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Preliminaries

Notation:

T :X — Y is a bounded linear operator

K : X — ) is a compact linear operator

X and ) are Hilbert spaces

Definition

A problem is ill-posed if one or more of the following holds:
@ a solution does not exist
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Preliminaries

Notation:

T :X — Y is a bounded linear operator
K : X — ) is a compact linear operator
X and ) are Hilbert spaces

Definition
A problem is ill-posed if one or more of the following holds:

@ a solution does not exist
@ the solution is not unique

@ the solultion does not depend continuously on the data
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The Inverse Problem

Find x € X such that Tx = y. J
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The Inverse Problem

Find x € X such that Tx = y. )

There may be some problems with this, i.e.

e T may not exist
e NS(T) # {0} (= non-unique solutions)

Thus, we seek an approximate solution.
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The Inverse Problem

Find x € X such that Tx = y.

There may be some problems with this, i.e.

e T may not exist
e NS(T) # {0} (= non-unique solutions)

Thus, we seek an approximate solution.

Types of Solutions

@ x € X is a least-squares solution to Tx = y if
ITx = yl| = inf{|| Tz — y|| | z€ &}
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The Inverse Problem

Find x € X such that Tx = y.

There may be some problems with this, i.e.
e T may not exist
e NS(T) # {0} (= non-unique solutions)

Thus, we seek an approximate solution.

Types of Solutions

@ x € X is a least-squares solution to Tx = y if
I Tx = yll = inf{|| Tz = yl| | z € X}

@ x € X is a best-approximate solution to Tx = y if x is a
least-squares solution and
||x|| = inf{||z|| | z is a least-squares solution of Tx = y}
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The Moore-Penrose Generalized Inverse

Definition: Moore-Penrose Generalized Inverse

T is the unique linear extension of T-1 to dom(Tt) with
NS(T') = range(T)* where T := T‘NS(T)J— : NS(T)*+ — range(T).
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The Moore-Penrose Generalized Inverse

Definition: Moore-Penrose Generalized Inverse

T is the unique linear extension of T-1 to dom(Tt) with
NS(T') = range(T)* where T := T‘NS(T)J— : NS(T)*+ — range(T).

e If P and Q are orthogonal projectors onto NS(T) and range(T)

1) TT'T=T 2) TITTH =77
3) T'T=1-P 4) TT' = Q| yom(r)
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The Moore-Penrose Generalized Inverse

Definition: Moore-Penrose Generalized Inverse

T is the unique linear extension of T-1 to dom(Tt) with
NS(T') = range(T)* where T := T‘NS(T)J— : NS(T)*+ — range(T).

e If P and Q are orthogonal projectors onto NS(T) and range(T)

1) TT'T=T 2) TITTH =77
3) T'T=1-P 4) TT' = Q| yom(r)

o T is bounded if range(T) is closed.
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The Moore-Penrose Generalized Inverse

Definition: Moore-Penrose Generalized Inverse

T is the unique linear extension of T-1 to dom(Tt) with
NS(T') = range(T)* where T := T‘NS(T)J— : NS(T)*+ — range(T).

e If P and Q are orthogonal projectors onto NS(T) and range(T)
1) TT'T=T 2) TITTH =77
3) T'T=1-P 4) TT' = Q| yom(r)

o T is bounded if range(T) is closed.
o If y € dom(T") then 3 a unique best-approximate solution, x' := TTy
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The Moore-Penrose Generalized Inverse

Definition: Moore-Penrose Generalized Inverse

T is the unique linear extension of T-1 to dom(Tt) with
NS(T') = range(T)* where T := T‘NS(T)J— : NS(T)*+ — range(T).

e If P and Q are orthogonal projectors onto NS(T) and range(T)
1) TT'T=T 2) TITTH =77
3) T'T=1-P 4) TT' = Q| yom(r)

o T is bounded if range(T) is closed.
o If y € dom(T") then 3 a unique best-approximate solution, x' := TTy

Definition: Gaussian Normal Equation }

For y € dom(TT), x € X is a least-squares solution < T*Tx = T*y.

Caroline Sieger (Bremen and Clemson) Regularization and Inverse Problems August 5, 2009 5/ 16



Eigensystems and Singular Systems

Definition

A selfadjoint K has the eigensystem (\,; v,) where the A, are non-zero
eigenvalues and the v, are corresponding eigenvectors.

We may diagonalize K by Kx = Y721 Ap(x, va)v, for all x € X.
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Eigensystems and Singular Systems

Definition

A selfadjoint K has the eigensystem (\,; v,) where the A, are non-zero
eigenvalues and the v, are corresponding eigenvectors.

We may diagonalize K by Kx = Y721 Ap(x, va)v, for all x € X.
Definition
A non-selfadjoint K has the singular system (o,; v,, un) where

@ K* is the adjoint of K
o {02} ,en are the non-zero eigenvalues of K*K (and KK*)

Tochnamsthomatic

Caroline Sieger (Bremen and Clemson) Regularization and Inverse Problems August 5, 2009 6 /16



Eigensystems and Singular Systems

Definition
A selfadjoint K has the eigensystem (\,; v,) where the A, are non-zero
eigenvalues and the v, are corresponding eigenvectors.

We may diagonalize K by Kx = Y721 Ap(x, va)v, for all x € X.

Definition

A non-selfadjoint K has the singular system (o,; v,, un) where
@ K* is the adjoint of K

o {02} ,cn are the non-zero eigenvalues of K*K (and KK*)
® {Vp}nen are eigenvectors of K*K
@ {up}nen are eigenvectors of KK* defined by uj, := IIQZZII
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Eigensystems and Singular Systems

Properties of a singular system:
o Kv, =opu,

K*u, = opvy

Kx =307 1 0n(X, Va)Un

Ky = > nz10nlys tn) v
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Eigensystems and Singular Systems

Properties of a singular system:
e Kv, =onhu,
o K*up, = opvp
@ Kx=> 071 0n(X, Va)n
° Ky =3 7210n(y, Un)Vn
Further, iff K has finite dimensional range
= K has finitely many singular values
= infinite series involving singular values degenerate to finite sums.
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Eigensystems and Singular Systems

Properties of a singular system:
e Kv, =onhu,
o K*u, = opvp
@ Kx=> 071 0n(X, Va)n
° Ky =3 02100y, Un)Vn
Further, iff K has finite dimensional range
—> K has finitely many singular values
= infinite series involving singular values degenerate to finite sums.

Theorem (Engl,Hanke,Neubauer)

For compact linear operator K with singular system (op; vp,up) andy € Y
we have:

Q y € dom(KT) & >, Wl o (Picard Criterion for existence of

Uﬁ
a best-approximate solution.)

@ Fory € dom(K'), KTy =37, y’”">v

v
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Regularization

o Recall: we seek to approximate xt := TTy
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Regularization

o Recall: we seek to approximate x' := TTy

@ Normally, we only have an approximation of y, i.e. y® such that
ly? =yl <6

@ in the ill-posed case, TTy? is not a good approximation of x because
of the unboundedness of T1.
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Regularization

o Recall: we seek to approximate x' := TTy
@ Normally, we only have an approximation of y, i.e. y® such that
ly* =yl <6
@ in the ill-posed case, TTy? is not a good approximation of x because
of the unboundedness of T1.
@ We seek an approximation xg of xt such that
@ x° depends continuously on the noisy data y° (this allows stable

computation of x?)
@ the noise level § — 0 and for appropriate a, x} — x°
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Regularization

Definition

Let ag € (0, 00| then Yo € (0, ] let Ry : Y — X be a continuous
operator.
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Regularization

Definition

Let ag € (0, 00] then Vo € (0, ] let R, : Y — X be a continuous

operator. The family {R,} is a regularization iff Yy € dom(TT) 3 a
parameter choice rule a = a(4, y?) such that

lim sup {[|Ro(a,0y” = TIYIl [Y* €, Iy —yll <8} =0 (1)
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Regularization
Definition
Let ag € (0, 00] then Vo € (0, ] let R, : Y — X be a continuous

operator. The family {R,} is a regularization iff Yy € dom(TT) 3 a
parameter choice rule a = a(4, y?) such that

lim sup {[|Ro(a,0y” = TIYIl [Y* €, Iy —yll <8} =0 (1)

and o : RT x Y — (0, ap) such that

. 5 5 5 _
tim sup {a(6,y) | y* € ¥, |ly’ ~ vl <8} =0 2)
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Regularization
Definition
Let ag € (0, 00] then Vo € (0, ] let R, : Y — X be a continuous

operator. The family {R,} is a regularization iff Yy € dom(TT) 3 a
parameter choice rule a = a(4, y?) such that

lim sup { [[Rogsyey’ = Tyl 1P €V, Iy’ =yl <6} =0 (1)
and o : RT x Y — (0, ap) such that
: 5\ [ 0 S _ull< gl —
lim sup {a(6,y") [ Y € ¥, Iy’ ~ yl| <8} =0 (2)

For a specific y € dom(TT), a pair (Ra,a) is a regularization method if
(1) and (2) hold.
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Regularization

o If the parameter choice rule does not depend on y°, we say it is
a-priori and we write o = «(9).
@ Otherwise, it is an a-posteriori parameter choice rule.

&
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Regularization

o If the parameter choice rule does not depend on y°, we say it is
a-priori and we write o = «(9).

@ Otherwise, it is an a-posteriori parameter choice rule.

Proposition (Engl,Hanke,Neubauer)

Further, (Rq, @) is convergent (for linear Ry ) iff (!in})a((;) =0 and
li R =0.
lim|Rugol| = 0
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Regularization

o If the parameter choice rule does not depend on y°, we say it is
a-priori and we write o = «(9).
@ Otherwise, it is an a-posteriori parameter choice rule.

Proposition (Engl,Hanke,Neubauer)

Further, (Rq, @) is convergent (for linear Ry ) iff (!in})a((;) =0 and
li R =0.

lim|Rugol| = 0

Xpp ={x € X | x=(T"T)'w, [lw]| <p}, p>0 ]

Proposition (Engl,Hanke,Neubauer)

If range(T) is non-closed, a regularization algorithm cannot converge to
2p 1
zero faster than §2++1p2#1 as § — 0 for x! € X, ,.
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Regularization

A6, M, Ry) :=sup {||Ray® — x|| | x € M,y® € Y, || Tx — y°|| < &} for
some M C X
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Regularization

A(8, M, Ry) :=sup {||[Ray® — x|| | x € M,y € V|| Tx — y%|| < 8} for
some M C X

Definition

2
We say (Rq, «) is optimal in X, , if A(S, X, Ra) = 571 p2u1+1 holds
Vé>0.
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Regularization

A8, M, Ry) = sup {||Ray® — x|| | x € M,y® €V, || Tx — y°|| < 5} for
some M C X

Definition

We say (Ra, @) is optimal in X, , if A(0, X, Ra) = 071 p%i1 holds
Vo >0.
(R, @) is of optimal order in X, , if 3 C > 1 such that

A(8, X,y p, Ra) < CO%ITpo 6> 0
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Regularization

A8, M, Ry) = sup {||Ray® — x|| | x € M,y® €V, || Tx — y°|| < 5} for
some M C X

Definition

We say (Ra, @) is optimal in X, , if A(0, X, Ra) = 071 p%i1 holds
Vo >0.
(R, @) is of optimal order in X, , if 3 C > 1 such that

A(8, X,y p, Ra) < CO%ITpo 6> 0

Theorem (Engl,Hanke,Neubauer)

Let 7 > 79 > 1, then if (R, cir) is of optimal order in X, , for some ju > 0
and Yp > 0 then all (Ry, az) with ¥ > 7o are convergent for y € range(T)
and of optimal order VX, , with 0 < v < pi and p > 0.
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Classical Tikhonov Regularization

The Tikhonov Functional
O(x) = || Tx — yO|* + a|x]|?

Theorem (Engl,Hanke,Neubauer)
5

X0 = (T*T +al)~tT*y% is the unique minimizer of ®(x).

Proof
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Classical Tikhonov Regularization

The Tikhonov Functional
O(x) = || Tx — yO|* + a|x]|?

Theorem (Engl,Hanke,Neubauer)

X0 = (T*T +al)~tT*y% is the unique minimizer of ®(x).

a

Proof
Theorem (Engl,Hanke,Neubauer)

For x0 .= (T*T 4+ al)™ T*y°, y € range(T), |ly — ¥°|| < 6 if a = a(6)
' = I imx? =Tt
such that (!l_r’%oz(é) =0 and g'_%a(é) =0 then 5I|_r')r2)xa(5) =Tly.
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Classical Tikhonov Regularization

Proposition (Engl,Hanke,Neubauer)
As long as i < 1, Tikhonov regularization with the a-priori choice rule

2
o~ (%) # is of optimal order in &), ,, the best possible convergence

rate for p = 1 is:

2
a~(§)3 and [|x3 —x1[| = 0 (s%)
P
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Tikhonov Regularization with Sparsity Constraints

@ In some applications, we require a sparse solution
@ So use an P norm of the coefficients of x wrt an orthonormal basis
{pitien with 1 < p <2
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Tikhonov Regularization with Sparsity Constraints

@ In some applications, we require a sparse solution

@ So use an ¢P norm of the coefficients of x wrt an orthonormal basis
{pitien with 1 < p <2

@ Decreasing p from 2 to 1, we increase the penalty on “small”

coefficients and decrease the penalty on “large” coefficients,
@ i.e. we encourage representations with large, but fewer coefficients
wrt the orthonormal basis {¢;}icn
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Tikhonov Regularization with Sparsity Constraints

@ In some applications, we require a sparse solution

@ So use an ¢P norm of the coefficients of x wrt an orthonormal basis
{pitien with 1 < p <2

@ Decreasing p from 2 to 1, we increase the penalty on “small”

coefficients and decrease the penalty on “large” coefficients,
@ i.e. we encourage representations with large, but fewer coefficients
wrt the orthonormal basis {¢;}icn
Generally, we restrict ourselves to p > 1 since the functional is no
longer convex for p < 1.
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Tikhonov Regularization with Sparsity Constraints

@ In some applications, we require a sparse solution

@ So use an ¢P norm of the coefficients of x wrt an orthonormal basis
{pitien with 1 < p <2

@ Decreasing p from 2 to 1, we increase the penalty on “small”

coefficients and decrease the penalty on “large” coefficients,
@ i.e. we encourage representations with large, but fewer coefficients
wrt the orthonormal basis {¢;}icn
Generally, we restrict ourselves to p > 1 since the functional is no
longer convex for p < 1.

The Tikhonov Functional with ¢* Penalty
V(x) = [|Tx = Y0112 + a X [(wi X)) J

Denote x’ to be the minimizer of W(x).
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Tikhonov Regularization with Sparsity Constraints

Definition

For xI € X and a regularization R,, x is an R,-minimizing solution if
Tx' =y and R,(x") = min{Ru(x) | Tx = y}.
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Tikhonov Regularization with Sparsity Constraints

Definition

For xI € X and a regularization R,, x is an R,-minimizing solution if
Tx' =y and R,(x") = min{Ru(x) | Tx = y}.

Recall, Ry(x) == ad_; [{¢i, x)|
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Tikhonov Regularization with Sparsity Constraints

Definition
For xI € X and a regularization R,, x is an R,-minimizing solution if
Tx' =y and R,(x") = min{Ru(x) | Tx = y}.

Recall, Ry(x) == ad_; [{¢i, x)|

Proposition (Grasmair,Haltmeier,Scherzer)

Assume that T is injective (or finite basis injectivity holds), then 3 a
unique minimizer x% of W(x) and 3 a unique R,-minimizing solution x.
For y € range(T) and ||y — y°|| < § if « satisfies gin}Ja(d) =0 and

lim ( y = =0, then I|mx (%) = xt.

6—0
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Tikhonov Regularization with Sparsity Constraints

Theorem (Grasmair,Haltmeier,Scherzer)

Assume that OR,(x") N range(T*) # 0, that the finite basis injectivity
property holds, and that Tx = y has an R,-minimizing solution that is

sparse wrt {¢;}ien. Then for parameter choice strategy a ~ §, we have
Ix — x| = O(3)
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Tikhonov Regularization with Sparsity Constraints

Theorem (Grasmair,Haltmeier,Scherzer)

Assume that OR,(x") N range(T*) # (), that the finite basis injectivity
property holds, and that Tx = y has an R,-minimizing solution that is

sparse wrt {¢;}ien. Then for parameter choice strategy a ~ §, we have
X8 - xT]| = 0()

In fact, Grasmair,Haltmeier,Scherzer also prove that for 1 < p < 2, if we

know in advance the solution is sparse in the basis {¢;};cn then we obtain
1x8 — x[| = O(8Y/).
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Tikhonov Regularization with Sparsity Constraints

Theorem (Grasmair,Haltmeier,Scherzer)

Assume that OR,(x") N range(T*) # (), that the finite basis injectivity
property holds, and that Tx = y has an R,-minimizing solution that is
sparse wrt {¢;}ien. Then for parameter choice strategy a ~ §, we have

Ix8 — <t = 0(5)

In fact, Grasmair,Haltmeier,Scherzer also prove that for 1 < p < 2, if we
know in advance the solution is sparse in the basis {¢;};cn then we obtain
1% — x|l = O(6Y/P).

We have not yet answered how to find this minimizer x2. However, Jack
will discuss this in his presentation.
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