Boundary value problems for PDE with operator type coefficients
Kudratllo S.Fayazov

Natonal University of Uzbekistan named after M. Ulugbek

(Uzbekistan)
e-mail: kfayazov@ yahoo.com

Content:
1. Introduction.
2. Cauchy problem for ODE with operator type coefficients.
3. Cauchy problem for elliptic type equations with:

(a) constant operator coefficients.

(b) variable operator coefficients.

4. Cauchy problem for degenerate equations and higher order PDE.

1. Introduction.| 1,2] Let G be a bounded domain in R? with G = 'y U Ty,
'y Ty =0, and D (D does not depend on (z,t)) a domain which is everywhere
dense in H. Let A(z,t), B(x,t) be linear operators (possibly unbounded) with
domain D, and u(z,t), ((z,t) € G) a function with values in the space H. Let
u(x,t) satisfy the equation

Az, t)Lu(z,t) = Bz, t)u(z, t) + fz, t,u,w), (z,t) €, (1)

Lu(z,t) = uy + 11Uy, + a1uy + agty, (2)

ap; € CQ(G)(CIH > 0)/ Cll(l',t),ag(l',t) < CI(G)
with boundary conditions in I'y

8_u
on

3

|F1:ga u(x,t) |F1:f1- (3)

Definition 1. By a solution of the equation (1) we called a two times smooth
differeniable function which belongs to the domain of operators A, B for every
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(x,t) € G and satisfies equation (1). Cauchy problem is to find the solution of
equation (1) satisfies condition (3) with

f.g € D(A)N D(B).

Cauchy problem (1),(3) is not in general well posed in the sense of Hadamard.
We will prove theorems of uniqueness and stability of Cauchy problem, construct
approximate solutions.

2.1. Subsidary facts. Cosider equation

Az =f, z e X, feF, (4)

where X and F' are Banach spaces, and A is a compact operator. Let M C X.
Theorem 1.(Tichonov A.N.; 1943) Asuume that a solution of the equation (4)
is unique and M is a compact set. Then A~! is continuous in M, i.e. there
exists a function w(e)(e > 0,w(e) is continuous in 0 and w(0) = 0) such that the
following inequality

| 21— 22 |[< w(]| Azy — Azs [])

is valid for all zy,25 € M, where || . | is corresponding norm in X and F,
respectively.

Definition 2. (Lavrent’ev M.M.,1959). If there exists a function w(e)(e > 0,w(e)
is continuous in 0 and w(0) = 0) such that

| 21— 22 |< w(]| Azy — Azs [])
for V1,29 € M, then the problem
Az =f, A:DA)— F, DA)CX
is called correct in the sense of Tichonov in M C D(A).
Definition 3.(Bukhgeim A.L., 1971) Problem
Ar = f

is called [-correct problem, if for Vé > 0 there exists a positive constant ¢(J) such
that
|z |[< ol(x) + ¢(0) || Az ||

for Vx € D(A) N D(l), where [ is a functional corresponding to the problem (4).
Theorem 2.The problem Ax = f is [- correct if and only if it is correct in the
sense of Tichonov in any set

My={xze€ D) |l(z)<s, s>0}.



2. Cauchy Problem for ODE with operator coefficients.
2.1. First order equation.Consider (1) with:
u(e,t) = u(t), Lu(t) = )
A1) = A(t), Bla,t) = B()
and G = [0, 7], then we have the following Cauchy problem
Aut = Bu + f(tv u)v U(O) = Up- (5)

Theorem 3.(S.G.Krein, 1957). Let A = I, B = B* be constant operators,
f =0, then for a solution of the equation (5) we have

() I u(0) 9| w(T) |77,

where the || . || is norm in the Hilbert space H.
The same result is valid in case A = I, BB* = B*B (B is constant normal
operator).

From Theorem 3 follows Cauchy problem for the equation (5) is correct in the
sense of Ticchonov in

M = {u || w(T) < m}.

H.A.Levine (1970) proved similar results for A and B which are not constant
(symmetric and others). We have given only references that are close to our
results. There are a lot of results one can find in corresponding articles. For ex-
ample, general character results about Cauchy problem belongs to L.Hermander,
A P. Calderon, L.Nirenberg and others.

2.2. Approximate solution (K.S.Fayazov, 1992 ) Let u(¢) be a function of a
scalar argument ¢, 0 < ¢t < T, with values in a Hilbert space H. Consider the
differential equation

Au; = Bu, (6)

where B is a positive self-adjoint operator with domain D(B) dense in H and
A is a self-adjoint operator establishing an izomorfism of H onto H; moreover,
E* + E~ = I, where E* and E~ are the spectral ptojections corresponding to
the positive and negative parts of the spectrum of the operator A. To construct
approximate solution the corresponding Cauchy problem we use the solution of
the following spectral problem:

Bv = MAwv (7)

that was studied by S.Pyatkov. Let ¢, and ¢, be the eigenfunctions of problem
(7) corresponding to the positive A}, and negative ), eigenvalues. It was proved
by S.Pyatkov that the eigenfunctions of problem (7) form a Riesz basis for H.
Assume that a solution to the problem Cauchy for the equation (6) exists, and

we |l w(T) lo< M}, || f = [fello< e,
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where

| u(®) 6= _AI Wu, o P+ (Uu, o7 [P,

i=1
U=FE"—E".

Then we construct an approximate solution to the given problem as follows:

N
UN. = Z{U;EQOZ— + u;e%;}a
k=1
where
uil = exp(\it) i
We have

| u(t) — un, () [|< e+ MePaaa =1 4 y(N),

where v(N) — 0 as N — 0.
Remark 1. One can use quazi-inverse method to approximatly solve this prob-
lem too. Approximate solution of considering problem will be

o0

Z v —a(rH)2
uae(t) = Y {ufoi + ujpp Jem N,

n=1

Example 1. Let B be a self-adjoint positively defined in Ly(—1,1) operator
which is generated by the differential expression

0%u

Bu=-24
Y 0x?

with bondary conditions
U ‘:c:—lz U |z:1: 0.

We difine the operator A as the operator of multiplication with the function
sign(zx).
2.2. Second order equation.
Consider (1) with:
u(z, t) = u(t), Lu(t) = uu(t),

Az,t) = A(t), B(z.1) = B(1)
and G = [0, 7], then we have

Auy = Bu+ f(t,u, uy) (8)

and corresponding Cauchy problem.



Theorem 4. (S.G.Krein, 1957). Let A = I, B = B* be constant operators,
f =0, then for a solution of the equation (8) the following is true

Fut) |I*<

< e w) P+ [a BTl u(T) |2+ [ a [}~ |al,

where || . || is norm in the Hilbert space H,
c(t) = ™Y, a = [(Au(0),u(0)) — (u'(0), u'(0))].

The solution of the Cauchy problem is unique and conditionly stable if A = I,
B = B*.

H.A.Levine has found some estimates for the case when A(t), B(t) are linear
symmetric (and others too) operators and right side of equation can be nonlin-
ear function. The uniqueness and stability of the solution of Cauchy problem
follow from his results in many cases and he gave many intersting and significanf
examples from mathematical physics.

Approximate solution. By the same conditions on operators A and B

one can show that the approximate solution for the Cauchy problem is

N
un. = Y {wlor + e}

=1

where
“Zg =ch )\:tf,je + ngEsm / )\Zt/)\:,

Upe = COS S| A [t - gresin\JL A 18/ [ A,

f]i: = :}:(Uflsagoki)u
i = £(Uge, 7).

Remark 2. This problem can be approximatly solved by quazi-inverse method
too.

Example 2. Boundary value (ill-posed) problem for mixed (hyperbolik-elliptic)
type partial differential equation.

3. Cauchy Problems for elliptic type differential equations with:

3.1. Constant coeffisients.|1,2]

Let u(z,y) be a function of points (x,y) € G (G is a bounded simply connected
domain in R? with piecewise smooth boundary OG) with values in a Hilbert space
H. Consider the equation

Au(z,y) = Bu(z,y), (z,y) € G, (9)



where B is a linear operator with values in H, and domain D(B) is everywhere
dense in H. Morover, let

8G:f1Uf2,F1mF2:@,

0
5 =g, u(@.y) Ir,= . (10)

where f; € C'(I'y; H) and g € C(I'y; H).

Before stating a theorem on [- correctness of initial problem, we impose some
conditions on the operator B and the domain G.

1. Suppose that the operator B in problem is normal operator, i.e. BB* = B*B.
Assume that the operator By (B = B; + iBy) posses a complete orthonormal
system of eigenfunctions {¢r}, £ = 1,2, ..., and let {\;} and {pux} be the corre-
sponding systems of eigenvalues of the operators B; and Bs, respectively; more-
over,

R P S e TN B o - o T

where v, = Ay + i, K = 1,2,--- . Grounding on the state conditions, we can
rewrite problem (9),(10) as follows:

Auk(xay) - 'quk(x,y) = Oa ($,y) € G (11)
ou
8—7’5 |F1: 9k, Uk(l',y) |F1: flka k= 1a27 ooy (12)
where
Uk(af,y) = (U,@k), fr = (fa <Pk), qr = (q, SOk);
moreover,

lw@,9) [Lam= Y || wnlz,9) 2. -

n=1

2. Suppose that the function p(2) = s(z,y) + it(z,y) (0 < 1 <| ¢'(2) |< ¢2)
executes a conformal mapping from the domain G into the domain €27; moteover,
the part I's of the part G goes into I, and I'; into [} and €2; correspondes to G,
Under such transformation, problem (11), (12) takes the form

AUy (s,t) — ag(s, t)Ux(s,t) =0, (s,t) € Qr,

AU (5,1)

an |F’1: Qk; Uk(S,t) |1"/1: Flka k = 1, 2, ceey

where
Uk(sa t) = uk(m(S, t)a y(S, t))a ak(sa t) = Yk | SOI(Z) |_2 :

Assign {(U) =|| U(s, t) ||%2(QT;D(B)) :



Theorem 5.[1,2] Assume that conditions 1 and 2 are satisfied and u(z,y) |r,= 0.
Then every solution of problem (9),(10) in the space

CHG; H)N C*(G; D(B)) N Ly(G; D(B))
satisfies the inequality
| w(z,y) 1o < eal(U) [ |71 +den (1),

where

6 =2 U (s, ) Zagapar #1317,
¢y 18 constant,

v =0{| Ud(s, t) |IP + | Us(s,t) [IP}ry
0 > 0 is constant,

en(t) = explkn (W(E)(T —to) + (to — 1))/ K1},

kn > 0 and depends on N; k; is constant depending onT'.
Theorem 6.[ 1,2] A solution of the Cauchy problem in the space

CYG; H)N C*(G; D(B)) N Ly(G; D(B))
is unique; moreover, if
w(@,y) |r,=0
and /(u) < m then the solution satisfies the estimate

lu(@, y) 1Ly < wm(9),

where w,,,(0) ~ mey H{ca/In(1/5)}'/? for small § — 0.
Theorem 7. 1,2] Let
Lu=ug, +uy, A=1

and B be a self-adjoint constant operator. Suppose w(z,t) satisfies
Aw = Bw+ f(t,z,w,w;)
and v € CY(Qp; H)N C?(Qp; H) () La(Q2p; D) is such that the following
Av = Bv + f(t,z,v,v;) —e(v)
is defined, and w |r,= 0, v |p,= 0. Let u = w — v, and

H f(t,l',’U,Ut) - f(taxawawt> HQS

¢ ¢
< 01/ || u(r, x) ||2 dr + 02/ | u (7, x) ||2 dr,
to to
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where ¢, co are positive constants. Then there exist 6, > 0,7 = 1,2 such that

/ | u(r,s) H2 dsdr <
Qy

< c(75)71—w(t){//Q | u(r,s) |? dsdr +7}w(t) o,
T

where
v = 91{H}?X(|| up |2+ 1] us 1)} + 02 || €(v) Nla@rsmy2,
w(t) ={e™ —e"}/{e — e},

c(t) = exp{q(w(t)T —t)/p},
q, p are some constants.

Theorem 8.[1,2] The solution of the Cauchy problem for the equation (1) is
unique in the space

CHQp; H) N C?*(Qp; H) N Ly(Q2p; D).

Theorem 9.[1,2] The solution of the Cauchy problem for the equation (1) is
stable in the space

CI(QT; H) N CQ(QT, H) N LQ(QT, D),

ue{u:// | ulr,s) ||? dsdr < MY}, u |r,= 0.
Qr

3.2. Variable coefficients.[1,2| Let A be a constant self-adjoint operator and
(Au,u) > 0 for all u # 0; (Au,u) = 0 — u = 0. Let B(z,t) be self-adjoint
operator for every (z,t) € Qr and

(Byu,u) > —c(Bu,u),

with
c=max{ max (|a, |+ |a1/2|+|a11,/2]|)/a11;
(m,t)EQT
max (| air, | +[ai/2 |+ [ a2 | +2c1)}.
(z,t)eQr

Let w satisfy

ALw(z,t) = Bw(z,t) + f(x,t,w,w;),
and v satisfy

ALv(z,t) = Bu(x,t) + f(z,t,v,v) — e(v).

Let u =w — v and
o = f(‘rat,wawt) —f<I,t,U,Ut),

8



FalP< el el w7,

then
ALu(z,t) = Bu(z,t) + a + £(v), (13)

where c1, co are constants.
Theorem 10.[1,2] If the coefficients a;1, a1, ay satisfy the condition (2), the so-
lution of equation (13) is equal zero on I'; and satisfies the inequality

// (u, Au)dsdt < M,
Qr

u € CH(Qp; HYNC?*(Qp; H) N Ly(Qp; D)

the following inequality is true

then for

[ e Awdsdr <9401 49y 0ctt) -,
Qr
where
3 = Oy ma{ e Aug) + i, Aur)} 46 1) ) [

Remark 3. A similar results one can obtain for arbitrary second order elliptic
type operators

Lu(z,t) = uy + Z ij (2, 1) Upy; + Z ai(x, t)uq, + ao(w, t)us.
i,j01 i=1
Example 3. We cosider the equation
sign(y) (ue(t, @, y) + e (t, ,y)) = —uy,(t, 2, y)

in the region @ = (—1,1) x Q. The equation is a mixed type equation. We will
consider the problem: Find the solution of equation in Q(y # 0) which satisfies
the following boundary conditions:

1.
ou(t, z,
% |p1=g,u(t,a§,y) |F1: fla
2.
U(t,l’, _1) - Oa U(t,ﬂ?, 1) = Ov (J?,t) S QT;
3.

u(t,z,—0) = u(t, z, +0), u,(t,z, —0) = u,(t, z, +0).

Theorem 11.[1,2| If a solution of this problem becomes zero on the surface I'y

and satisfies
T pe2t) pl
/ / / uz(t,m,y)dydidt < M,
0 gol(t) —1
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then

w2(t)
/ / / (t,z,y)dydzdt < yO(M + v)*Oc(t) — 7,
1

where
c(t) =exp{t(T —t)/2}, w(t)=1—-1t/T,

= Gmax/ {ul, +ui, + ul, by,

(0 is constant that depends on 7" and T'y).

From this theorem one can easily see that the uniqueness and stability of the
solution of this problem follows.

4.Cauchy problem for degenerate DE and higher order PDE.

4.1. Degenerate DE . Let the following inequality be valid

| 22 D" 4 Au ||?<
n—1

n) chk+1t2p_4k_2 || Dt2n—2k—1u ”2 +

k=1

+x(n) Ck R D |+

M\i

o~
Il
—

©[3

+(1=x(n)) Y, Conat™ ™ || DI ||* +
k=

[y

N

(1 =x(n)) Y Connat”™™ | DY u ||* +

k=1
2n
+ 3 GBI || DR 2 (), (14)
k=n+1

where C;, C; are constants, p is a parametr (0 < p < 2n), and
x(n) ={0,if n is even; 1,if n is odd}.

We assume u(t), 0 < t < T, takes value from Hilbert space H, and A has
everywhere dense domain in H, moreover:

1.Ais symmetric, i.e.(Au,v) = (u, Av), v,u € D(A);
2.(Au,u) >0, u e D(A);

3. A is constant operator.
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Initial data are given in the form: for any
w>0,0>0 (i=1,...,2n), (j=1,...,n)

t%_ng || D?n—iu ||2’ 1o =242 || Al/QD?_ju HZS M2t (15)
Definition 4. Function u(t) : [0,7] — H is called the solution of inequality
(14)if:

Law(t), us(t), us(t), ..., Diu, ..., Dare continuous in[0, 7’

2.Diu € D(A), i=0,1,...

3. u(t) satisfies (14) and (15).
Theorem 12. (stability). There exits w > 0,& >0 (i =2,...,2n), and 7; > 0
(j =2,...,n) such that the inequalities

,2n — 2;

1.Cj < &(2n — p)w 1, Cf <mi(2n — w1

2475 L f(t) |< €23 (e > 0)

and inequality (15) imply

T
—2w @n=Dp_ n n—
/ (2 EEE e e (Op — p)22 T o) || || dE <
0

M
In T/ In =

< Cexpi(=1/2) In(,————57

)}
where 0 < T" < T, C' depends on T.0, w; € < &g, €9 depends on p and w; 2 > w.

Theorem 13. (Uniqueness) Let f(¢) = 0. If the condition of the above theorem
is valid then u(t) = 0.

Example 4. We can take as examples to our inequality (14) equation with
operator A in the form: A = A?* or A = —A%~! and corresponding boundary
conditions:

1). when A = A% 2n = 2k, we get elliptic case t* D?"u + A%y = .. .;

2).When A = A% 2n < (#)2k, we get parabolic case;

3).If A= —A%"1 9n < (#)2k — 1 we get parabolic equation;

4). If n = k = 1, we get hyperbolic case: t* D2y — Au = ....

Similar type of problem has been studied by H.Cordes, N.Aronszain, S.Alihac,
S.Schischatsky, A.Avdeev and others. For example S.Schischatsky (1982) studied
Cauchy problem for the following inequality

| 7w + A(t)u [|2< bit? u, ] + bot™ 72 || u |2 +£(2),

where 0 < p < 1.
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Let
(Au,u) >0, u € D(A).

We will consider inequality

|| tputttt + AU ||2§

1
<RI et | | e || AV P et g | ed | u P (16)

where ¢, €9, c3, ¢4 are constant and p is parametr (p > 4).

Definition 5. The function u(t) : [0,7] — H is called a solution of the in-
equality (16), if the following hold:

1). wu,us, uy, uy are continuous for 0 < ¢ < T and w, uy, Uy, uyy € D(A);

2) Uttt exists for 0 <t< T,

3). u(t) satisfies (16) for 0 <t <T.

Theorem 14. Let u(t) is a solution of the inequality (16), with p = 4. If for any
w > ()0

T e LT v (7 e |7 || w || 0

as t — 0, then u(t) = 0.
Theorem 15. Let u(t) is a solution of the inequality (16), with p > 4. If for any
w >0

exp (@t PN | g ||+ | e |+ [ e |+ [ w [} — 0

as t — 0, then u(t) = 0.

4.2. Higher order PDE.

a).Let D(D does not depend of t) be an every where dense domain in H, and
A(t), B(t), C(t) are linear operators (possibly unbounded) with domain D. Let
u(t) be a function with values in the space H. Let u(t) satisfy the equation

d 1 d k
(B(1) 5 — AW — CO)ult) = 1

where [, k are given natural numbers and dl;;?) li=0 0g;y i =0,1,...,l+k—1. We
have proved the theorems of uniqueness and stability for some of linear symmetric
operators.

b). Let ¢, € C*(t > 0)(i = 1,2),t € [0, T, and |¢'(t)[t'/? < p, (i = 1,2), where
(1 is a constant. Let Q0 be a bounded simply connected region in R? defined as
follows:

Qp ={(z,1) : 0 <t <T,1(t) <z <a(t), p1(0) = 2(0)},
and 0Q; =T ULy, T'1 NIy = 0, where
Ty = {(2,6) 2 — @ilt), (i = 1,2),0 < t < T},
Ty = {(2,) 1 £ = T, 01(£) < 2 < pa(£)}
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Let D (does not depend of (z,t)) be everywhere dense domain in Hilbert space H,
and A(z,t), B(z,t), C(z,t) and E(x,t) are family of linear operators (possibly
unbounded) with domain D, u(z,t)((z,t) € Qr) is a function with values in the
space H. Let u(x,t) satisfies the equation

(ALl - B)(CLQ - E)U(l', t) == 0, (.’13, t) S QT, (17)

where _ . .
Liu(z,t) = uy + al Uy + abu, + ajug, (i=1,2)

with a¢;, € C4(Qr)(ai, > 0), ab, ai € C*(Qr), (i = 1,2), and in the part I'; of
the bound 0€)r the boundary values are given

Du(x,t)
ont

Similar initial problems one can see in cases:
1) L, is defined as above, Lou(x,t) = uy or Lou(z,t) = wy;
2)Liu(z,t) = uy (or Liu(z,t) = uy) and Lo defined as above.
We prove theorems of uniqueness and stability of problem (17)-(18) using the
following lemmas.
Lemma 1. Let A is constant self adjoint positive defined operator, and s > 0.
Then for solution of the following Cauchy problem

Ir,=¢:, 1=0,1,2,3. (18)

u'(t) — Au(t) = v(t), u(0) =0

the following inequality is true

[t 12 ar < WD) 0BT [y oy 2 ar

S

Lemma 2. Let Aand B be self adjoint constant operators. Let (Bu,u) >
Au,u) (A > 0) and A~! exists. Then for solution of the equation

is valid inequality
(Bu,u) < h(t)((Bu(T),w(T))+ | « |)t/T((Bu(O),u(O))+ | a |)1—t/T’
where

h(t) = exp(2(T —t)),a = %(Bu’(O),u’(O)) — (Bu(0), A 'Bu(0))).

Lemma 3.[1, 2] Let A = C = I, B and E are constant self adjoint operators.
Let w(x,t) satisfies equation
Aw— Bw=wv

13



and w € CY(Qp; H) N Ly(Qp; D), and v(x,t) satisfies equation
Av = Cv

and v € CY(Qp; H) N C?*(Qp; H) N Ly(Qr; D), and let w |p,= 0,v |1"1— 0. Then
there are constants K; > 0 (i = 1,2,3) such that functions ¢1(t) = In([ [, ||

w ||? dsdt+m1), ¥a(t) = ([ [o, | v [|* dsdr+2) satisfy the followmg differential
inequalities, respectively,

Ui () + pabi(t) + a4 > 0, (pi, s > 0),
where t
= Kmax(([ o [P+ o )+ Ko [ ] o]
1 to
12 = Ky mas(|| v 2 + | v ).

3) Let Liu(z,t) = uy and Lou(x,t) = uy + Uy, then using Lemma 2,3 one can
get:

Theorem 16. Let A =C = I, B and E are selfadjoint constant operators. The
solution of the problem (17)-(18) is unique on the space C*(Qr; H)NC*(Qp; H)N

LQ(QT; D)

Theorem 17. Let A = C = I, B and E are self adjoint constant operators. Let
O'u , Pu
% |F1: Oa v = 07 17 27 % |F1: g,

and

/ {] (Btrr,turr) | + | (Bugs, uss) | FdsdT < M.
Qr

Then for solution of the problem (1)-(3) is valid the inequality
[ [ 1utsr) P dsdr <9170 (01 4900, o),
Q

where
71 = O1max ((Bg, g)| ci(t) = h(t) - c(t) - O2,

h(t), c(t) are function defined above, ©; and O, nonnegative constants dependent
of dzmQT
Example. We consider the equation

0*  9? 82 0? 82
in the region @ = (—1,1) x Qp (Qr is defined as above). We will consider the
problem:

14



Finding the solution of equation in Q(y # 0) which satisfies the following bound-
ary conditions

1) g;ff(t,a:,u) v gi, 1 =0,1,2,3, where

1
I =T x (=1,1), I = I'y x (—1, 1);
2)u;(t, z,—1) =0, u;(t,x, 1297 0, ()t, a:)ae( QT,)z' =0,1.
u(t,x,—0) _ Ou(t,r,+0
3) U’(ta z, _0) = U(t, z, +0)7 By - By
Here F is a selfadjoint positive defined in Ly(—1, 1) operator which is generated
by the differential expression

And with boundary conditions u |,—_;= u |,—3= 0. We define the operator C'
as the operator of multiplication with the function sgn(y). A, B are identity
operators. This problem is ill-posed problem in the sense of Hadamard, since
continuous dependence of the solution from the data is absent in it.
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