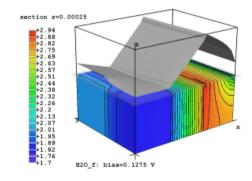
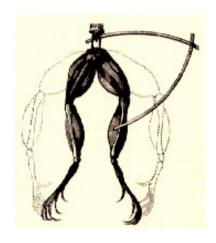


Simulation elektrochemischer Abläufe in Direkt-Methanolbrennstoffzellen

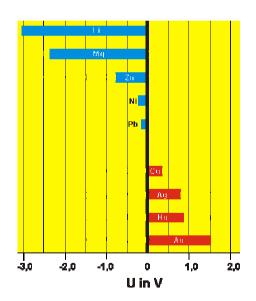

Torsten Köhler

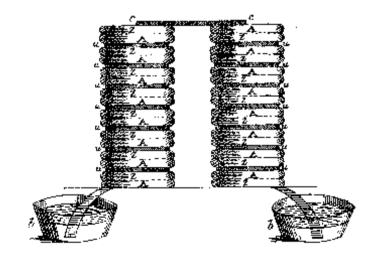
Inhalt


- 1. Elektrochemische Grundlagen und Historisches
- 2. Aufbau und Funktion einer Brennstoffzelle
- 3. Typen von Brennstoffzellen
- 4. Computersimulation für Direkt-Methanolbrennstoffzellen

1. Elektrochemische Grundlagen und Historisches

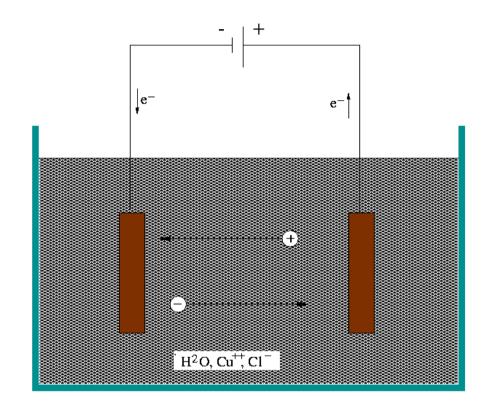
Luigi Galvani und seine Frösche (1789)





Alessandro Volta:

elektrochemische Spannungsreihe (1793), Batterie (Voltasche Säule)


Elektrolyse

- Ionenbindung in Festkörperkristallen
- Grundlage: elektrostatische Kräfte gemäß Coulombschen Gesetz:

$$\vec{F} = \frac{q_1 \cdot q_2}{\mathcal{E} \cdot r^2}$$

• Dissoziation wg.

$$\varepsilon_{
m Vakuum} << \varepsilon_{
m H2O}$$

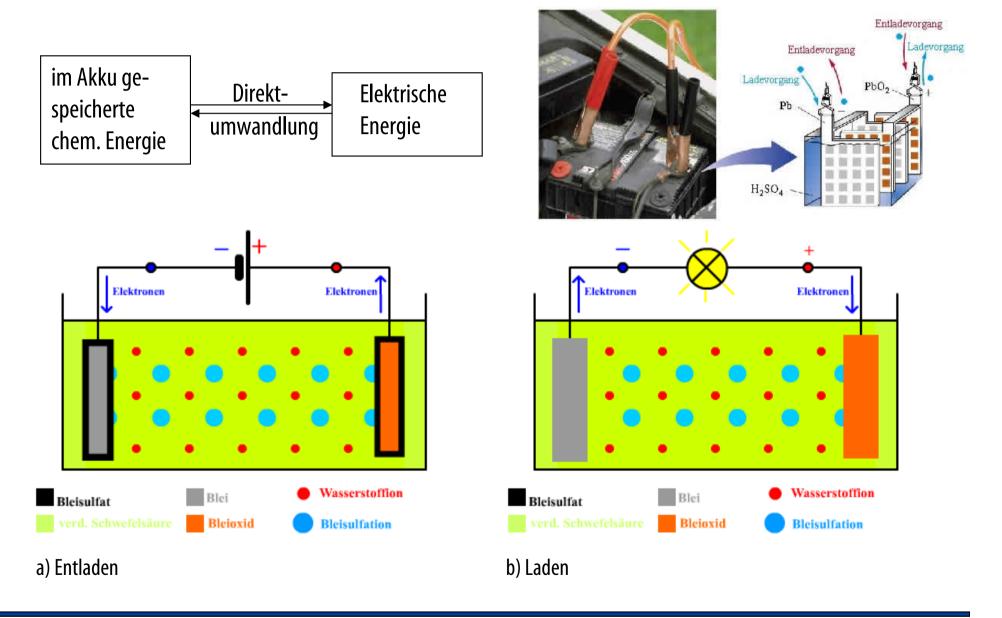
Elektrochemische Zelle zur Elektrolyse einer wäßrigen CuCl₂-Lösung

Galvanische Elemente

elektrochemische Halbzellen, in denen die freie Energie eines chemischen Vorgangs in freie elektrische Energie umgewandelt wird.

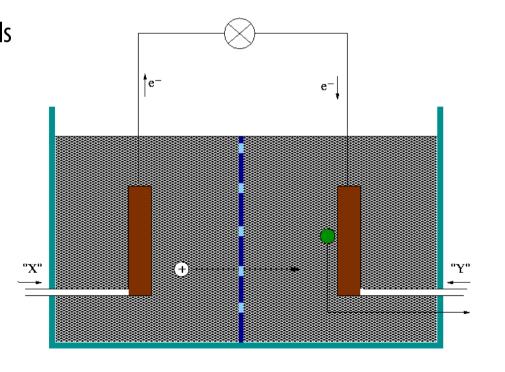
I. Primärelemente:

Elektrodenreaktionen lassen sich nicht umkehren

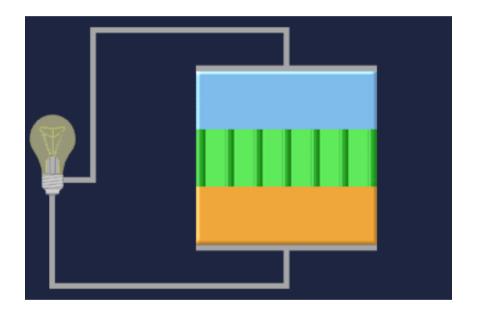

Bsp.: Leclanche-Element (Trockenelement)

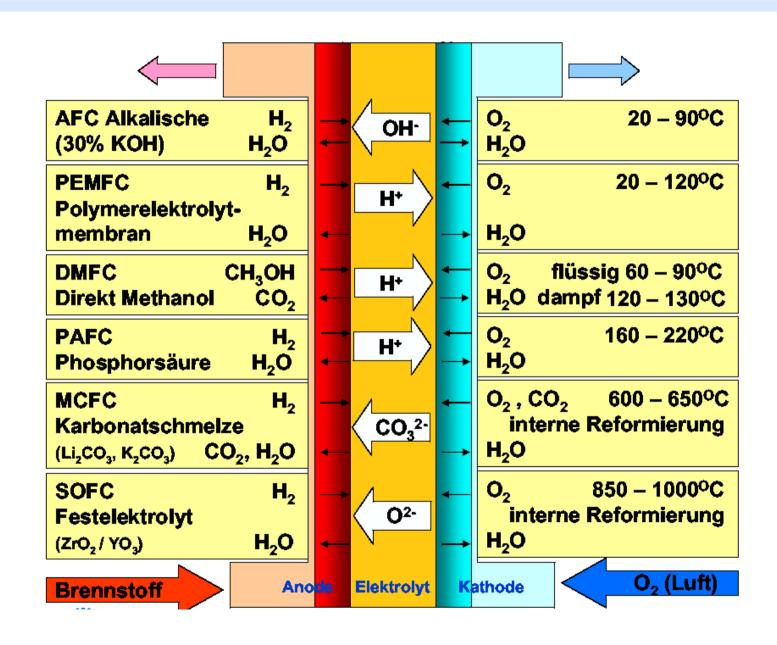
Anode, Oxidation: $Zn(s) \longrightarrow Zn^{2+}(aq) + 2e^{-}$ Cathode, Reduktion: $2NH_4^+(aq) + 2e^{-} \longrightarrow 2NH_3(g) + H_2(g)$

Galvanische Elemente II: Sekundärelemente

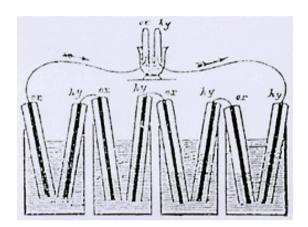


Galvanische Elemente III: Brennstoffzellen


3. Brennstoffzelle: galvanisches System, dessen Elektroden die umzusetzenden Stoffe von außen kontinuierlich zugeführt werden


Bsipk: Sphezikelle Higheskerlodyt als "einseitige Sperrschicht"; durchlässig nur für Anionen oder Kationen

2. Aufbau und Funktion einer Brennstoffzelle


Brennstoffzellen, verschiedene Typen I

Geschichte der Brennstoffzelle

• 1839 bereits erster Prototyp durch walisischen Physiker und Juristen Sir William Robert Grove

jedoch: kein öffentliches Interesse an dieser Entwicklung (Dampfmaschine, 1866 Entdeckung des dynamoelektrischen Prinzips)

- Idee in 1950er Jahren zu militärischen Zwecken aufgegriffen (Raumfahrzeuge, U-Boote)
- Zivile Nutzung seit den 90er Jahren

Brennstoffzellen, verschiedene Typen II

MTU: Schmelzkarbonat-Brennstoffzelle

- Brennstoff: Erdgas
- ≈ 600 °C
- stationäre Anwendungen
- Elektrolyt: Schmelzkarbonat, Katalysator: Ni

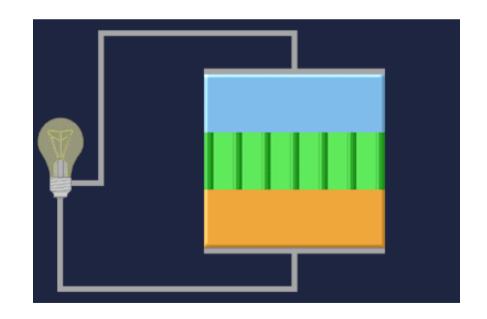
DaimlerChrysler + Ballard: Necar 5

- Brennstoff: H₂ aus On-Board-Methanol-Reformer
- ≈ 80 °C
- mobile Anwendungen
- Elektrolyt: Polymermembran, Katalysator: Pt

Ballard: DMFC

- Brennstoff: Methanol in wäßriger Lösung
- ≈ 80 °C
- mobile Anwendungen mit kleiner Leistung
- Elektrolyt: Polymermembran, Katalysator: Pt, Ru

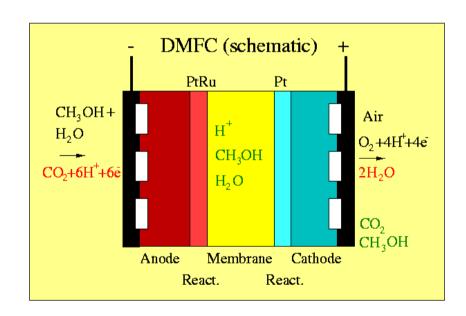
Direktmethanol-Brennstoffzellen (DMFC)



Firma Smart Fuel Cell (Brunnthal) mit DMFC-Modell SFC A50 (für Caravans, 4.800 €, links) und MFC-100 (für Yachten)

Funktionsweise:

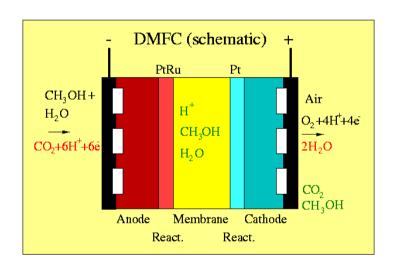
- Methanol-Oxidation wird aufgespalten in Anodenreaktion und Kathodenreaktion
- beide Schritte räumlich separiert durch
 Polymermembran


Numerische Modellierung von DMFC am WIAS (J. Fuhrmann, K. Gärtner)

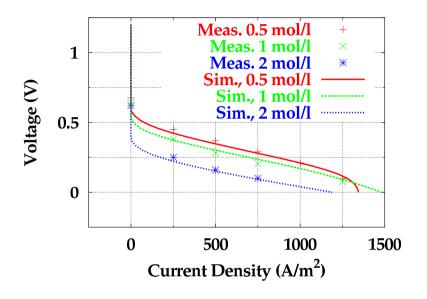
Ziel:

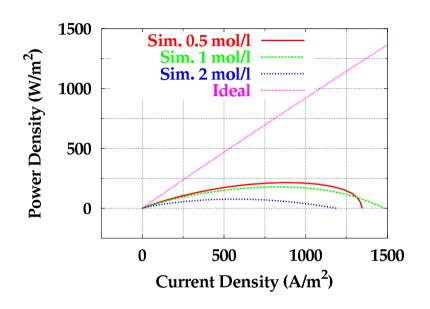
Besseres Verständnis des Zusammenspiels der verschiedenen Prozesse (Methanolpermeation, Reaktionskinetik, Temperaturregime, Wasserregime)

Prozesse in Membran-Elektroden-Einheit:


- Zweiphasenströmung (Wasser-Gasgemisch)
- Ladungsträgertransport
- Katalytische Reaktion
- Diffusion eines Gasgemisches
- Transport gelöster Stoffe (Methanol, CO₂ in H₂O)
- Stofftransport in Polymermembran
- Verdampfung, Kondensation, Lösung
- Energiebilanz

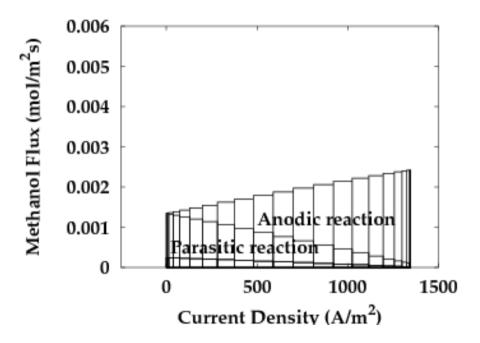
Modellvariablen

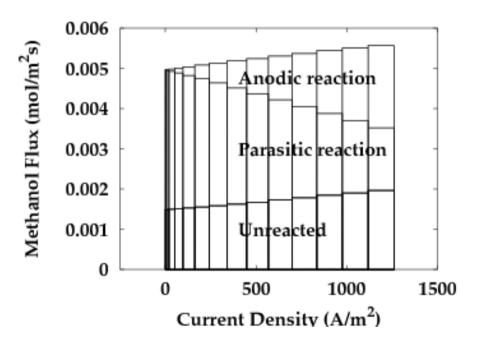

Schicht	Modellvariablen	Zus.setzung
Anodische Diffusion	H ₂ O, CO ₂ , CH ₃ OH, H ₂ O, CO ₂ , CH ₃ OH, e, T	Graphit, Teflon
Anodische Reaktion	<i>H</i> ₂ <i>O</i> , <i>CO</i> ₂ , <i>CH</i> ₃ <i>OH</i> , <i>H</i> ₂ <i>O</i> , <i>CO</i> ₂ , <i>CH</i> ₃ <i>OH</i> , <i>e</i> , <i>H</i> ⁺ ; T	Graphit, Teflon, PtRu
Membran	<i>H</i> ₂ <i>O</i> , <i>CO</i> ₂ , <i>CH</i> ₃ <i>OH</i> , <i>H</i> ⁺ ; T	Nafion
Katodische Reaktion	$H_{2}O, CO_{2}, CH_{3}OH, H_{2}O, N_{2}, O_{2},$ $e, H^{+}; T$	Grafit, Teflon, Nafion, Pt
Katodische Diffusion	H ₂ O, CO ₂ , CH ₃ OH, H ₂ O, N ₂ , O ₂ ; e: T	Grafit, Teflon


- Gase
- Flüssigkeiten
- Gase in Lösung
- elektrochemisches Potential
- Temperatur

Numerisches Modell: 11 nichtlinear gekoppelte Reaktions-Diffusions-Konvektionsgleichungen, bis zu 12 nichtlineare algebraische Gleichungen

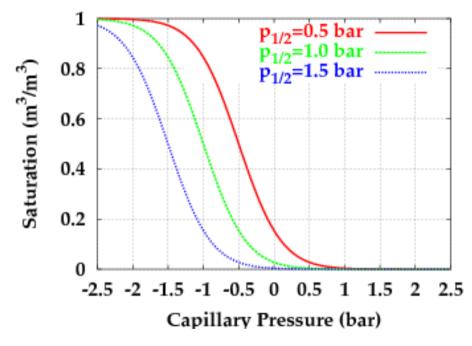
DMFC: Vergleich mit Experiment

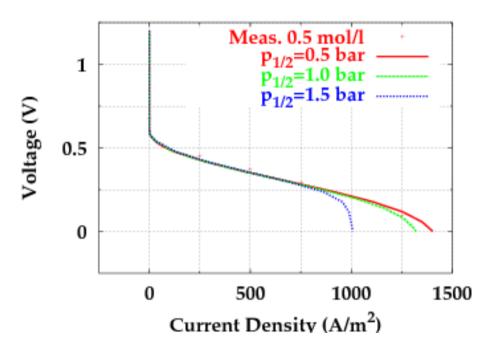



Gemessene und berechnete Strom-Spannungs-Kurven bei 60°C. Modell reproduziert parasitäre Reaktion. Leistungsdichte bei 60°C. Vergleich mit der "idealen Zelle" ohne Transporthemmungen und parasitäre Reaktion.

Methanolpermeation

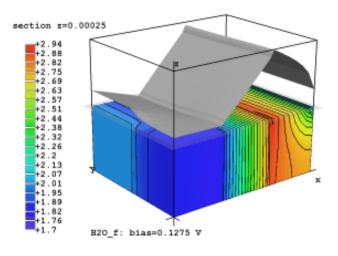
Problem: Durchtritt von Methanol durch Membran führt zu parasitärer Reaktion auf Katodenseite. Dadurch geringere Leistung bei erhöhter Methanolkonzentration.


Methanolbilanz, 0.5 mol/l, 60°C

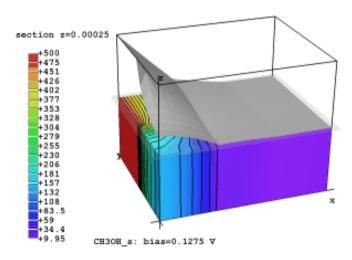

Methanolbilanz, 2 mol/l, 60°C

Hydrophobe Poren

Um den Gegenstrom von Gasen und Wasser zu ermöglichen, wird den Diffusionsschichten Teflon beigemischt.

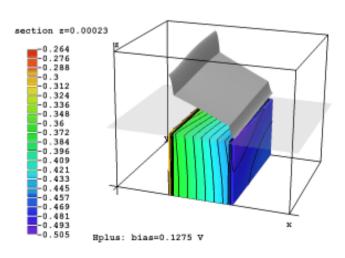


Sättigung vs. Kappillardruck



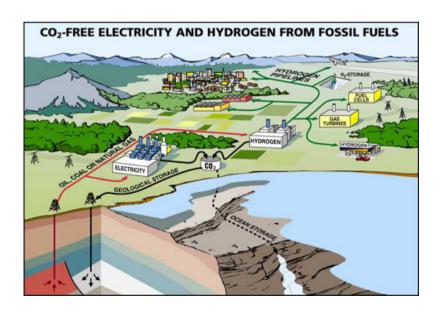
Einfluß auf Polarisationskurven

3D-Simulationen



Wasserdruck

Methanolkonzentration



Protonenpotential

Probleme / Fazit

- Pt und Ru extrem teuer
- Membran (Methanolpermeation)
- Gasblasenmanagement
- → Herstellung zu marktfähigen Preisen noch in recht weiter Ferne
- → weitere Grundlagenforschung notwendig!!

Vision (Statoil, Norwegen):

