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Abstract

A new iterative algorithm for the solution of minimization problems
which involve sparsity constraints in form of ¢P-penalties is proposed. In
contrast to the well-known algorithm considered by Daubechies, Defrise
and De Mol, it uses hard instead of soft thresholding. It is shown that the
hard thresholding algorithm is a special case of the generalized conditional
gradient method. Convergence properties of the generalized conditional
gradient method with quadratic discrepancy term are analyzed. This leads
to strong convergence of the iterates with convergence rates O(n_l/ 2) and
O(A\") for p =1 and 1 < p < 2 respectively. Numerical experiments on
image deblurring and backwards heat condution illustrate the performance
of the algorithm.
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1 Introduction

This article deals with the solution of minimization problem which involve so-
called sparsity constraints. Sparsity has been found as a powerful tool in several
problems in recent years. It has been recognized, that sparsity is an important
structure in many applications ranging from image processing to problems from
engineering sciences. Throughout the article the following example will be used
for illustration: Minimize the functional

u— 2
w(w) = I S g, w1 (1)
k

where K : H; — Hy is an operator between two Hilbert spaces Hy and Ha, {1y}
is an orthonormal basis of Hy, wg > wg > 0 is a weighting sequence, and for
the exponent it holds 1 < p < 2. In the following we will use the abbreviation
(u, ¥i) = uy for the coefficients of u with respect to the basis {1 }.

Problem of this type arise in different contexts:
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Sparse inverse problems [6]. Here K is a compact operator and one aims
at solving the equation Ku = f. Further more one assumes that the right
hand side is not know precisely but up to a certain precision || f — f|| < .
Since K is compact the solution of the problem Ku = f is ill posed. A
way out is to regularize the inversion of K by prior knowledge. As proved
in [6] the minimization of the above functional ¥ provides a regularization
which promotes sparsity of the solution in the basis {9y}

Image deblurring [1]. Consider an image f which is degraded by blurring
and noise, i.e. f = Kf + . A standard Tikhonov regularization with a
quadratic penalty ®(u) = |u|%. would lead to a smooth minimizer with
still blurred edges. A regularization better adapted to the situation of
images is the penalization with the total variation ®(u) = |u|pry or (better
suited for computation) the Besov semi-norm ®(u) = |u|p; , while the

latter can be expressed precisely as in (1) with a wavelet base {1}

Sparse representations in dictionaries [7]. The minimization problem (1)
appears as the so called basis pursuit in the problem of finding sparse
representations in dictionaries. Assume we have a noisy signal f € R"”
and seek for an approximation which is composed by a small number of
“atoms” {¢r}r=1,.. 8~ € R"™. This can be stated as a constrained mini-
mization problem

i bject to |Da — f||> <6
min 3y Jax| subject to [ Da — f|* <

where D = [¢p1---1bn] € R™N. The unconstrained problem with La-
grange multiplier A (depending on y and 4)

i M| Da — f|?
in > fax| +A|[Da - f]

has precisely the same form as (1). See also [13, 17].

Operator equations with sparse frame expansions [16]. One can drop
the assumption that the solution has a sparse representation in a given ba-
sis and consider the solution to be sparse in a given frame {7y} (see [5] for
an introduction to frames). If one wants to solve the equation Ku = f un-
der the assumption that u has a sparse representation in the given frame,
ie.u = Zk arm, with only a few ay # 0, one solves the minimization
problem

|| EFa— f|?
oy LEE I S
k

(a = (ak) and Fa = Zk aknk)'

One well understood algorithm for the minimization of ¥ is the iterated soft
shrinkage algorithm introduced independently in [12] and [15]. The algorithm
is analyzed in [1, 6] while in [6] the authors also show convergence of the algo-
rithm in the infinite dimensional setting. While the question of convergence is
answered it is still open how fast the iteration converges. Up to our knowledge
no convergence rates have been proven for the iterated soft shrinkage. The main



contribution of this article is a new minimization algorithm for which conver-
gence rates are proved. Namely we prove that our algorithm converges linearly
for p > 1 and like n=/2 for p = 1.

The article is organized as follows: In Section 2 we introduce our new algo-
rithm. Section 3 is devoted to the analysis of convergence rates of the generalized
conditional gradient method for functionals F'+ ® with a smooth part F' and a
non-smooth part ®. We consider a special case, adapted to the above minimiza-
tion problem. The application of the results to the special problem (1) is given
in Section 4 where explicit rates of converges for the iterated hard shrinkage al-
gorithm are given. Section 5 presents numerical experiments on the convergence
of our algorithm and compares our algorithm and the iterated soft shrinkage.

2 An iterative hard shrinkage algorithm
We state the problem of minimizing (1), i.e.

in o
mmin U(u)

with the help of the basis expansion as

(Ku— f)3

min k1w ugP. (2)

u€l? A 2
Remark 1. Note that we reformulated the problem with the operator {uy} —
K Y, ugt, mapping from ¢? to Hs also denoted with K.
To state our algorithm we introduce the following functions and constants:

eI\ P :
We denote Sy = <m> and the functions

|x|P for |x| < Sy ;
xTr) =
#p(2) e (x2+(§—1)53) for |z| > So ®)
and 1)
L) for || < pSE~!
M =i (5) ) forlel <) (@
S“p for |z > pSh~
where we formally set
0 if|zl<1
lZ5 =41 if|z|=1
oo if |z] > 1.

Note that ¢, is the usual power for small values and becomes quadratic
outside of [—Sp,So] in a C'-way. The function H, is a kind of shrinkage for
small values (remember that 1 < p < 2) and linear outside of [—Sy, Sp]. See
Figure 1 and Figure 2 for illustrations of ¢, and Hy, respectively.

Our algorithm is based on the following simple observation: It is clear that
U (u*) < U(0) = 1| f||? for the minimizer u* of (2). Since ¥ fulfills the coercivity

2
condition |lu||? < w%\l'(u) (which is proven in Proposition 1), we know ||u*| <



(Hfl\2

2w0

Figure 2: The function H, for p =1,1.25,1.5.
in the following way:

min T (u),

)1/P. Hence the minimizer of ¥ does not change if we change the functional
where

‘i/(u) =

k

Ku— f)?
Z % + wkgop(uk). (5)
The minimization algorithm, which turns out to be a special case of the gener-
alized conditional gradient algorithm now reads as follows:
Algorithm 1.
1. Initialization. Set u° = 0 and n = 0.

2. Direction determination. For u" € £2 calculate

" = Hp,w (_K* (K’LL"
where

- )
B, (~K° (K — 1), = H, (A ( )
with H,, according to (4).

3. Step size determination. Calculate s,, according to

s — min {1 D we(pp(up) — op(vp)) + (K*(Ku™ — f))k(“k:
" ’ [ K (v —um)|?

4. Tteration. Set u"*! = u™ + s, (v"
Step 2.

u™), n:=n+ 1 and continue with



Remark 2. This algorithm is very simple and hence easy to implement. We just
need the functions ¢, and H,, available (which can be implemented explicitly)
and of course the application of the operators K and K*. In comparison to,
for example the Landweber algorithm, this algorithm additionally requires the
pointwise evaluation of H, and ¢, which can be done rather fast. Moreover,
since the iteration procedure in Step 4 is just a convex combination, we can
reuse K (v™ — u™) for the computation of Ku"*!, so we have to compute only
one evaluation of K and K™ in each iteration, respectively.

Remark 3. The term

-D,, = Zwk(Sﬁp(U@ - SDP(UITCL)) + (K*(Ku” o f))k(uz —vk)
k=1

in Step 3 of the algorithm can be used as an a-posteriori error bound on the
distance to the minimizer, i.e. it holds —D,, > W(u") — min,ec,2 ¥(u). So one
can use the stopping criterion —D,, < € to assures that the minimal value is
reached up to a certain tolerance € > 0 in case of convergence, see Appendix A
for details.

Remark 4. Note that if p = 1 the penalty functional
O(u) = wylugl
k=1

is non-differentiable. A common workaround for the lack of differentiability was
to regularize the modulus function by the differentiable function

01:(t) = Vt2 + €2

with a small € > 0 (see e.g. [18] where this way was introduced for regularizing
the TV norm). This always introduced some deviation to the real solution and
posed numerical difficulties for very small €. Especially the desired property of
sparseness of the solution is lost.

In the algorithm presented above, we do in some sense the opposite: We
modify the modulus function for large values in order to make the generalized
conditional gradient method applicable (see later section for details). In this
case, the modification is outside of the domain relevant for the minimization
problem (2) and the solutions obtained are the exact sparse solutions.

The main result now are the convergence of the sequences generated by
Algorithm 1 and an estimate on the distance to the true minimizer.

Theorem 1. If 1 < p <2, then u™ — u* to the unique minimizer of (5) in £
with linear convergence speed, i.e.

[ — | < CA"

with a 0 < A < 1.
If p=1 and K is injective, then u™ — u* in £2 with convergence speed

u” —u*]| < Cn~Y/2 .

Moreover, u* is also a solution of the minimization problem (2).



The proof can be divided into two parts: First we examine the convergence
of a general minimization algorithm, namely the generalized conditional gradi-
ent algorithm (cf. [2]) with discrepancy term F(u) = 3[|Ku — f||* and derive
convergence rates for this procedure under certain conditions. We then apply
these results to the special functional of type (5) and verify that the convergence

criteria are satisfied.

3 Convergence analysis of generalized conditional
gradient methods

The aim of this section is to provide convergence results for a general descent
algorithm which turns out to be Algorithm 1 in the special case of the mini-
mization problem (5). Its purpose is to solve the minimization problem

min U(u) \D(U)ZM

u€H1 2 + ¢<U) (8)

in a Hilbert space H1, with a linear and continuous operator K : H; — Hsy and
some suitable, convex P.

The algorithm is inspired by the generalized conditional gradient method [2]
which addresses the minimization of general functionals of the form

U(u) = F(u) + ®(u)

where F' is smooth, but non-convex and ® is convex but possibly non-smooth,
resulting in a non-convex non-smooth W. Here, we consider the special case
where F(u) = 3||Ku— f||?, so problem (8) is convex, but still possibly non-
smooth.

The generalized conditional gradient method applied to (8) and an explicit

step-size rule gives the following algorithm:
Algorithm 2.

1. Inmitialization. Set n = 0 and choose u° such that ®(u°) < cc.

2. Direction search. For n > 0, calculate a minimizer of the approximate
problem

min (K*(Ku" = f), v) + &(v) (9)

and denote a solution by v™.

3. Step size rule. Choose the step size s, according to

D(u™) — P(v™) + (Ku™ — f, K(u™ —v™)) } (10)

oo = i {1 K =2
4. Tteration. Set u"! = u™ + s,(v" —u"), n := n+ 1 and continue with
Step 2.

In order to apply the algorithm, we have to ensure that the approximate
problem (9) in Step 2 always has a solution. This is the case if the following
conditions are satisfied:



Condition 1. Let ® : H — R U {oo} fulfill
o ® is proper, convex, and lower semi-continuous,
e 09 is onto with (0®)~1 bounded, i.e. ®(u)/||u|| — oo whenever ||ul| — oco.

In the following, we assume that Condition 1 on & is always satisfied.
From the minimization property (9) immediately follows the inequality:

D, =®(") —®(u") + (K*(Ku™ — f), v" —u") <0. (11)

This term plays a central role in the convergence analysis of this algorithm.
Since we regard it as a generalization, the ideas utilized in the following are
inspired by [10] where the analysis is carried out for the well-known conditional
gradient method.

To prove convergence for Algorithm 2 we first derive that D,, serves as an
estimate of the distance to the minimal value of ¥ in (8):

Lemma 1. Denote by r, = ¥(u"™) — min,er, V(u). Then we have D, < —rp,.
In particular, D,, = 0 if and only if u™ is a solution of minimization problem (8).

Proof. Choose a u* which satisfies

Since the minimization problem is well-posed (see [11], for example), such an
u* can always be found.
First observe that

[Ku* — fIP* [ — £
2 2 '

(K*(Ku" — f),u" —u™) <

(v") — P(u")+H (K" (Ku™ — f), v" —u")
=®(v") = @(u") + (K*(Ku" — f), v" —u")
+O(u*) — P(u") + (K*(Ku™ — f), u* —u™)
< O(ut) — e(u”) + (K" (Ku™ — f), u" —u™)
SF+Q)(u) - (F+0)u") =—r

by the minimizing property of v™ and the above. The characterization is a
consequence of the first order necessary condition

u” optimal = @(v") — ®(u") + (K" (Ku" — f), v" —u™) >0
(cf. [2]) and of the fact that 7, > 0. O

Remark 5. One immediate consequence is that the step size rule (10) always
produces s, € [0,1] and s, = 0 if and only if u™ is a solution of the problem.

Remark 6. The above algorithm can be interpreted as a modification of the
steepest descent/Landweber algorithm for the minimization of %||Ku — f|%.
Denote by T the (set-valued) solution operator of the minimization problem (9).



The steepest descent algorithm produces iterates u"*! = u™ + s, (v — u™)
according to
(Ku™ — f, K(u" — "))
TR (" — am)]?

vt = —-K*"(Ku" - f) Sp =

In comparison, Algorithm 2 also produces in the same manner, with similar
directions and step sizes:

" € T(—K*(Ku" — f))
O(um) — d(v™) + (Ku™ — f, K(u™ —v™)) }
[ K (v —um)|?

Sp = min{l7

Note that in the generalized conditional gradient algorithm, the descent
direction of the steepest descent of the quadratic part F' is applied to a generally
non-linear operator. Likewise, the step size is essentially the one used in the
steepest descent algorithm, except for the presence of ®. Finally, in the iteration
step we can only allow convex combinations, therefore it differs with respect to
this restriction.

Now for the convergence analysis we note that this generalized conditional
gradient algorithm has very convenient descent properties.

Lemma 2. Denote by r, = ¥(u™) — min,ep, ¥(u). Then
2
-7
Tntl —Tn < o —— .
AT CORDI R

Proof. First note that
F(u™ + s, (v —u™)) — F(u")

K (s (0 =) = P Kun = S
_ 5 5

2 Ko™ — u™ 2
ot — f, Ko~y + BIEC ]

and since ® is convex

(U + s, (0" —u)) — @(u") < 5, (P(V") — P(u)) .

Putting both together we get

T(u" ) — (") < sn(q)(v") —ou") + (K" (Ku"™ — f), v" — u"))
2K — )2

* 2

We will now make use of D,, as defined in (11). First assume that —D,, >
|| K (v™ —u™)||?>. Then the step size rule (10) yields s,, = 1 and it follows

D,, —-D?

7"n+1—7"n§Dn—7§ﬁ-
2 72K (v —u)|?



In the case where —D,, < [|K(v™ — u™)|* we have s, = —D,,/|| K (v"™ — u™)|?,
thus
-D? D2 -D?

n _

Tntl — Tn < + = .
! TTK @ = w2 2K (o —um) |2 2K (o - um)|?

Finally, due to Lemma 1 it follows —D2 < —r2 which implies the desired in-
equality. O

Such an estimate immediately implies that the distances to the minimum
behave like O(n™1).

Lemma 3. The distances to the minimum r, satisfy
rp < Cn!
for some C > 0 which is independent of n.

Proof. Due to Lemma 2 it is immediate that 7,11 < 7, < 7o = ¥(u’). Since ®
is coercive, there has to be a C > 0 such that ||u"|| < C; for all n. From convex
analysis we know that the solution operator of the minimization problem in Step
2 is bounded, whenever the property ®(u)/|u|| — oo if ||u]] — oo is satisfied
(see [14], for example). Thus, it follows that |[v"|| < Cy for some constant
C5 > 0. This gives the estimate

1K (0™ = u™)|* < | K|*(Cy + C2)*

The following is a widely know trick for the estimation of the distance to the
minimum. You can find a similar proof e.g. in [9]. Using Lemma 2 again gives

2
1 I rpy—rpp T

Trdl  Tn Tngitn 2| K (0™ —un)||2rppre
> 2||K||72(01 + 02)72 =C3>0

and summing up yields

n—1
1 1 1 1
=) 2 Cin-1).
=0

Tn To Ti+1 4

Finally, since C'3 > 0, we conclude

rn < (Cs(n—1) + i)71 <Cn7t.

o
[

Theorem 2. The sequence {u™} generated by Algorithm 2 possesses a weakly
convergent subsequence whose limit is a solution of the minimization problem
ming,ep, Y(u). On the other hand, each weak accumulation point of {u™} is a
solution.

Additionally, if K is injective or ® is strictly convex, then the solution u*
of the minimization problem min,er, ¥(u) is unique and the sequence {u™}
generated by the Algorithm 2 converges weakly to u*.



Proof. From Lemma 3 we know that W(u") — min,ez, ¥(u) < Cn~1. Since

® is coercive, we again get a bound |Ju™| < Cj for all n. Thus, we can ex-
tract a weakly convergent subsequence, not relabeled, with limit u*. Since each
subsequence of {u™} is a minimizing sequence and since ¥ is convex and lower
semi-continuous, the functional is also weakly lower semi-continuous which im-
plies
U(u*) < lim ¥(u") = min ¥(u)
n— oo u€Hy

whenever a subsequence of {u™} converges weakly to a u* € H;.

For the uniqueness statement, note that if K is injective, then F(u) is strictly
convex. Thus, according to the assumptions, either F' or ® is strictly convex
and in particular the sum ¥ = F + ®. Therefore, ¥ has to admit a unique
minimizer v*. The above and the usual subsequence argument then yields that
u™ converges to weakly u*. O

In many cases, strong convergence can also be established. For this purpose,
we consider the functional

R(v) = (K*(Ku" = f), v —u") + ®(v) — ®(u”) (12)

at a minimizer u*. Note that if u* is a solution, then —K*(Ku* — f) € 0®(u*),
so R can be interpreted as some kind of Bregman distance at u* with respect
to ®. In particular, ¥(v) — mingepmg ¥(u) > R(v) > 0, so R(v) = 0if v is a
minimizer of V.

Theorem 3. Let {u™} be a sequence generated by Algorithm 2.
If, for a u* € Hy and a closed subspace M C Hy, we have for each L > 0

lv—w' | <L = R(v)=cL)|Pulv—u)|?

with some ¢(L) > 0, then Pp(u™) — Par(u®) in Hy.

If, moreover, M+ is finite-dimensional, then there still exists a subsequence
of {u™} which converges strongly to a solution. In particular, if K is injective,
then u™ — u* to the unique solution with convergence speed

|u™ —u*|| < Cn~Y2 .

In the case M = 'Hi, the minimizer is unique regardless of K and we can
improve the convergence speed to

[|[u™ —u*]| < o2 , T < 1reA”
with some 0 < A < 1.

Proof. From Lemma 3 we know that r, = ¥(u™) — min,ep, ¥(u) converges to
zero with estimate 7, < C1n~!. It is also clear that ||u™|| < C3, so we can find
a L > 0 such that |u™ —u*|| < L. By assumption and convexity of F,

2> O(u") — @(u*) + (K (Ku" — f), u" —u*) > e(L)|| Par (u" —u)|?

which implies the convergence Pys(u™) — Ppy(u*) with rate

1 Par(u™) — Par(u)]| < ,/C(C'Ll)nw .

10



From Theorem 2 we know there is a weakly convergent subsequence of u™
which converges to a solution. Denote this subsequence also by u™ and its weak
limit by w**. If M~ is finite-dimensional, it follows Py, (u™) — Py1 (u**). By
above Pps(u™) — Pp(u*) and in particular Py (u**) = Py (u*). So it follows

u = Py (u™) + Pyo (u™) — Pa(u™™) + Par(u™™) = ™" .

The convergence statement in case of uniqueness then follows from the usual
subsequence argument.

Now assume that K is injective. We renorm range(K) C Hy according
to [|vlll = |lv|| + ||Pv K~ to|| and verify that range(K) is complete under this
norm: For a Cauchy sequence {v"} the sequence " = Py K~ 1ov" is also a
Cauchy sequence in H;, hence v — v which implies K" — Kv. Now v™ —
Ko™ is Cauchy in the finite-dimensional space range(K Py;1), thus moreover
V" — K" — Kw for a w € M~+. This gives the convergence v — K (u + w).

It follows from ||Kul| < (|| K| + 1)|ju|| that K is continuous between the
Banach spaces H; — range(K)) . and also bijective, so by the open mapping
theorem (cf. [8]), K is continuously invertible which means that

lull < Cs(IKull + [[Parul)

for each u € H;.
Since u* is optimal, —K*(Ku* — f) € 0®(u*) meaning that

- w + ®(u") — w — O(u*)
[ = fI2 — Ko = fI? = 2(0Ku — £, K" —u))

>
- 2

()
el

Together with the above,

lu" — | < 2G5 (K (u" — u”)[|* + || Pas (u” — "))
<2C,C3(c(L) "t +2)nt

which proves the asserted convergence rate n=1/2,

For the remaining statement, note that if M = H;, then the assumptions
imply that R(v) > 0 for v # u*. But since R(v) = 0 for each solution v, the
solution uv* has to be unique. Now to prove the linear convergence speed, we
first show that the solution operator T" of the minimization problem (9) is locally
Lipschitz continuous at u*. Choose a v € H; with ||lu — u*|| < L and denote by
v € T'(u). Since v is a solution of the minimization problem, it holds

D(v) — P(u*) + (K*(Ku— f),v—u*) <0

thus

VK2l = w0 = ]| = (K"K (u* =), v —u”)
> B(v) — B(u’) + (K*(Ku" — f), v —u*) = R(v) > e(L)]Jo - u*||” .

11



It follows that )
K]

(L)

[0 —w'f| <

[Ju—u®||
Now we can estimate

2K (0" —u™)* < 2 K[P(Ju" = ] + [0 = u*[])?
K12
(L)

Plugging this and the above estimate with M = H; into Lemma 2 gives

2
<202 (14 1) = w2 = Callu = w2

o(L)[[u" — || ) < rn<1 _ol)

R AR L L — )< 3
2K (o7 — a2 Gr) <

Tn+1 S Tn (1 -
with a 0 < A < 1. This proves
rn < AN'rg .

Finally, the above estimate on the norm yields

T'n

c(L)
with C' = /7¢/c(L). O

lum — || < < o2

4 Convergence rates for iterated hard shrinkage

In this section, we will show that the algorithm in the previous section yields
Algorithm 1 when applied to functionals of the type (5), i.e.

Flu)= glKu—fIP . @) = wngy(m)
k=1

in ‘Hy = ¢2 and with ¢, according to (3).
But before we turn to the convergence proofs, let us justify the modifications
on the problem by showing that (5) yields the same minimizers as (2).

Proposition 1. Let problem (2) be given for a fized f € Ha and 1 < p < 2.
Then all minimizers u* satisfy

. FlI2\ L/
lwelsso o so= (LY

Consequently, the minimizers of

B &

min U(u) , U(u) +Zwk<ﬂp(uk)
k=1

uEH, 2

coincide with the minimizers of (2) whenever ¢,(t) > [t|P for |t| > So.

12



Proof. Observe that

o |ue|\2 _ = ukl\? =
=3 () <D = el <Y
2ZN\up) = 2\ 2

hence the estimate follows from

* Lo, o o 20 2
||’lL ||p§wizwk|uk|p< L:M:Sp

wo 2w0 0

k=1

Further note that W(u) < W(u) with equality if |Jul| < Sp. If u* is a minimizer
of U, then we have } }

U(u*) =T(u") < U(u) < ¥(u)
for all uw € Hy. Thus, v* is also in minimizer for . On the other hand, if u is
not a minimizer for ¥, then there exists a «* € H; with ||u*|| < Sp such that

U(u*) = U(u*) < U(u) < U(u)
meaning that v is also not a minimizer for ¥. O

Remark 7. Let us remark that ¢, as defined in (3) indeed fulfill ¢, (¢) > |¢|P for
all ¢ € R. This follows from ¢, (£S) = |¢|’ and a comparison of the derivatives,
ie.

[pt"~ 1| < pSg 7]
for |t| > So.

In order to apply the convergence results of the previous section, we have to
verify that Algorithm 1 corresponds to Algorithm 2 in the case of (5). This will
we done in the following. First, we check that the algorithm is indeed applicable,
i.e. we show that the functional ® meets Condition 1.

Lemma 4. Let ¢ : R — RU{oo} with ¢(0) = 0 convex, lower semi-continuous,
and such that p(t)/]t| — oo if |t| — oo as well as p(t) > |t|P for some 1 < p < 2.
Then

O(u) = wrp(ux)
k=1

is proper, convex, lower semi-continuous and fulfills ®(u)/||u|| — oo when
[[u]| — oo

Proof. To see that ® is proper, convex and lower semi-continuous, we refer to
the standard literature on convex analysis [11].

To establish the desired coercivity, suppose ||u"|| — co. Suppose there exists
a sequence k, such that |u}}| — co. Then ¢(u})/|up| — oo and it follows

O(u")

[Jun]]

> wop(ufl) — o0 .

If there is no such sequence, |u}| < C for all k,n > 1 since |u}| < |ju™||. Note
that by construction ¢(t) > |¢|P, hence

oo oo oo
Cc?-p c?-p Cc?-r
u||? = u?? < wi|u|? < wrp(ul) = d(u™) .
I = D £ =3 stk < S S wnelu) = ()

Dividing by ||u™]|| yields ®(u™)/||u"™] — oo. O

13



We now analyze the steps of Algorithm 2 with respect to Algorithm 1.
Choosing ug = 0 as initialization is feasible since always ®(0) = 0. The di-
rection search in Step 2 amounts to solving the minimization problem

oo

min } (K7 (Ku— f)), (or = we) + wiop (ur)
k=1

which can be done pointwise. This involves the solution of

in st + wep(t
min st + wpp(t)

for given 5, € R and w > 0. Noting the equivalence to —2 € Jy,(t) and apply-
ing some subgradient calculus shows that a solution is indeed given by H,, (f%)
according to (4). Pointwise application then gives that v = H,, ., (—K*(Ku— f))
is a solution. Step 3 and 4 in Algorithm 1 is exactly corresponding to Step 3

and 4 in Algorithm 2 with the particular choice of ®.

Remark 8. As Proposition 1 and Lemma 4 show, it is not necessary to modify
the functional ® in the case 1 < p < 2. But if we apply Algorithm 2 to the
unmodified functional, we have to evaluate |s|'/(P=1) for possibly great |s|. This
might lead to numerical problems since p ~ 1 leads to high powers and the
available range of numbers may be left.

Moreover, it is also not necessary to take a quadratic extension outside of
[—S0, So] as done in (3). In fact, an arbitrary function ¢ satisfying the conditions
of Proposition 1 and Lemma 4 is possible. The choice of ¢ however is reflected
in the algorithm when (9¢)~! is computed. The quadratic extension in (3) leads
to the linear sections in (4) which are easy to compute.

We want to apply the convergence results of Theorem 3. For establishing the
estimates of the type R(v) > ¢(L)|v — u*||?> we need the following elementary
result which is proven in Appendix B.

Lemma 5. Let 1 < p < 2. For each C; > 0 and L > 0 there exists a ¢1(L) > 0
such that
[t]P — |s|” — psgn(s)[s[*~ (£ — ) > er (L)t — 5]

for all |s| < Cy and |t —s| < L.

Lemma 6. Denote by u* a solution of the minimization problem (5) with a
modified functional @, meeting the requirements of Proposition 1 and consider
the associated functional R according to (12).

If 1 < p <2, then for each L > 0 there exists a ¢(L) > 0 such that

lv—wl <L = R(v)=cL)]o—u*.

If p =1 then there exists a subspace M C H with M+ finite-dimensional such
that for each L > 0 there exists a ¢(L) > 0 with

lv—w | <L = R(v)>cL)|Pulv—u)|?.

Proof. First consider the case 1 < p < 2. If we have a minimizer u* then
—K*(Ku* — f) € 0®(u*). The functional ® is defined as a pointwise sum, thus,
by standard arguments from convex analysis,

(=K (Ku” — f)),, = wepsgn(up)ug["~"
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for each k£ > 1.
From Proposition 1 we know that |u}| < Sy and applying Lemma 5 with
C1 = Sy and an arbitrary L > 0 gives

W (‘Pp(t) - ‘Pp(s) - psgn(s)|8|p_1)
> wo ([tP — [s|” — psgn(s)[sP~ ' (t — 5)) > woer(L)]s — [

for each [s| < C1, |s —t| < L, remembering that ¢,(s) = |s|? for |s| < C; and
©p(t) > |tP. Hence, if ||v —u*|| < L,

R(v) =Y wi(pp(or) = wp(uf) — psgn(up)|ui )
k=1

> woer(L) Y low — wi* = e(L) |l — u*|?
k=1

This proves the desired statement for 1 < p < 2.
Now let p = 1 and u* be a minimizer. Then we know, analogly to the above,
that
(—K*(Ku* - f))k € w01 (uf)

for each k > 1. Since £ = —K*(Ku*—f) € ?> we have &, — 0 for k — oo. Hence,
we can choose a kg such that || < % for k > kg. Observe that J¢; is monotone
and coincides with sgn(-) in a neighborhood of 0 with d¢4 (0) = [—-1, 1], so u}, =0
for k > kg since the opposite leads to a contradiction. Thus,

oo

R(v) =Y wi(pr(ve) — ¢1(uf)) — Exlon —uf) > D wrp(or) — G -

k=1 k=ko

Due to the construction of ¢; we can estimate |t| < o1(¢) which further leads
to

oo oo oo
[k wo
R(v) > E wk|vk| — vk = wo E o =5 E | — ug| -
k=ko k=ko k=ko

Define
M={uct?:u,=0fork<kyt

which is clearly a closed subspace of ¢ with finite-dimensional complement.
Choose a v with ||v — u*|| < L, then |vg — ug|? < L™ o, — ug| so with ¢(L) =
w/(2L) we finally have

R(v) > e(L)|| Par(v —u?)]* .
O

Collecting the results of this section, we are able to apply Theorem 3 which
finally gives our main convergence result for the iterated hard thresholding pro-
cedure in Algorithm 1:

Theorem 4. If 1 < p < 2, then the descent algorithm produces a sequence {u™}
which converges linearly to the unique minimizer u*, i.e.

[lu" —u*]| < CA™

15



fora0 < A<1.
If p =1 and K is injective, then the descent algorithm produces a sequence
{u™} which converges to the unique minimizer u* in norm with speed

|u* —u™| < Cn~Y2 .

5 Numerical experiments

To illustrate the convergence behaviour of the iterated hard thresholding al-
gorithm as stated in Algorithm 1, we performed numerical tests on two linear
model problems and compared the results to the iterated soft thresholding al-
gorithm introduced in [12] and [15]. Our primary aim is to demonstrate the
applicability of the new algorithm, we thus perform the experiments for prob-
lems well-known in image processing and inverse problems.

The first model problem we tested is an image deblurring (deconvolution)
problem with known kernel and penalization with respect to the coefficients in
a Haar wavelet basis. The problem was discretized to a rectangular grid of
points, i.e. we consider u = {u;;} with 1 <i < N and 1 < j < M and pose the
minimization problem

NM

YL ((uk g)ij — fz‘j)2
g 3030 el S
i1 j=1 k=1

where 1), is the discrete two-dimensional wavelet basis spanning the space RVM
and * denotes the usual discrete convolution with a kernel g = {g;,}.

For our computations, we used an out-of-focus kernel g with radius r = 6
pixels which has been normalized to > |g| = 0.99 such that the associated
operator’s norm is strictly below 1. The original image of size 256 x 256 pixels
with values in [0, 1] was blurred with that kernel and in one case disturbed with
Gaussian noise of variance 7 (see Figure 3). Then, Algorithm 1 as well as the
iterated soft shrinkage procedure was applied for a suitable number of iterations
with a wavelet decomposition up to level 5 and the following parameters:

1. p=1, wy, = 0.00002, n = 0
2. p=1.75, wy, = 0.005, n = 0.025

For the comparison of these two methods, we plotted the functional values at
each iteration step. The results for the two deblurring tests are depicted in
Figure 4.

Note that if 1 < p < 2, we observed that the hard thresholding iteration
usually performs faster than the soft thresholding algorithm although we did
not optimize for computational speed. The reason for this is that the iterated
soft thresholding algorithm demands the solution of

x4+ wpsgnz|z|Pt =y

for all basis coefficients in each iteration step which has to be done by nu-
merical approximation. Experiments show that it is necessary to compute the
solution sufficiently precise since otherwise an increase of the functional value
is possible. This is a relatively time-consuming task even if the quadratically
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Figure 3: The images used as measured data f for the deblurring problem.
From left to right, the original image, the blurred image without noise and the
noisy blurred image used for test 1 and 2 respectively, are depicted.

convergent Newton method is used. In the iterated hard thresholding method
(Algorithm 1), only the evaluation of |z|'/(P=1) is necessary which can usually
be done significantly faster.

The second model problem we considered was solving the backwards heat
equation in one dimension with sparsity constraints in a point basis. In this
experiment we investigated the role of p and its influence on the performance
of the algorithm.

The continuous model reads as follows: Consider an initial condition u° €
L%([0,1]) and the one dimensional heat equation with Dirichlet boundary con-
ditions:

U = Uy, for (¢,x) € [0,T] x [0,1]
u(0,z) = u®(z)
u(t,0) = u(t,1) = 0.
With K we denote the operator which maps the initial condition onto the so-
lution of the above equation at time 7. The problem of finding the initial
condition u° from the measurement of the heat distribution f at time T is thus

formulated as solving
Ku' = f.

For the discretized model, we choose u® = {u;} € RV, data f = {f;} € RV
where uy, stands for the value of u° at point x;, = (k —1)/(N — 1). In the case
of the heat equation, the solution matrix for the forward problem reads as

2 (o)
Ky = N Z el sin(rmlzy) sin(wlz;).
1=1
The minimization problem then reads as
mm Z +Zwk|uk|p

To test the algorithms, we created an initial distribution u® with one spike. The
data f = Ku+ 0 is degraded with a relative error of 15% (see Figure 5).
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Figure 4: The results of the deblurring tests. In the left column you can see the
reconstructed wu after 500 iterations with the iterated hard thresholding method
while in the middle column, the reconstruction u after the same amount of
iterations with the iterated soft thresholding procedure is depicted. On the
right hand side, a comparison of the descent of the functional values ¥(u™) for
both methods is shown. The solid and dashed lines represent the values of ¥
for the iterated hard and soft thresholding procedure, respectively.

We solved the above minimization problem with the iterated hard shrinkage
algorithm for wy = 0.03 and different values of p, namely

pP1 = 1, P2 = 101, P3s = 1.5.

As worked out in Appendix A the values —D,, as defined in (11) can be used as
a stopping criterion and in this experiment we stopped the iteration if —D,, be-
comes smaller that 10~® or the maximum number of 1000 iterations is reached.
Figure 6 shows the results of the minimization process together with the esti-
mators —D,,. Note that the minimizers for p = 1 and p = 1.01 does not differ to
much although the estimator —D,, behaves very different: For p = 1 it oscillates
heavily and is decaying slowly as the theory indicates. The slight change from
p =1 to p =1.01 results in an estimator which is still oscillating but vanishing
much faster and the algorithm stopped after 136 iterations. For p = 1.5 the
sparsity of the reconstruction is lost but the algorithm terminated after just 29
iterations.

6 Conclusion

We proposed a new algorithm for the minimization of functionals of type

Ku— f)2
Z%erkmlp, 1<p<2
k
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Figure 5: The data of the second model problem. From left to right: The spike
initial heat distribution u and the heat distribution at time 7' = .002. (Note
the different scaling.)
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Figure 6: The results of the reconstruction of the initial condition. Top row
from left to right: Reconstruction for p =1, p = 1.01, and p = 1.5 respectively.
Bottom row: The values of the estimator —D,, in a logarithmic scale. (Note
again different scaling.)

in the infinite dimensional setting. Our algorithm is based on iterated hard
shrinkage. We established convergence rates for this algorithm, namely we
proved convergence with rate O(n=/2) for p = 1 and O(\") for 1 < p < 2.
We remark that the iterative hard shrinkage is a discontinuous algorithm, hence
convergence rates are not at all easy to establish.

For finite dimensional problems of the above type there are other algorithms
with better performance (e.g. interior point methods, see [4]), but none of them
has a proper foundation for the infinite dimensional setting. To our best knowl-
edge the results stated here are the first results on convergence rates for a
minimization algorithm of the above functional in infinite dimensions.

We emphasize that the convergence rate is only influenced by ® and not by
F, i.e. not by the operator K. For functionals ®(u) = |u|gs one can expect
similar convergence rates. Unfortunately, the case of total variation deblurring
®(u) = |ulpy seems not to fit into this context and further analysis in needed
(while the case of the discrete TV-norm as treated in [3] goes well with this
algorithm).

The change of the convergence rate from p > 1 to p = 1 is rather drastically:
from linear convergence to convergence as n~'/? — and this is observed in the
numerical experiments. To speed up the minimization for p = 1 it could be of
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interest to use the minimizer of the minimization problem for p slightly larger
than 1 as initial value ug for the iteration with p = 1. Another possibility is
to decrease p during the iteration and use the framework of I'-convergence to
prove convergence of the algorithm.

The new iterative hard shrinkage algorithm works well in many cases since
it seems to have ‘good ideas’ for finding ‘unconventional’ descent directions. On
the other hand it sometimes runs into a situation where it can not find good
ways for further descent (see Figure 4: some steps reduce the functional values
drastically while sometimes the functional does not decrease much for many
iterations). The iterative soft shrinkage, whereas, gives well descent in every
step. Hence, a combination of both may share the good features of both.

As a side result we established an estimator —D,, for the distance of the nth
iterate to the minimizer which can be used as a stopping criterion for iterative
algorithms in case of convergence (see Remark 10 in Appendix A).

A Convergence of the a-posteriori error bound

For numerical computations, it is often useful to have an estimate on some er-
ror so one can formulate stopping criteria for iterative algorithms. As already
mentioned in Remark 3, the generalized conditional gradient algorithm (Algo-
rithm 2) involves the estimates to the distance to the minimizer —D,, according
to (11). The following proposition shows that they also vanish in case of conver-
gence and therefore —D,, < € for some € > 0 can be used as a stopping criterion
for Algorithm 2.

Proposition 2. Let ® given according to Condition 1 and consider a sequence
{u™} which is generated by Algorithm 2 for the solution of (8).
Then

D, =®W”) —o(w") + (K" (Ku" — f), u" —0") — 0
for n — oo.

Proof. First observe that descent property of Lemma 2 imply convergence of
the functional values ¥(u™), especially ¥(u") — ¥(u"*1) — 0. In Lemma 2 a
slightly different version of the descent property is also proven:

—D?

() = ¥(u") < 2K (v —um)|?2

Remember that Condition 1 and the descent property imply |[v™ —u"| < C
(cf. the proof of Lemma 3), thus

D2 < 20| K| (¥(u") — (u" 1))
which proves the assertion. O

Remark 9. If @ fulfills Condition 1, then it is possible to compute D,, without
the knowledge of v™ with the help of the conjugate functional ®* (see [11] for
an introduction): As already mentioned, the requirement that v™ is a solution
of

min (K*(Ku" — f), v) + ®(v)
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can equivalently be expressed by —K*(Ku™ — f) € 0®(v™) which is in turn,
with the help of the Fenchel identity, equivalent to

—0(v") — (K*(Ku" — f), v") = ®* (- K*(Ku" - f)) .
Plugging this into the definition of D,, in (11) gives
—Dy = (K*(Ku" = f), u") + ®(u") + ©*(-K*(Ku" — f)) , ~ (13)

a formula where v™ no longer appears.

Remark 10. Equation (13) can also be used as a stopping criterion for iterative
minimization algorithms in case the algorithm converges:

Assume that u™ — u* with ¥(u") — ¥(u*) = mingen, V(u) and P satisfies
Condition 1. Then ||Ku™ — f|* — §[|Ku* — f||* by continuity and conse-
quently ®(u™) — ®(u*) by the minimization property. Now Condition 1 on ®
implies that ®* is finite on the whole space Hi: Assume the opposite, i.e. the
existence of a sequence v™ € H; as well as a v* € H; such that

sup (v", v*) — ®(v") =00 .
This immediately implies that v* # 0 and |[v™|| — oo since ® is bounded from
below. But due to Condition 1, ®(u)/|lu|| — oo which means that for each
C > ||v*|| one can find an ng such that —®(v") < —C|[v"|| for n > ng and,
consequently,

sup (v", v*) = @(v") < ([l = O)[v"[| <0

n>ng

which is a contradiction to ®*(v*) = oo.

It follows that ®* is finite everywhere and hence continuous (see e.g. [14]).
So additionally, ®*(—K*(Ku" — f)) — ®*(—K*(Ku* — f)) and the continuity
of the scalar product leads to

lim —D, = (K*(Ku* — f), u*) + ®(u*) + ®*(—K*(Ku" — f)) =0 .

Remark 11. Let us show how the error bound —D can be computed in the
modified problem (5).

We first state the conjugate functionals ®* associated with the penalty func-

tionals . With some calculation one obtains for the conjugates of ¢, as defined
in (3) that

ot(a®) = {p;"’”*'p' if ¥ < pSy !

o 2— * - : * -1

3 580 Pl + ((p— 1)pP~t = B)SEif |a*| > pSh

where p’ denotes the dual exponent, i.e. % + % = 1 and we formally define that
1

- =0.

o0

Since the functional ® is defined by pointwise summation in ¢?, we can also
take the conjugate pointwise. This gives

& *
Py s« f U
) =3 (5)
k=1 k
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with the ¢} as above. Eventually, the error bound at some u € (? can be
expressed by
> —(K*(Ku — f))k)

_D= Z(K*(Ku — ) ur + wrpp(ur) + WZ(
k=1

Wk

B Proof of Lemma 5

Our aim is to show that there for each C; > 0 and L > 0 there is a ¢;(L) > 0
such that the estimate

[t — [s|” — psgn(s)[s|"~" (t — 5) > ex (L)[t — s

for all real numbers satisfying |s| < C; and |t — s| < L.
We will write the right hand side as

t
p / sgn(r)|riP~ — sgn(s)|sP~ dr

and estimate the integrand accordingly.
Without loss of generality, we assume s > 0 and consider 7 > s first. Let
Cy = C; + L. Since p < 2, the function 7+ |7|P~1 is concave, thus

(1—0)[s[P~2 +0CE™" < |(1—0)s +0C, [P~}
for 0 = (1 — s)/(Cs — ), implying that

|sP~t + C5 !
C2 — S

On the other hand, for 0 < 7 < s we have

e e > (1 —s)C3 .

it~ [sP~t < (p— DIsP3(r — 5) < (p— DT (r — 5)

again by concavity and —(p—1)|s|[P~2 being the subgradient of —|s[P~!. If 7 < 0,
it follows
—|rPt <P, sl < —Cfﬁzs ,

hence
—|7'|p_1 — |s|f”_1 < min{Cf_2,Lp_2}(7' —5).

Note that all inequalities involving 7 — s remain true if the constant in front is
smaller. Therefore, if we choose

1
e(L) = % min{C?~? P72 (p—1)CP %, Ch7 L)

it holds
[Pt — st >c(L)2p(t—s) ifr>s
<c(L)2p(r—s) ifr<s

and the integral identity finally yields
[t7 —[s]” — psgn(s)|s|P~ (¢ — s) > cr(L)]t - s* .

Analog conclusions for s < 0 also yield this inequality.
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