1/2}T(f)\|^2}.$$

I want to choose a set of test functions f and look at the stochastic properties of $\alpha_{\lambda}(f, G^{\text{noise}})$. Define for any $f \in X$:

$$\sigma(f) = \operatorname{Var}[\langle WG^{\operatorname{noise}}, T(f) \rangle]^{1/2}.$$

If $R_{\lambda}(f) = 0$ we would have

$$\mathsf{Var}[lpha_\lambda(f, \mathsf{G}^{\mathrm{noise}})]^{1/2} = rac{\sigma(f)}{\|W^{1/2} \mathcal{T}(f)\|^2}.$$

Recall that $\alpha_{\lambda}(f,g) = 0$ iff $|\langle Wg, T(f) \rangle| \leq R_{\lambda}(f)$. For significant reduction of the variance of $\alpha_{\lambda}(f,g)$ we should have $s_{\lambda}(f) := R_{\lambda}(f)/\sigma(f) \gg 1$.

I want to choose a set of test functions f and look at the stochastic properties of $\alpha_{\lambda}(f, G^{\text{noise}})$. Define for any $f \in X$:

$$\sigma(f) = \operatorname{Var}[\langle WG^{\operatorname{noise}}, T(f) \rangle]^{1/2}.$$

If $R_{\lambda}(f) = 0$ we would have

$$\mathsf{Var}[lpha_\lambda(f, \mathsf{G}^{\mathrm{noise}})]^{1/2} = rac{\sigma(f)}{\| \mathcal{W}^{1/2} \mathcal{T}(f) \|^2}.$$

Recall that $\alpha_{\lambda}(f,g) = 0$ iff $|\langle Wg, T(f) \rangle| \leq R_{\lambda}(f)$. For significant reduction of the variance of $\alpha_{\lambda}(f,g)$ we should have $s_{\lambda}(f) := R_{\lambda}(f)/\sigma(f) \gg 1$.

This suggests that for significant reduction of noise in $S_{\lambda}(g)$ we should have $s_{\lambda}(f) \gg 1$ for all the test functions.

We can make the analysis more precise. Suppose we have fixed some a > 0 and consider every region where $f^{\text{rec}} > a$ as an object found in the reconstruction. Of course, we want to avoid reconstructing false objects.

We can make the analysis more precise. Suppose we have fixed some a > 0 and consider every region where $f^{\text{rec}} > a$ as an object found in the reconstruction. Of course, we want to avoid reconstructing false objects.

Let's assume that we are using characteristic functions of balls as test functions; f_D is the characteristic function of a ball of diameter D. Let $\Omega \subset \mathbb{R}^3$ be the region where the functions are reconstructed. The number of disjoint balls in this region is roughly $|\Omega|D^{-3}$.

A more detailed analysis

Note that $\alpha_{\lambda}(f_D, G^{\text{noise}}) > a$ iff $\langle WG^{\text{noise}}, T(f_D) \rangle > R_{\lambda}(f_D) + a \| W^{1/2} T(f_D) \|^2.$

A more detailed analysis

Note that $\alpha_{\lambda}(f_D, G^{\text{noise}}) > a$ iff $\langle WG^{\text{noise}}, T(f_D) \rangle > R_{\lambda}(f_D) + a \| W^{1/2} T(f_D) \|^2$. Assuming that $\langle WG^{\text{noise}}, T(f_D) \rangle$ has Gaussian distribution, the number of balls with $\alpha_{\lambda}(f_D, G^{\text{noise}}) > a$ is approximately

$$\frac{|\Omega|}{2D^3}\operatorname{erfc}\left(\frac{R_{\lambda}(f_D) + \mathsf{a} \|W^{1/2}T(f_D)\|^2}{\sqrt{2}\sigma(f_D)}\right).$$

A more detailed analysis

Note that $\alpha_{\lambda}(f_D, G^{\text{noise}}) > a$ iff $\langle WG^{\text{noise}}, T(f_D) \rangle > R_{\lambda}(f_D) + a \| W^{1/2} T(f_D) \|^2$. Assuming that $\langle WG^{\text{noise}}, T(f_D) \rangle$ has Gaussian distribution, the number of balls with $\alpha_{\lambda}(f_D, G^{\text{noise}}) > a$ is approximately

$$\frac{|\Omega|}{2D^3}\operatorname{erfc}\left(\frac{R_{\lambda}(f_D) + a\|W^{1/2}T(f_D)\|^2}{\sqrt{2}\sigma(f_D)}\right)$$

We want this number to be small, which suggests that we should have

$$s_{\lambda}(f_D) \gtrsim s_{\min}(f_D) := \sqrt{2} \operatorname{erfc}^{-1}\left(rac{2D^3}{|\Omega|}
ight) - rac{a \|W^{1/2}T(f_D)\|^2}{\sigma(f_D)}$$

A numerical example

Let's see how this works in practice. We will look at simulated data from a simple phantom containing balls of varying size and contrast.

Above is a section through the phantom (left) and one of the projections (right).

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

D	s_{\min}
2.00	4.35
2.40	4.12
2.88	3.72
3.46	3.31
4.15	2.61
4.98	1.76
5.97	0.36

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

D	s_{\min}	<i>s</i> ₁₇
2.00	4.35	3.12
2.40	4.12	3.05
2.88	3.72	2.42
3.46	3.31	2.37
4.15	2.61	2.09
4.98	1.76	1.91
5.97	0.36	1.69

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

D	s_{\min}	<i>s</i> ₁₇	<i>s</i> ₂₀
2.00	4.35	3.12	3.68
2.40	4.12	3.05	3.58
2.88	3.72	2.42	2.85
3.46	3.31	2.37	2.78
4.15	2.61	2.09	2.46
4.98	1.76	1.91	2.24
5.97	0.36	1.69	1.99

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

D	s_{\min}	<i>s</i> ₁₇	<i>s</i> ₂₀	<i>s</i> ₂₄
2.00	4.35	3.12	3.68	4.41
2.40	4.12	3.05	3.58	4.30
2.88	3.72	2.42	2.85	3.42
3.46	3.31	2.37	2.78	3.34
4.15	2.61	2.09	2.46	2.95
4.98	1.76	1.91	2.24	2.69
5.97	0.36	1.69	1.99	2.38

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

D	s_{\min}	<i>s</i> ₁₇	<i>s</i> ₂₀	<i>s</i> ₂₄	<i>s</i> ₂₈
2.00	4.35	3.12	3.68	4.41	5.15
2.40	4.12	3.05	3.58	4.30	5.02
2.88	3.72	2.42	2.85	3.42	3.99
3.46	3.31	2.37	2.78	3.34	3.90
4.15	2.61	2.09	2.46	2.95	3.44
4.98	1.76	1.91	2.24	2.69	3.14
5.97	0.36	1.69	1.99	2.38	2.78

I choose (rather arbitrarily) a = 0.5 and compute $s_{\min}(f_D)$ for a range of diameters D. These are compared to $s_{\lambda}(f_D)$ for some different λ .

D	s_{\min}	<i>s</i> ₁₇	<i>s</i> ₂₀	<i>s</i> ₂₄	<i>s</i> ₂₈
2.00	4.35	3.12	3.68	4.41	5.15
2.40	4.12	3.05	3.58	4.30	5.02
2.88	3.72	2.42	2.85	3.42	3.99
3.46	3.31	2.37	2.78	3.34	3.90
4.15	2.61	2.09	2.46	2.95	3.44
4.98	1.76	1.91	2.24	2.69	3.14
5.97	0.36	1.69	1.99	2.38	2.78

With $\lambda \ge 24$ we should be rather confident not to reconstruct false objects.

True objects: 20 False objects: 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

True objects: 24 False objects: 1

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

True objects: 25 False objects: 21

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

True objects: 28 False objects: 137

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Discrepancy principle

One well-known method used to choose regularization parameters is the discrepancy principle. The idea is to regularize so much that the residual norm $||T(f^{\text{rec}}) - g||$ agrees with the estimated norm of $||g^{\text{noise}}||$.

Discrepancy principle

One well-known method used to choose regularization parameters is the discrepancy principle. The idea is to regularize so much that the residual norm $||T(f^{\text{rec}}) - g||$ agrees with the estimated norm of $||g^{\text{noise}}||$.

Here is what the residual norm looks like for our numerical example:

λ	$\ T(f^{ m rec}) - g\ /\ g\ $
28	0.999634
24	0.999659
20	0.999704
17	0.999728

For the discrepancy principle to be useful, $\|g^{\text{noise}}\|$ would have to be known with 4–5 digits accuracy!

Example with real data

We apply the same analysis to the real data from the TMV example.

D	s_{\min}	<i>s</i> ₃₀	<i>s</i> ₆₀
2.00	4.68	2.56	5.12
2.40	4.54	2.18	4.36
2.88	4.38	1.95	3.90
3.46	4.19	1.69	3.38
4.15	3.96	1.46	2.93
4.98	3.65	1.28	2.55
5.97	3.24	1.10	2.21
7.17	2.65	0.97	1.94
8.60	1.75	0.87	1.74
10.32	0.48	0.77	1.55

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example with real data

We apply the same analysis to the real data from the TMV example.

D	s_{\min}	<i>s</i> ₃₀	<i>s</i> ₆₀
2.00	4.68	2.56	5.12
2.40	4.54	2.18	4.36
2.88	4.38	1.95	3.90
3.46	4.19	1.69	3.38
4.15	3.96	1.46	2.93
4.98	3.65	1.28	2.55
5.97	3.24	1.10	2.21
7.17	2.65	0.97	1.94
8.60	1.75	0.87	1.74
10.32	0.48	0.77	1.55

Even with the stronger regularization we should expect some false objects.

・ロト・日本・モート モー うへぐ

TMVs: 2 Other objects: 17

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

TMVs: 2 Other objects: 367

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The variance of $\langle WG^{\text{noise}}, T(f) \rangle$ in an ET tilt series can be estimated, given only f, the measured data g, the model forward operator T, and W.

The variance of $\langle WG^{\text{noise}}, T(f) \rangle$ in an ET tilt series can be estimated, given only f, the measured data g, the model forward operator T, and W.

This is based on the following circumstances:

- 1. Noise in different images of the tilt series is uncorrelated.
- 2. Noise in different parts of the same image is only weakly correlated.

- 3. The noise is translation invariant.
- 4. In each image, the SNR is very low.

The variance of $\langle WG^{\text{noise}}, T(f) \rangle$ in an ET tilt series can be estimated, given only f, the measured data g, the model forward operator T, and W.

This is based on the following circumstances:

- 1. Noise in different images of the tilt series is uncorrelated.
- 2. Noise in different parts of the same image is only weakly correlated.
- 3. The noise is translation invariant.
- 4. In each image, the SNR is very low.

Let $Y = Y_1 \oplus \cdots \oplus Y_N$ be the decomposition of the data space into components corresponding to separate images.

The variance of $\langle WG^{\text{noise}}, T(f) \rangle$ in an ET tilt series can be estimated, given only f, the measured data g, the model forward operator T, and W.

This is based on the following circumstances:

- 1. Noise in different images of the tilt series is uncorrelated.
- 2. Noise in different parts of the same image is only weakly correlated.
- 3. The noise is translation invariant.
- 4. In each image, the SNR is very low.

Let $Y = Y_1 \oplus \cdots \oplus Y_N$ be the decomposition of the data space into components corresponding to separate images.

Let $T_i: X \to Y_i$ be the forward operator of the *i*-th projection. Suppose $W = W_1 \oplus \cdots \oplus W_N$ decomposes into operators on the different images.

The variance of $\langle WG^{\text{noise}}, T(f) \rangle$ in an ET tilt series can be estimated, given only f, the measured data g, the model forward operator T, and W.

This is based on the following circumstances:

- 1. Noise in different images of the tilt series is uncorrelated.
- 2. Noise in different parts of the same image is only weakly correlated.
- 3. The noise is translation invariant.
- 4. In each image, the SNR is very low.

Let $Y = Y_1 \oplus \cdots \oplus Y_N$ be the decomposition of the data space into components corresponding to separate images.

Let $T_i : X \to Y_i$ be the forward operator of the *i*-th projection. Suppose $W = W_1 \oplus \cdots \oplus W_N$ decomposes into operators on the different images.

Let $f_1, \ldots f_m$ be (random) translations of f.

By the property 1,

$$\operatorname{Var}[\langle WG^{\operatorname{noise}}, T(f) \rangle] = \sum_{i=1}^{N} \operatorname{Var}[\langle W_i G_i^{\operatorname{noise}}, T_i(f) \rangle].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

By the property 1,

$$\mathsf{Var}[\langle WG^{\mathrm{noise}}, T(f) \rangle] = \sum_{i=1}^{N} \mathsf{Var}[\langle W_i G_i^{\mathrm{noise}}, T_i(f) \rangle].$$

By 2 and 3, $\langle Wg_i^{\text{noise}}, T_i(f_1) \rangle, \ldots, \langle Wg_i^{\text{noise}}, T_i(f_m) \rangle$ can be regarded as independent samples of $\langle WG_i^{\text{noise}}, T_i(f) \rangle$, so the variance of $\langle WG_i^{\text{noise}}, T_i(f) \rangle$ can be estimated as a sample variance:

$$\mathsf{Var}[\langle WG_i^{\mathrm{noise}}, T_i(f) \rangle] \approx \frac{1}{m-1} \sum_{j=1}^m \left(\langle Wg_i^{\mathrm{noise}}, T_i(f_j) \rangle - \frac{1}{m} \sum_{k=1}^m \langle Wg_i^{\mathrm{noise}}, T_i(f_k) \rangle \right)^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

By the property 1,

$$\operatorname{Var}[\langle WG^{\operatorname{noise}}, T(f) \rangle] = \sum_{i=1}^{N} \operatorname{Var}[\langle W_i G_i^{\operatorname{noise}}, T_i(f) \rangle].$$

By 2 and 3, $\langle Wg_i^{\text{noise}}, T_i(f_1) \rangle, \ldots, \langle Wg_i^{\text{noise}}, T_i(f_m) \rangle$ can be regarded as independent samples of $\langle WG_i^{\text{noise}}, T_i(f) \rangle$, so the variance of $\langle WG_i^{\text{noise}}, T_i(f) \rangle$ can be estimated as a sample variance:

$$\operatorname{Var}[\langle WG_i^{\text{noise}}, T_i(f) \rangle] \approx \frac{1}{m-1} \sum_{j=1}^m \left(\langle Wg_i^{\text{noise}}, T_i(f_j) \rangle - \frac{1}{m} \sum_{k=1}^m \langle Wg_i^{\text{noise}}, T_i(f_k) \rangle \right)^2$$

Finally, by 4, we can replace g^{noise} by g in the last expression.