

Introduction to Optical Flow

Mariya Zhariy

Introduction

Motivation

Determining

Optical Flow Constrain
Calculating Methods

Results

Moving Eye

Introduction to Optical Flow

Mariya Zhariy

Uttendorf 2005

Contents

Introduction to Optical Flow

Mariya Zhariy

Introduct

Motivation

Determining

Optical Flow
Optical Flow Constrain

Regulte

- 1 Introduction
 - Motivation
 - Definition

Contents

Introduction to Optical Flow

Mariya Zhariy

Introduct

Motivation

Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results Moving Sq

- 1 Introduction
 - Motivation
 - Definition
- 2 Determining Optical Flow
 - Optical Flow Constraint
 - Calculating Methods

Contents

Introduction to Optical Flow

Mariya Zhariy

Motivation

Determining Optical Flow Optical Flow Constraint

Calculating Methods Results

- 1 Introduction
 - Motivation
 - Definition
- 2 Determining Optical Flow
 - Optical Flow Constraint
 - Calculating Methods
- 3 Results
 - Moving Square
 - Moving Eye

Visual cranial reflex(VCR)(?)

Introduction to Optical Flow

Mariya Zhariy

Introduction

Motivation

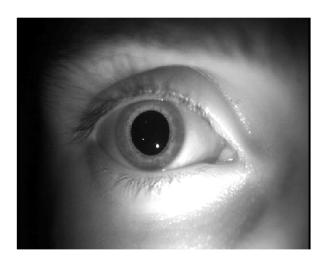
Optical Flow
Optical Flow Constrain

Results

- Rapidly changing scene (video games, virtual reality)
- Movements are identified by brain
- Brain sends signals to the eyes
- Eyes perform opposite movements in order to equilibrate the scene

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Dooulto

Introduction to Optical Flow

Mariya Zhariy

Introducti

Motivation

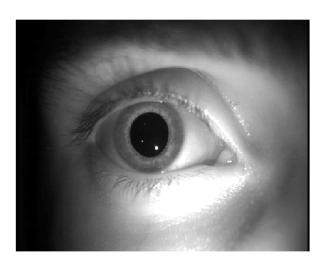
Determining Optical Flow

Optical Flow Constrair Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

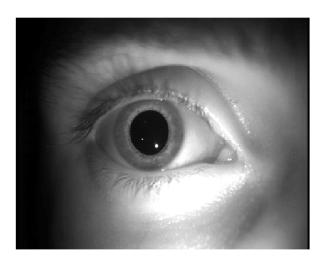
Determining Optical Flow

Optical Flow Constrair Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

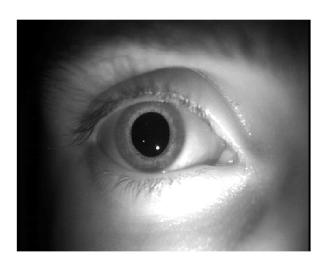
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Dogulto

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

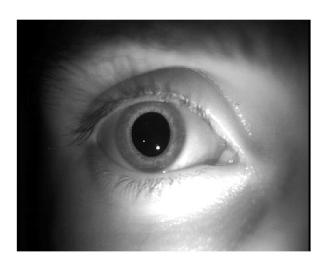
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Dooulto

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

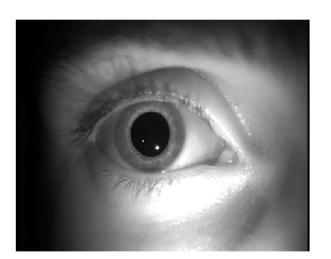
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

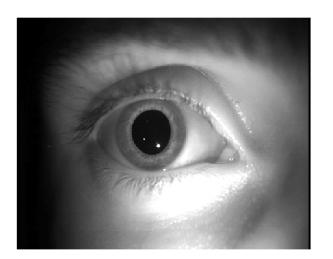
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Reculte

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

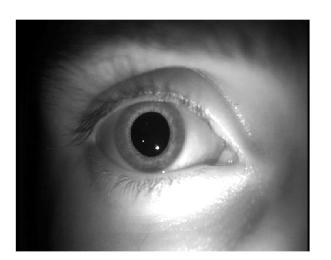
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Dooulto

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

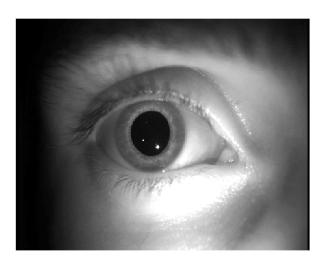
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

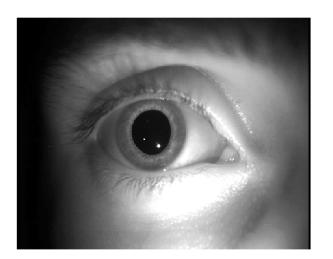
Determining Optical Flow

Optical Flow Constrair Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Dooulto

Introduction to Optical Flow

Mariya Zhariy

Introduct

Motivation

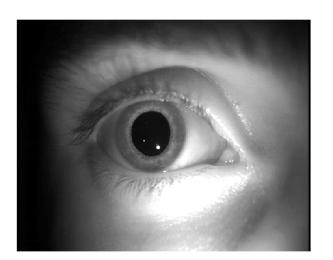
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Regulte

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy

Introduct

Motivation

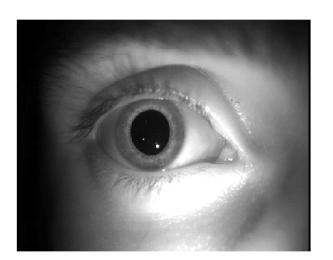
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

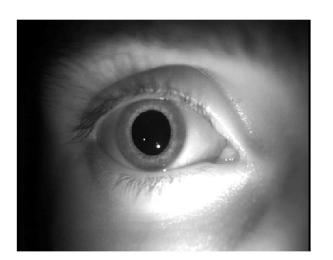
Determining Optical Flow

Optical Flow Constrair
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

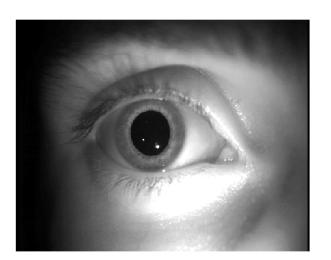
Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

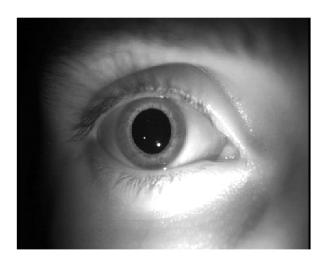
Determining

Optical Flow
Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

Determining Optical Flow

Optical Flow Constrair
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

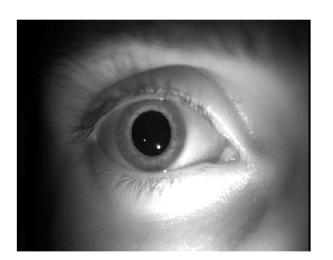
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

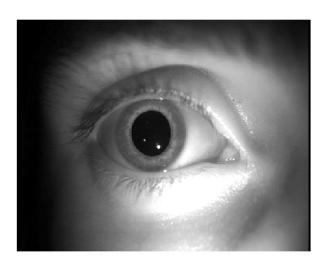
Determining

Optical Flow
Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introducti

Motivation

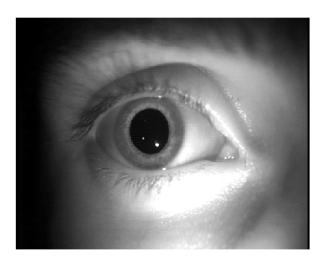
Determining Optical Flow

Optical Flow Constrair Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

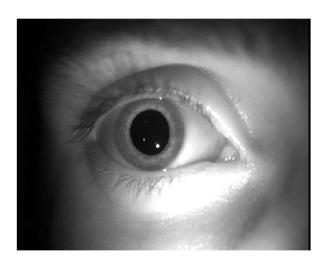
Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

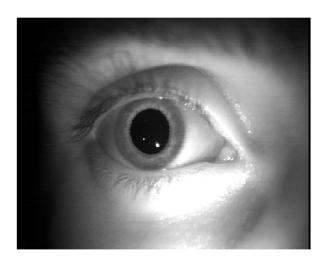
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy

Introduct

Motivation

Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy

Introduct

Motivation

Determining Optical Flow

Optical Flow Constraint
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

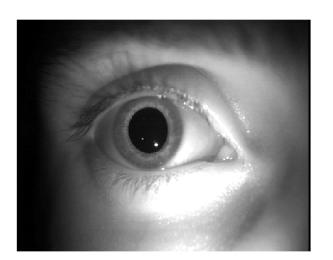
Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

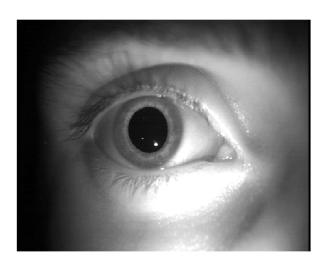
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

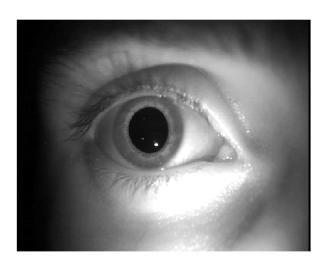
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

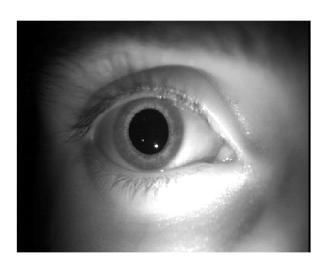
Determining Optical Flow

Optical Flow Constrain
Calculating Methods

Results

Introduction to Optical Flow

Mariya Zhariy


Introduct

Motivation

Determining Optical Flow

Optical Flow Constrair
Calculating Methods

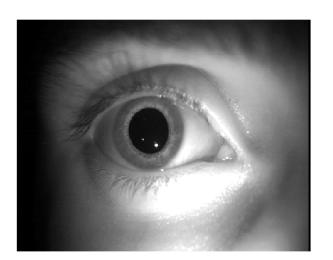
Results

Video sequence

Introduction to Optical Flow

Mariya Zhariy

Introduct


Motivation

Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results

Moving Square Moving Eye

Example: Rubik Cube

Introduction to Optical Flow

Mariya Zhariy

Introduction

11110000011

Definition

Determining
Optical Flow
Optical Flow Constrain

Calculating Methods

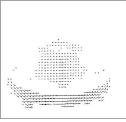

Moving Square

Image sequence

Velocity field

Optical Flow: Assumptions

Introduction to Optical Flow

Mariya Zhariy

Introduc

Definition

Determining
Optical Flow
Optical Flow Constrain
Calculating Methods

Results

Moving Squar Moving Eye

Pixel correspondence problem:

Given a pixel in the first image, look for a "nearby" pixel in the second image with the same brightness.

- Key assumptions:
 - brightness constancy
 - small motion
- Resulting flow:
 - displacement vector field
- Problems:
 - great displacements
 - changing illumination

Brightness constancy assumption

Introduction to Optical Flow

Mariya Zhariy

Optical Flow Constraint

If $I(\mathbf{x},t)$ image brightness, then

$$I(\mathbf{x},t) \approx I(\mathbf{x} + \partial \mathbf{x}, t + \partial t),$$

where $\partial \mathbf{x}$ is the displacemente of \mathbf{x} after time ∂t .

Taylor series

$$I(\mathbf{x} + \partial \mathbf{x}, t + \partial t) = I(\mathbf{x}, t) + \nabla I \cdot \mathbf{v} + \frac{\partial I}{\partial t} + H.O.T.,$$

where
$$\mathbf{v} = \frac{\partial \mathbf{x}}{\partial t}$$

Optical Flow Constraint

Introduction to Optical Flow

Mariya Zhariy

Motivation

Definition

Determining

Optical Flow Constraint Calculating Methods

Results

Moving Square Moving Eye Brightness constancy and small motion (vanishing H.O.T.) yuild:

$$\frac{dI(\mathbf{x},t)}{dt} = \nabla I \cdot \mathbf{v} + \frac{\partial I}{\partial t} = \mathbf{0},$$

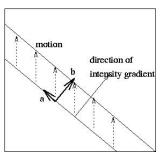
- two velocity components, one equation underdefined problem
- so called aperture problem
- another constraint is required

Aperture Problem

Introduction to Optical Flow

Mariya Zhariy

Motivation


Motivation Definition

Optical Flov

Optical Flow Constraint Calculating Methods

Results

Moving Square Moving Eve

Only the normal component of the velocity ${\bf v}$ in ∇I direction is known:

$$v_n = \mathbf{v} \cdot \frac{\nabla I}{\|\nabla I\|} = -\frac{I_t}{\|\nabla I\|}$$

the tangential component v_{τ} is unknown.

Fazit: locally we can not see the tangential motion.

Optical Flow Techniques

Introduction to Optical Flow

Mariya Zhariy

Motivation

Determining

Optical Flow Consti

Calculating Methods

Results

Moving Squar Moving Eye

Classification:

- Differential techniques
 - Global methods
 - Horn and Schunck (1st order)
 - Nagel (2nd order)
 - Local methods (Lucas and Kanade)
- Region-based matching
- Frequency-based methods

Note: All OF techniques can use the hierarchical (coarse-to-fine) refinement.

Introduction to Optical Flow

Mariya Zhariy

Introduction

Definition

Optical Flow

Calculating Methods

Results

Moving Square Moving Eye Regularisation: the optical flow constraint

$$\nabla I \cdot \mathbf{v} + \frac{\partial I}{\partial t} = \mathbf{0}$$

combined with a smoothness assumption based on:

$$\|\nabla v_x\|^2 + \|\nabla v_y\|^2$$

(Another measure of smoothness: $\Delta v_x + \Delta v_y$)

Look for $\mathbf{v} = (v_x, v_y)$ minimizing functional:

$$E(\mathbf{v}) = \int_{\Omega} \left(\nabla I \cdot \mathbf{v} + \frac{\partial I}{\partial t} \right)^2 + \lambda (\|\nabla v_x\|^2 + \|\nabla v_y\|^2) d\mathbf{x}$$

Introduction to Optical Flow

Mariya Zhariy

Motivation

Determining

Optical Flow Cons

Calculating Methods

Results

Moving Square Moving Eye

Minimization of $E(\mathbf{v})$:

Variational calculus:

$$I_x(I_x\bar{v}_x + I_y\bar{v}_y + I_t) + \lambda\Delta v_x = 0$$

$$I_y(I_x\bar{v}_x + I_y\bar{v}_y + I_t) + \lambda\Delta v_y = 0$$

Discretising of derivatives via finite differences:

$$\Delta v = v - \bar{v},$$

where

$$\bar{v} = v * M,$$

are local averages with mask

$$M = \begin{pmatrix} 1/12 & 1/6 & 1/12 \\ 1/6 & 0 & 1/6 \\ 1/12 & 1/6 & 1/12 \end{pmatrix}$$

Introduction to Optical Flow

Mariya Zhariy

Introduc

Definition

Optical Flov

Calculating Methods

Results

Moving Square Moving Eye Discretized equations in separated form:

$$(\lambda + I_x^2 + I_y^2)(v_x - \bar{v}_x) = -I_x(I_x\bar{v}_x + I_y\bar{v}_y + I_t)$$

$$(\lambda + I_x^2 + I_y^2)(v_y - \bar{v}_y) = -I_y(I_x\bar{v}_x + I_y\bar{v}_y + I_t)$$

Gauss-Seidel Iteration:

$$v_x^{n+1} = \bar{v}_x^n - I_x \frac{I_x \bar{v}_x^n + I_y \bar{v}_y^n + I_t}{\lambda + I_x^2 + I_y^2}$$

$$v_y^{n+1} = \bar{v}_y^n - I_y \frac{I_x \bar{v}_x^n + I_y \bar{v}_y^n + I_t}{\lambda + I_x^2 + I_y^2}$$

with \bar{v}_x, \bar{v}_y local averages of v_x, v_y .

Introduction to Optical Flow

Mariya Zhariy

Calculating Methods

Advantages

- smooth flow
- global information
- accurate time derivatives, using more then two frames, possible
- Disadvantages
 - iterative method: slow
 - unsharp boundaries

Lucas-Kanade Method

Introduction to Optical Flow

Mariya Zhariy

Motivation Definition

Determinin

Optical Flow Co

Calculating Methods

Results

Moving Square Moving Eye Assume the velocity $\mathbf{v}=(v_x,v_y)$ to be constant over a small neigbourhood Ω_x of every $\mathbf{x}\in\Omega$.

Minimize for all $x \in \Omega$:

$$\sum_{\mathbf{y} \in \Omega_x} W(\mathbf{y}) [\nabla I(\mathbf{y}, t) \cdot \mathbf{v} + I_t(\mathbf{y}, t)],$$

where $W(\mathbf{x})$ is a weight function.

Solution via normal equation:

$$A^T W A \mathbf{v} = A^T W \mathbf{b},$$

where

$$A = [\nabla I(\mathbf{x}_1), \dots, \nabla I(\mathbf{x}_n)]^T$$

$$W = \text{diag}[W(\mathbf{x}_1), \dots, W(\mathbf{x}_n)]$$

$$\mathbf{b} = -[I_t(\mathbf{x}_1), \dots, I_t(\mathbf{x}_n)]$$

Lucas-Kanade Method

Introduction to Optical Flow

Mariya Zhariy

Mathanian

Definition

Determinin

Optical Flow Cor

Calculating Methods

Results

Moving Squar Moving Eye

Advantages

- easy and fast calculation
- accurate time derivatives
- Disadvantages
 - errors on boundaries

Best combination between accuracy and speed.

Region-based Matching

Introduction to Optical Flow

Mariya Zhariy

Introduction

Motivation

Definition

Determining
Optical Flow
Optical Flow Constrai
Calculating Methods

Results

Define velocity \mathbf{v} as shift $\mathbf{d} = (d_x, d_y)$.

Consider sum-of-squared difference between two frames I_1 and I_2 :

$$SSD(\mathbf{x}, \mathbf{d}) = \sum_{\mathbf{y} \in \Omega_x} W(\mathbf{y} - \mathbf{x}) [I_1(\mathbf{y}) - I_2(\mathbf{y} + \mathbf{d})]^2$$
$$= W * [I_1(\mathbf{x}) - I_2(\mathbf{x} + \mathbf{d})]^2,$$

where W 2-dim window function, \mathbf{d} integer.

 Ω_x is a 3 × 3, 5 × 5 etc. square with \mathbf{x} in the middle.

Note: Minimizing SSD is equal to maximizing the cross-correlation, which is the sum over products $I_1(\mathbf{x})I_2(\mathbf{x}+\mathbf{d})$

Region-based Matching

Introduction to Optical Flow

Mariya Zhariy

Introduction

Motivation Definition

Optical Flow

Optical Flow Constra Calculating Methods

Calculating Metho

Results

Moving Squar Moving Eye

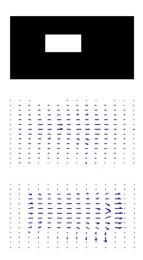
- Advantages
 - easy to calculate
- Disadvantages
 - only integer displacements: innacurate
 - only local information used
 - two-frame time derivatives: inaccurate

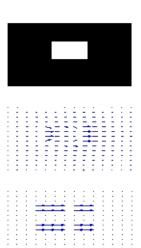
All methods described here work better with presmoothed data.

Introduction to Optical Flow

Mariya Zhariy

Introduct


Motivation


Determining

Optical Flow
Optical Flow Constrain
Calculating Methods

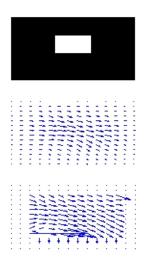
Regulte

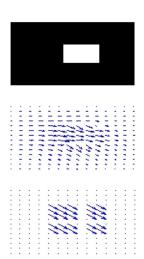
Moving Square Moving Eye

Introduction to Optical Flow

Mariya Zhariy

Introduc


Motivation Definition


Determining Optical Flow

Optical Flow
Optical Flow Constrai
Calculating Methods

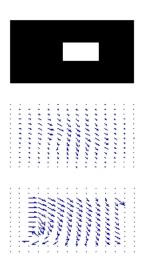
Regulte

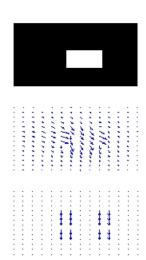
Moving Square Moving Eye

Introduction to Optical Flow

Mariya Zhariy

Introduc Motivation


Motivation Definition


Determining Optical Flow

Optical Flow
Optical Flow Constrai
Calculating Methods

Regulte

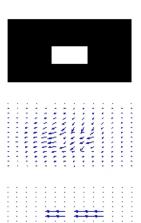
Moving Square Moving Eye

Introduction to Optical Flow

Mariya Zhariy

Introduc

Motivation


Determining Optical Flow

Optical Flow Constra Calculating Methods

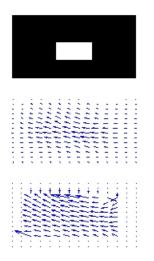
Poculto

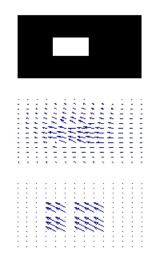
Moving Square Moving Eye

Introduction to Optical Flow

Mariya Zhariy

Introduct


Motivation


Determining Optical Flow

Optical Flow
Optical Flow Constrai
Calculating Methods

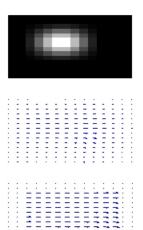
Regulte

Moving Square Moving Eye

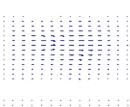
Introduction to Optical Flow

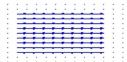
Mariya Zhariy

Introduct


Motivation Definition

Determining Optical Flow


Optical Flow Constrain
Calculating Methods

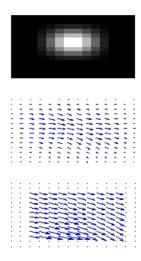

Regulte

Moving Square Moving Eye

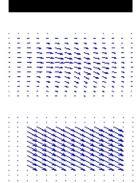
Introduction to Optical Flow

Mariya Zhariy

Introduct


Motivation Definition

Determining Optical Flow


Optical Flow Optical Flow Constrai Calculating Methods

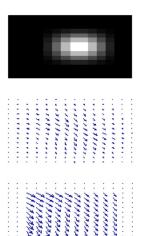
Regulte

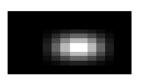
Moving Square Moving Eye

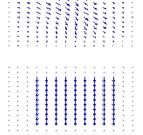
Introduction to Optical Flow

Mariya Zhariy

Introduc


Motivation


Determining Optical Flow


Optical Flow Constrai Calculating Methods

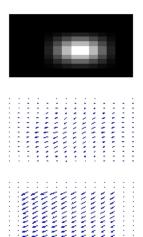
Regulte

Moving Square Moving Eye

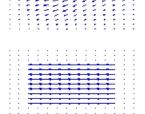
Introduction to Optical Flow

Mariya Zhariy

Introducti


Motivation

Determining Optical Flow


Optical Flow Constrai

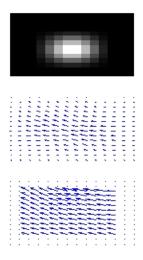
Dooulto

Moving Square Moving Eye

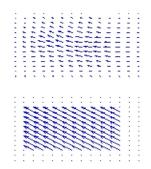
Introduction to Optical Flow

Mariya Zhariy

Introduc


Motivation

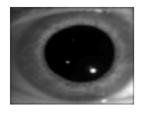
Determining Optical Flow

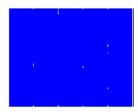

Optical Flow
Optical Flow Constrain
Calculating Methods

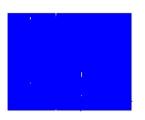
Regulte

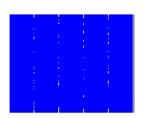
Moving Square Moving Eye

Results: Moving Eye


Introduction to Optical Flow

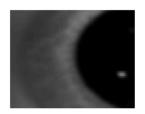

Mariya Zhariy

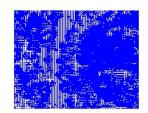

Motivation

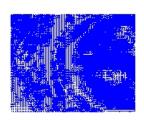

Determining Optical Flow

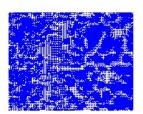
Moving Eye

Results: Moving Eye


Introduction to Optical Flow


Mariya Zhariy


Motivation


Determining Optical Flow

Results: Moving Eye

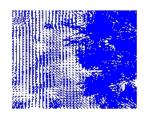
Introduction to Optical Flow

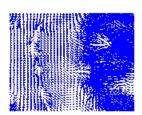
Mariya Zhariy

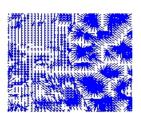
Introducti Motivation

Definition

Determining Optical Flow


Optical Flow Constrai Calculating Methods


Mesuita Sa

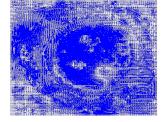

Moving Square

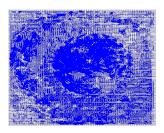
Horn-Schunck vs Lucas-Kanade

Introduction to Optical Flow

Mariya Zhariy

Introduction


Motivation

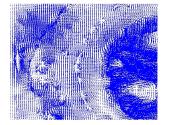

Determining Optical Flow

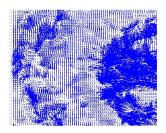
Optical Flow Constrai Calculating Methods

Result

Moving Square Moving Eye

Horn-Schunck vs Lucas-Kanade


Introduction to Optical Flow


Mariya Zhariy

Motivation

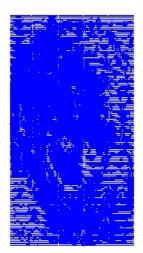
Determining Optical Flow

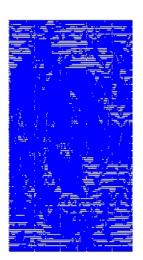
Moving Square Moving Eye

Horn-Schunk: Rotation

Introduction to Optical Flow

Mariya Zhariy


Introduct


Motivation Definition

Determining Optical Flow

Optical Flow Constrain Calculating Methods

Results
Moving Square
Moving Eye

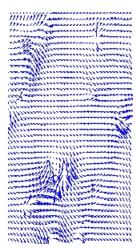
Horn-Schunk: Rotation

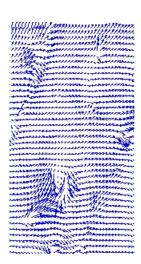
Introduction to Optical Flow

Mariya Zhariy

Introduc

Motivation Definition


Optical Flor


Optical Flow Constrain Calculating Methods

Results

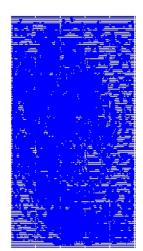
Moving Squ

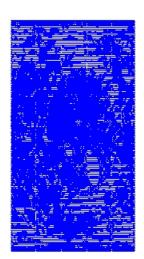
Moving Eve

Lucas-Kanade: Rotation

Introduction to Optical Flow

Mariya Zhariy


Introduction


Motivation

Determining Optical Flow

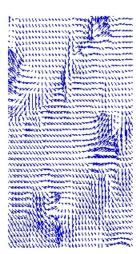
Optical Flow Constrair Calculating Methods

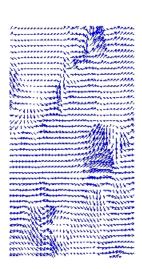
Results
Moving Square
Moving Eye

Lucas-Kanade: Rotation

Introduction to Optical Flow

Mariya Zhariy


Introduction


Definition

Optical Flow

Optical Flow Constrain

Results
Moving Squar
Moving Eve

