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Wikipedia about Wavelets

Haar’s work in the early 20th century

Goupillaud, Grossman and Morlet’s formulation of
CWT (1982)

Strömberg’s early work on discrete wavelets (1983)

Daubechies’ orthogonal wavelets with compact
support (1988)

Mallat’s multiresolution framework (1989) etc
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Origins of Wavelet Analysis

At least seven different origins

Most of the work was done around the 1930s

Different concepts, not connected to each other

Not related to signal or image processing

Most of the techniques rediscovered in 1980s

Today

Different concepts come together

Definition of wavelet and wavelet analysis still flexible

New aspects through new applications
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Historical Overview

1909 Haar suggests an alternative system to
Fourier system

1910-1920 Schauder and Faber define ’triangle functions’

1930s Lévy analyzes Brownian motion in terms of
Schauder basis
Littlewood and Paley form ’dyadic blocks’ of
the Fourier coeffitients
Franklin creates an ONB from the Schauder
basis
Lusin looks for ’atom decomposition’ of Hardy
spaces

1960 Atomic decomposition of L2 given by
Calderón’s Identity
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Rediscovering of the techniques in 1980s

1980s Mallat applies Littlewood-Paley theory in
image processing
Holschneider, Tchamitchian use Lusin’s
technique to analyze the Fractal structure of
the Weierstrass function
Grossmann & Morlet with CWT rediscovered
the Calderón’s identity
Strömberg, Meyer use Haar technique to
construct regular well-localized bases
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Fourier series

Instead of entire series

a0 + a1x+ a2x
2 + a3x

3 + . . .

trigonimetric series (Joseph Fourier, 1807)

a0 + a1 cosx+ b1 sinx+ a2 cos 2x+ b2 cos 2x+ . . .

Fourier series of a 2π-periodic function f :

f(x) ∼ 1√
2π

∑
k∈Z

f̂keixk, f̂k =
1√
2π

∫ 2π

0
f(x)e−ixkdx

Paul Du Bois Reymond constructed 1873 a continuous
function, whose Fourier series does not converge in
classical sense.
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Convergence of the Fourier series

Convergence only in few cases

functions with left and right derivative
Hölder functions
functions of bounded variation

New concepts required

new notion of function/convergence: Norm
convergence(Lebesgue), a.e. convergence
summability of series: Cesàro sums
σn = 1

n(S0 + · · ·+ Sn−1) instead of partial sums
another orthonormal systems, able to give better
representation: Haar wavelets

Haar series of a continuous function on [0, 1] converge
uniformly to this function.
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Schauder basis

Critics on the Haar concept: Haar ’atoms’ are not
continuous themselves.

Faber and Schauder(1910-1920) replaced the Haar
functions by it’s primitives, triangle functions:

Λ(x) =
{

2x, 0 ≤ x ≤ 1/2
2− 2x, 1/2 < x ≤ 1

With Λ0 = x, Λn = Λ(2j · −k), n = 2j + k, j ≥ 0,
0 ≤ k < 2j , triangle functions {1,Λ0,Λ1, . . .} build a
Schauder basis of C([0, 1]).
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Schauder coefficients

f continuous on [0, 1]

f(x) = a+ bx+
∞∑
1

αnΛn(x).

The Schauder coefficients are easy to calculate: f(0) = a,
f(1) = a+ b. For f1(x) = f(x)− a− bx we have

α1 = f1(1/2) = f(1/2)− 1
2
(f(0) + f(1)).

For n = 2j + k, 0 ≤ k < 2j

αn = f
(k + 1/2

2j

)
− 1

2

[
f
( k

2j

)
+ f

(k + 1
2j

)]
.
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Hölder Spaces vs Schauder Basis

Hölder spaces Cr([0, 1]), 0 < r < 1 are defined by

|f(x)− f(y)| ≤ C|x− y|r

Schauder coefficients for f ∈ Cr

|αn| ≤ C2−(j+1)r

Note that 2j ≤ n < 2j+1

Then the Hölder spaces can be characterized in terms of
Schauder coefficients as follows:

f ∈ Cr ⇐⇒ |αn| ≤ Cn−r, 0 < r < 1.
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1930s: Multifractal structures

Pointwise calculation of the Hölder exponent r

|f(x)− f(x0)| ≤ C|x− x0|r

Then we look for the largest possible r, denoted by r(x0).
If r varies from point to point, we have a multifractal
structure.
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Weierstrass function

Weierstrass function

∞∑
n=1

1
n2

sin(n2x)

is continuous but nowhere differentiable.

It’s multifractal structure, which is not evident from Fourier
series, can be analyzed using wavelets of Lusin.



Wavelets From a
Historical

Perspective

Mariya Zhariy

Introduction &
Overview

First steps
From Fourier to Haar

Schauder Basis and
Hölder Spaces

New Directions
of the 1930s
Multifractal Structures
and Brownian Motion

Littlewood and Paley

The Franklin System

The Wavelets of Lusin

From 1960 to
1980
Atomic decompositions

A first synthesis

1930s: Analysis of Brownian motion

Brownian motion is a
time-continuous stochastic process
with normal distributed
independent increments.
It’s derivative (also known as white
noise) can be discretized in time as
follows:

d

dt
X(t, ω) =

∑
i∈I

gi(ω)Zi(t),

{gi}i∈I – independent normal distributed random variables.
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1930s: Hölder exponent of Brownian motion

Paul Lévy took for Zi, i ∈ I the Haar basis.

By taking the primitives we get

X(t, ω) = a0(ω) + b0(ω)t+
1
2

∞∑
1

2−j/2gn(ω)Λn(t)

To calculate the Hölder exponent for X(t, ω) we have to
estimate it’s Schauder coefficients 2−j/2gn(ω).

From
sup
n≥2

(|gn(ω)|/
√

log n) <∞,

follows

|X(t+ h, ω)−X(t, ω)| ≤ C

√
h log

1
h
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1930s: Energy distribution

Parseval Identity: The energy of 2π-periodic signal f

1
2π

∫ 2π

0
|f(x)|2dx

is equal to the squared l2 Norm of Fourier coefficients f̂k.

Considering for 2 < p <∞

‖f‖p =
(∫ 2π

0
|f(x)|pdx

)1/p
,

we can see how the energy is distributed over the interval,
if it is concentrated around a few points or dispersed.

This information is not accessible by the Fourier
coefficients.



Wavelets From a
Historical

Perspective

Mariya Zhariy

Introduction &
Overview

First steps
From Fourier to Haar

Schauder Basis and
Hölder Spaces

New Directions
of the 1930s
Multifractal Structures
and Brownian Motion

Littlewood and Paley

The Franklin System

The Wavelets of Lusin

From 1960 to
1980
Atomic decompositions

A first synthesis

1930s: Dyadic summation

Littlewood and Paley define the dyadic sums

Djf(x) =
2j+1−1∑
k=2j

(ak cos kx+ bk sin kx),

so that the Fourier series of f is a0 +
∑∞

j=0Djf(x).

Dj constitute a bank of band pass filters of length 2j .

Fundamental result: for 1 < p <∞

‖f‖p ∼
∥∥∥(
|a0|2 +

∑
|Djf(x)|2

)1/2∥∥∥
p
,

and for p = 2 these norms are equal.
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1930s: Generalization to Rd

Antony Zygmund creates a prototype of the mother
wavelet ψ as rapidly decreasing C∞-function with
ψ̂ ∈ C∞(Rd) such that

ψ̂(ξ) =

{
1 if 1 + α ≤ |ξ| ≤ 2− 2α
0 if |ξ| ≤ 1− α or |ξ| ≥ 2 + 2α

with 0 < α ≤ 1/3 and∑
j∈Z

|ψ̂(2−j)|2 = 1 for all ξ 6= 0.

The last condition ensures the energy conservation
property.
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1930s: Littlewood-Paley-Stein analysis

The dyadic theory for Rd proceeds by setting
ψj(x) = 2jd/2ψ(2jx) and replacing the dyadic sums by
∆j(f) = f ∗ ψj .

The Littlewood-Paley-Stein function g is defined by

g(x) =
(∑

j∈Z
|∆j(f)(x)|2

)1/2

It follows then for all f ∈ Lp(Rd) and 0 < p <∞

‖f‖p ∼ ‖g‖p,

and there is an equality for p = 2.
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1930s: The Franklin system

The Franklin system is the Gram-Schmidt ortogonalization
of the Schauder basis (in terms of L2-inner product). The
Franklin sequence {fn}n≥−1

is ONB for L2([0, 1]) unlike Schauder basis

has two vanishing moments

gives a characterization of Hölder spaces Cr by
|〈f, fn〉| ≤ Cn−1/2−r

has no atomic structure like Haar or Schauder bases

has the asymptotic behaviour of Strömberg
wavelets(1980)
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1930s: Decomposition of Hardy spaces

A function f(x+ iy) defined in the half plane
P = {x+ iy, y > 0} belongs to a Hardy space Hp(R),
1 ≤ p ≤ ∞, if it is holomorphic in P and

sup
y>0

(∫
R
|f(x+ iy)pdx|

)1/p
<∞

Hp is a complex analogon of Lp.

Lusin’s work concerns the analysis and synthesis of Hp

functions using ’atoms’ (z − ζ̄)−2 with ζ ∈ P :

f(z) =
∫

P
(z − ζ̄)−2α(ζ)du dv,

where ζ = u+ iv.
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1930s: Wavelets of Lusin

Condition on the coefficient function α(ζ): the functional
A(x) defined by

A(x) =
(∫

Γ(x)
|α(u+ iv)|2v−2du dv

)1/2
,

with Γ(x) = {(u, v) ∈ R2 : v > |u− x|}, must be in Lp.

Then f belongs to Hp(R) and for 1 ≤ p <∞

‖f‖p ≤ C(p)‖A‖p.

The choice of α(ζ) is not unique. The natural
decomposition with α(ζ) = 2i

π vf
′(u+ iv) leads to

‖f‖p ∼ ‖A‖p.
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1960s: Atomic decompositions concept

Guido Weiss and Ronald Coifman present a concept of

atoms or simplest elements

assembly rules

and interpret the known results for the usual function
spaces: Lp, Hp.

In case of Hardy spaces the atoms and assembly rules are
given by the functions (z − ζ̄)−2 and A(x).

For Lp([0, 1])-spaces with 1 < p <∞ the simplest example
is the Haar system (Macinkiewicz, 1938).
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1960s: Calderón’s Identity

Let ψ(x) ∈ L2(Rd) and it’s Fourier transform satisfy∫ ∞

0
|ψ̂(tξ)|2dt

t
= 1 a.e. on Rd.

Let Qt(f) = f ∗ ψt with ψt = t−dψ(·/t), Q∗t (f) = f ∗ ψ̃t,
where ψ̃ = ψ(−·).

Calderón’s identity

I =
∫ ∞

0
QtQ

∗
t

dt

t

is another notation for analysis and synthesis steps of
CWT.
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1980s: Wavelets by Grossmann and Morlet

Using the same function ψ, called analysing wavelet,
Grossmann and Morlet defined the ’atoms’ by

ψa,b(x) = a−d/2ψ
(x− b

a

)
, a > 0, b ∈ Rd,

so that the analysis step is given by

W (a, b) = 〈f, ψa,b〉,

and the synthesis step by

f(x) =
∫ ∞

0

∫
Rd

W (a, b)ψa,b(x)db
da

ad+1
.

New was the application to the quantum mechanics.
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Lusin Wavelets

In case of Hardy spaces Hp(R), 1 ≤ p <∞ the analysing
wavelet, given by

ψ(z) =
1
π

(z + i)−2

is holomorphic in P and belongs to all of Hp(R). It’s
Fourier transform ψ̂(ξ) = −2ξe−ξ for ξ ≥ 0 and ψ̂(ξ) = 0 if
ξ ≤ 0. We have∫ ∞

0
|ψ̂(tξ)|2dt

t
=

{
1 if ξ > 0
0 if ξ ≤ 0

.

This condition assures that ψa,b, a > 0, b ∈ R generate
H2(R) instead of L2(R).
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1980s: Strömberg wavelets

Franklin system {fn}, n = 2j + k, 0 ≤ k < 2j can be
approximated by

fn(x) = 2j/2ψ(2jx− k) + rn(x),

where

‖rn‖2 ≤ C(2−
√

3)d(n), d(n) = inf k, 2j − k.

The function ψ was calculated by Strömberg in explicit
form. Moreover, ψ

is continuous, piecewise linear on R
has exponential decay

generates orthonormal basis for L2(R)
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Definitions of Wavelet

Grossmann & Morlet:

ψ ∈ L2(R) with
∫ ∞

0
|ψ̂(tξ)|2dt

t
= 1 a.e.

Littlewood-Paley-Stein:

ψ ∈ L2(Rd) with
∑

Z
|ψ̂(2−jξ)|2 = 1 a.e.

Franklin & Strömberg: ψ ∈ L2(R) such that {ψj,k}j,k∈Z
constitute an ONB for L2(R)
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Definitions of Wavelet Analysis

1 Grossmann & Morlet:

Wf(a, b) = Q∗a(f)(b) = 〈f, ψa,b〉, ψa,b(x) = a−d/2ψ
(x− b

a

)
, a > 0, b ∈ Rd

2 Littlewood & Paley replaced a by 2−j

(Wf)j(b) = ∆∗
j (f)(b) = 〈f, ψ2j ,b〉

3 Franklin & Strömberg replaced a by 2−j and b by k2−j

and Synthesis

1 follows from the Calderón Identity I =
∫∞
0 QaQ

∗
a

da
a

2 follows from the fact ∆j = Q2j : I =
∑

Z ∆j∆∗
j

3 is the ONB decomposition

f(x) =
∑

j,k∈Z
〈f, ψj,k〉ψj,k.
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Wf(a, b) = Q∗a(f)(b) = 〈f, ψa,b〉, ψa,b(x) = a−d/2ψ
(x− b

a

)
, a > 0, b ∈ Rd

2 Littlewood & Paley replaced a by 2−j

(Wf)j(b) = ∆∗
j (f)(b) = 〈f, ψ2j ,b〉

3 Franklin & Strömberg replaced a by 2−j and b by k2−j

and Synthesis

1 follows from the Calderón Identity I =
∫∞
0 QaQ

∗
a

da
a

2 follows from the fact ∆j = Q2j : I =
∑

Z ∆j∆∗
j

3 is the ONB decomposition

f(x) =
∑
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