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The Physical Problem
The Mathematical Problem

The Physical Problem

I Image Earth’s interior

I In particular the interface layer of the liquid core and solid
mantle

I Earth’s interior is inaccessible

I Remote sampling is required

I Important steps include

(a) accurate characterization of seismic energy
(b) reliable estimation or measurement of seismic

wave timing
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The Mathematical Problem

The Mathematical Problem

I Topographic inversion with extreme sparse data coverage

I Poor signal to noise ratio (SNR)

I Extremely Ill-posed
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Earth
Dataset
D” Evidence

Problem Formulation

I Invert the blurring Effect (attenuation) of Earth’s mantle
and core to ...

I (a) get clearer evidence of the existence of structures like
the ULVS

I (b) get timing information to make quantitative estimates
like the height of a structure.
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Forward Model
Inverse Problem

Forward Model

I Signal degradation is modeled as a convolution

g = f ∗ h + n

I where g is the blurred signal
I f is the unknown signal
I h is the point spread function
I n is noise
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Forward Model Example

g = f ∗ h + n
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Forward Model
Inverse Problem

Estimation of the PSF

I Ideal goal of seismic deconvolution is to produce a spike train

I The corresponding PSF is unknown (if it exists)
I Estimations of this PSF (in seismology wavelet) come from

I stacking traces (problem, traces are very different)
I estimating Earth’s filter (basically a low pass filter, very

difficult due to inhomogeneities)
I use a very basic (common) shape, like a Gaussian (very rough

estimate)
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Forward Model
Inverse Problem

Gaussian Wavelet

I also called a Ricker Wavelet

I h(t) = 1
σ
√

2π
e−

t2

2σ2

I σ is a width parameter, chosen such that the wavelet
approximates the phase of interest.
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Forward Model
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Inverse Problem

I Find f from g = f ∗ h + n given g and h with unknown n.

I Assuming normal distributed n yields the estimator

f̂ = arg min
f
{‖g − f ∗ h‖2

2}

I Reconstruction with n normal distr. with σ = 10−7
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Forward Model
Inverse Problem

Regularization

I Add more information about the signal

I e.g. statistical properties (e.g. Wiener decon)

I or information about the structure (e.g. sparse decon, or total
variation decon)

I in latter case use a penalty term

I find
f̂ = arg min

f
{‖g − f ∗ h‖2

2 + λR(f )},

where R(f ) is the penalty term and λ is a penalty parameter.
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Forward Model
Inverse Problem

Regularization Methods

I Common methods are Tikhonov (TK)

R(f ) = TK(f ) =

∞∫
−∞

‖f ′(t)‖2
2dt.

I Total Variation (TV)

R(f ) = TV(f ) =

∞∫
−∞

|f ′(t)|dt.

I Sparse deconvolution (L1)

R(f ) = ‖f ‖1 =

∞∫
−∞

|f (t)|dt.
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Forward Model
Inverse Problem

Regularization Notes

f̂ = arg min
f
{‖g − f ∗ h‖2

2 + λR(f )}

I λ Governs the trade off between the fit to the data and the
smoothness of the reconstruction and can be picked by the
L-curve approach

I TV yields a piece wise constant reconstruction and preserves
the edges of the signal

I TK yields a smooth reconstruction

I L1 yields a spike train

I To find the minimum we use a limited memory BFGS method
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Forward Model
Inverse Problem

Notes on the Optimization

I All the considered objective functions (OF) are convex

I TK is a linear least squares (LS) problem

f̂ = arg min
f
{‖g − Hf ‖2

2 + λ‖Lf ‖2
2)}

I The TV objective function is non differentable

J(f ) = ‖g − Hf ‖2
2 + λ‖Lf ‖1

I The problems are very large (n order of 10000)

I Evaluation of the OF and its gradient is cheap (some FFTs
and sparse matrix-vector multiplications)

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Forward Model
Inverse Problem

Notes on the Optimization

I All the considered objective functions (OF) are convex

I TK is a linear least squares (LS) problem

f̂ = arg min
f
{‖g − Hf ‖2

2 + λ‖Lf ‖2
2)}

I The TV objective function is non differentable

J(f ) = ‖g − Hf ‖2
2 + λ‖Lf ‖1

I The problems are very large (n order of 10000)

I Evaluation of the OF and its gradient is cheap (some FFTs
and sparse matrix-vector multiplications)

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Forward Model
Inverse Problem

Notes on the Optimization

I All the considered objective functions (OF) are convex

I TK is a linear least squares (LS) problem

f̂ = arg min
f
{‖g − Hf ‖2

2 + λ‖Lf ‖2
2)}

I The TV objective function is non differentable

J(f ) = ‖g − Hf ‖2
2 + λ‖Lf ‖1

I The problems are very large (n order of 10000)

I Evaluation of the OF and its gradient is cheap (some FFTs
and sparse matrix-vector multiplications)

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Forward Model
Inverse Problem

Notes on the Optimization

I All the considered objective functions (OF) are convex

I TK is a linear least squares (LS) problem

f̂ = arg min
f
{‖g − Hf ‖2

2 + λ‖Lf ‖2
2)}

I The TV objective function is non differentable

J(f ) = ‖g − Hf ‖2
2 + λ‖Lf ‖1

I The problems are very large (n order of 10000)

I Evaluation of the OF and its gradient is cheap (some FFTs
and sparse matrix-vector multiplications)

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Forward Model
Inverse Problem

Notes on the Optimization

I All the considered objective functions (OF) are convex

I TK is a linear least squares (LS) problem

f̂ = arg min
f
{‖g − Hf ‖2

2 + λ‖Lf ‖2
2)}

I The TV objective function is non differentable

J(f ) = ‖g − Hf ‖2
2 + λ‖Lf ‖1

I The problems are very large (n order of 10000)

I Evaluation of the OF and its gradient is cheap (some FFTs
and sparse matrix-vector multiplications)

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Synthetic Data
Real Data

I use synthetic data from 1d model

I at a critical angle of about 110 deg SKS starts to diffract
along the core

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Synthetic Data
Real Data

I use synthetic data from 1d model

I at a critical angle of about 110 deg SKS starts to diffract
along the core

Wolfgang Stefan Signal restoration through deconvolution applied to deep mantle seismic probes



Outline
Introduction
Geophysics

Mathematical Model
Experiments

Conclusions and Acknowledgment

Synthetic Data
Real Data

SKS at 112 deg deconvolved with SKS from 99 deg
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Synthetic Data
Real Data

SKS at 112 deg deconvolved with a Gaussian
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Synthetic Data
Real Data

Error estimates

I Arrival time from an edge detection vs. ray theory prediction
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Synthetic Data
Real Data

Real Data (SV) from an earthquake in South America
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Synthetic Data
Real Data

Real Data (SH) from an earthquake in South America
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Synthetic Data
Real Data

Evidence of the ultra low velocity zone (ULVZ)
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Conclusions

I TV regularized deconvolution is more robust then established
methods

I Automatic travel time picking is more accurate then hand
picking

I TV deconvolution yields usable results even for rough
estimates of the wavelet

I Better estimates of the wavelet e.g. two-sided Gaussian will
improve results further
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