Regularization and Inverse Problems

Caroline Sieger

Host Institution: Universität Bremen

Home Institution: Clemson University

August 5, 2009

Outline

Preliminaries

- The Inverse Problem
- The Moore-Penrose Generalized Inverse
- Eigensystems and Singular Systems

Regularization

- Classical Tikhonov Regularization
- Tikhonov Regularization with Sparsity Constraints

Preliminaries

Notation:

- $\mathcal{T}:\mathcal{X} \rightarrow \mathcal{Y}$ is a bounded linear operator
- $\mathcal{K}:\mathcal{X} \rightarrow \mathcal{Y}$ is a compact linear operator
- ${\mathcal X}$ and ${\mathcal Y}$ are Hilbert spaces

Definition

A problem is **ill-posed** if one or more of the following holds:

a solution does not exist

Preliminaries

Notation:

- $\mathcal{T}:\mathcal{X} \rightarrow \mathcal{Y}$ is a bounded linear operator
- $\mathcal{K}:\mathcal{X} \rightarrow \mathcal{Y}$ is a compact linear operator
- ${\mathcal X}$ and ${\mathcal Y}$ are Hilbert spaces

Definition

A problem is **ill-posed** if one or more of the following holds:

- a solution does not exist
- the solution is not unique

Preliminaries

Notation:

 $\mathcal{T}:\mathcal{X} \rightarrow \mathcal{Y}$ is a bounded linear operator

 $\mathcal{K}: \mathcal{X} \to \mathcal{Y}$ is a compact linear operator

 ${\mathcal X}$ and ${\mathcal Y}$ are Hilbert spaces

Definition

A problem is **ill-posed** if one or more of the following holds:

- a solution does not exist
- the solution is not unique
- the solultion does not depend continuously on the data

Find $x \in \mathcal{X}$ such that Tx = y.

注▶ 《注♪

Find $x \in \mathcal{X}$ such that Tx = y.

There may be some problems with this, i.e.

• $NS(T) \neq \{0\} \ (\implies \text{ non-unique solutions})$

Thus, we seek an approximate solution.

Find $x \in \mathcal{X}$ such that Tx = y.

There may be some problems with this, i.e.

•
$$NS(T) \neq \{0\} \ (\implies$$
 non-unique solutions)

Thus, we seek an approximate solution.

Types of Solutions

•
$$x \in \mathcal{X}$$
 is a **least-squares solution** to $Tx = y$ if $||Tx - y|| = \inf\{||Tz - y|| \mid z \in \mathcal{X}\}$

Find $x \in \mathcal{X}$ such that Tx = y.

There may be some problems with this, i.e.

• $NS(T) \neq \{0\} \ (\implies \text{ non-unique solutions})$

Thus, we seek an approximate solution.

Types of Solutions

- $x \in \mathcal{X}$ is a least-squares solution to Tx = y if $||Tx - y|| = \inf\{||Tz - y|| \mid z \in \mathcal{X}\}$
- x ∈ X is a best-approximate solution to Tx = y if x is a least-squares solution and
 ||x|| = inf{||z|| | z is a least-squares solution of Tx = y}

(日) (同) (日) (日)

Definition: Moore-Penrose Generalized Inverse

 T^{\dagger} is the unique linear extension of \tilde{T}^{-1} to $dom(T^{\dagger})$ with $NS(T^{\dagger}) = range(T)^{\perp}$ where $\tilde{T} := T|_{NS(T)^{\perp}} : NS(T)^{\perp} \rightarrow range(T)$.

Definition: Moore-Penrose Generalized Inverse

 T^{\dagger} is the unique linear extension of \tilde{T}^{-1} to $dom(T^{\dagger})$ with $NS(T^{\dagger}) = range(T)^{\perp}$ where $\tilde{T} := T|_{NS(T)^{\perp}} : NS(T)^{\perp} \rightarrow range(T)$.

• If P and Q are orthogonal projectors onto NS(T) and range(T)

1.)
$$TT^{\dagger}T = T$$

3.) $T^{\dagger}T = I - P$
4.) $TT^{\dagger} = Q|_{dom(T^{\dagger})}$

Definition: Moore-Penrose Generalized Inverse

 T^{\dagger} is the unique linear extension of \tilde{T}^{-1} to $dom(T^{\dagger})$ with $NS(T^{\dagger}) = range(T)^{\perp}$ where $\tilde{T} := T|_{NS(T)^{\perp}} : NS(T)^{\perp} \rightarrow range(T)$.

• If P and Q are orthogonal projectors onto NS(T) and $\overline{range(T)}$

1.)
$$TT^{\dagger}T = T$$

3.) $T^{\dagger}T = I - P$
4.) $TT^{\dagger} = Q|_{dom(T^{\dagger})}$

• T^{\dagger} is bounded if range(T) is closed.

Definition: Moore-Penrose Generalized Inverse

 T^{\dagger} is the unique linear extension of \tilde{T}^{-1} to $dom(T^{\dagger})$ with $NS(T^{\dagger}) = range(T)^{\perp}$ where $\tilde{T} := T|_{NS(T)^{\perp}} : NS(T)^{\perp} \rightarrow range(T)$.

• If P and Q are orthogonal projectors onto NS(T) and $\overline{range(T)}$

1.)
$$TT^{\dagger}T = T$$

3.) $T^{\dagger}T = I - P$
4.) $TT^{\dagger} = Q|_{dom(T^{\dagger})}$

Definition: Moore-Penrose Generalized Inverse

 T^{\dagger} is the unique linear extension of \tilde{T}^{-1} to $dom(T^{\dagger})$ with $NS(T^{\dagger}) = range(T)^{\perp}$ where $\tilde{T} := T|_{NS(T)^{\perp}} : NS(T)^{\perp} \rightarrow range(T)$.

• If P and Q are orthogonal projectors onto NS(T) and $\overline{range(T)}$

1.)
$$TT^{\dagger}T = T$$

3.) $T^{\dagger}T = I - P$
4.) $TT^{\dagger} = Q|_{dom(T^{\dagger})}$

Definition: Gaussian Normal Equation
For
$$y \in dom(T^{\dagger})$$
, $x \in \mathcal{X}$ is a least-squares solution $\Leftrightarrow T^*Tx = T^*y$.

Definition

A selfadjoint K has the **eigensystem** $(\lambda_n; v_n)$ where the λ_n are non-zero eigenvalues and the v_n are corresponding eigenvectors.

We may diagonalize K by $Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, v_n \rangle v_n$ for all $x \in \mathcal{X}$.

Definition

A selfadjoint K has the **eigensystem** $(\lambda_n; v_n)$ where the λ_n are non-zero eigenvalues and the v_n are corresponding eigenvectors.

We may diagonalize K by $Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, v_n \rangle v_n$ for all $x \in \mathcal{X}$.

Definition

A non-selfadjoint K has the singular system $(\sigma_n; v_n, u_n)$ where

- K^* is the adjoint of K
- $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non-zero eigenvalues of K^*K (and KK^*)

Definition

A selfadjoint K has the **eigensystem** $(\lambda_n; v_n)$ where the λ_n are non-zero eigenvalues and the v_n are corresponding eigenvectors.

We may diagonalize K by $Kx = \sum_{n=1}^{\infty} \lambda_n \langle x, v_n \rangle v_n$ for all $x \in \mathcal{X}$.

Definition

A non-selfadjoint K has the singular system $(\sigma_n; v_n, u_n)$ where

- K* is the adjoint of K
- $\{\sigma_n^2\}_{n\in\mathbb{N}}$ are the non-zero eigenvalues of K^*K (and KK^*)
- $\{v_n\}_{n\in\mathbb{N}}$ are eigenvectors of K^*K
- $\{u_n\}_{n\in\mathbb{N}}$ are eigenvectors of KK^* defined by $u_n := \frac{Kv_n}{||Kv_n||}$

Properties of a singular system:

- $Kv_n = \sigma_n u_n$ • $K^* u_n = \sigma_n v_n$
- $Kx = \sum_{n=1}^{\infty} \sigma_n \langle x, v_n \rangle u_n$ $Ky = \sum_{n=1}^{\infty} \sigma_n \langle y, u_n \rangle v_n$

- A - E

Properties of a singular system:

- $Kv_n = \sigma_n u_n$
- $K^*u_n = \sigma_n v_n$

•
$$Kx = \sum_{n=1}^{\infty} \sigma_n \langle x, v_n \rangle u_n$$

•
$$Ky = \sum_{n=1}^{\infty} \sigma_n \langle y, u_n \rangle v_n$$

Further, iff K has finite dimensional range

- \implies K has finitely many singular values
- \implies infinite series involving singular values degenerate to finite sums.

Properties of a singular system:

- $Kv_n = \sigma_n u_n$
- $K^*u_n = \sigma_n v_n$

•
$$Kx = \sum_{n=1}^{\infty} \sigma_n \langle x, v_n \rangle u_n$$

•
$$Ky = \sum_{n=1}^{\infty} \sigma_n \langle y, u_n \rangle v_n$$

Further, iff K has finite dimensional range

- \implies K has finitely many singular values
- \implies infinite series involving singular values degenerate to finite sums.

Theorem (Engl, Hanke, Neubauer)

For compact linear operator K with singular system (σ_n ; v_n , u_n) and $y \in \mathcal{Y}$ we have:

• $y \in dom(K^{\dagger}) \Leftrightarrow \sum_{n=1}^{\infty} \frac{|\langle y, u_n \rangle|^2}{\sigma_n^2} < \infty$ (Picard Criterion for existence of a best-approximate solution.)

2 For
$$y \in dom(K^{\dagger})$$
, $K^{\dagger}y = \sum_{n=1}^{\infty} \frac{\langle y, u_n \rangle}{\sigma_n} v_n$

• Recall: we seek to approximate $x^{\dagger} := T^{\dagger}y$

- Recall: we seek to approximate $x^{\dagger} := T^{\dagger}y$
- Normally, we only have an approximation of y, i.e. y^{δ} such that $||y^{\delta}-y||\leq \delta$
- in the ill-posed case, $T^{\dagger}y^{\delta}$ is not a good approximation of x^{\dagger} because of the unboundedness of T^{\dagger} .

- Recall: we seek to approximate $x^{\dagger} := T^{\dagger}y$
- Normally, we only have an approximation of y, i.e. y^{δ} such that $||y^{\delta}-y||\leq \delta$
- in the ill-posed case, $T^{\dagger}y^{\delta}$ is not a good approximation of x^{\dagger} because of the unboundedness of T^{\dagger} .
- We seek an approximation x^{δ}_{lpha} of x^{\dagger} such that
 - x_{α}^{δ} depends continuously on the noisy data y^{δ} (this allows stable computation of x_{α}^{δ})
 - 2 the noise level $\delta \to 0$ and for appropriate α , $x_{\alpha}^{\delta} \to x^{\delta}$

Definition

Let $\alpha_0 \in (0, \infty]$ then $\forall \alpha \in (0, \alpha_0]$ let $R_\alpha : \mathcal{Y} \to \mathcal{X}$ be a continuous operator.

-

- E -

Definition

Let $\alpha_0 \in (0, \infty]$ then $\forall \alpha \in (0, \alpha_0]$ let $R_\alpha : \mathcal{Y} \to \mathcal{X}$ be a continuous operator. The family $\{R_\alpha\}$ is a **regularization** iff $\forall y \in dom(T^{\dagger}) \exists$ a parameter choice rule $\alpha = \alpha(\delta, y^{\delta})$ such that

$$\lim_{\delta \to 0} \sup \left\{ ||R_{\alpha(\delta, y^{\delta})} y^{\delta} - T^{\dagger} y|| \mid y^{\delta} \in \mathcal{Y}, \ ||y^{\delta} - y|| \le \delta \right\} = 0 \qquad (1)$$

Definition

Let $\alpha_0 \in (0, \infty]$ then $\forall \alpha \in (0, \alpha_0]$ let $R_\alpha : \mathcal{Y} \to \mathcal{X}$ be a continuous operator. The family $\{R_\alpha\}$ is a **regularization** iff $\forall y \in dom(T^{\dagger}) \exists$ a parameter choice rule $\alpha = \alpha(\delta, y^{\delta})$ such that

$$\lim_{\delta \to 0} \sup \left\{ ||R_{\alpha(\delta, y^{\delta})} y^{\delta} - T^{\dagger} y|| \mid y^{\delta} \in \mathcal{Y}, \ ||y^{\delta} - y|| \le \delta \right\} = 0 \qquad (1)$$

and $\alpha:\mathbb{R}^+\times\mathcal{Y}\to(\mathbf{0},\alpha_\mathbf{0})$ such that

$$\lim_{\delta \to 0} \sup \left\{ \alpha(\delta, y^{\delta}) \mid y^{\delta} \in \mathcal{Y}, \ ||y^{\delta} - y|| \le \delta \right\} = 0$$
(2)

< 🗇 🕨 < 🖃 🕨

Definition

Let $\alpha_0 \in (0, \infty]$ then $\forall \alpha \in (0, \alpha_0]$ let $R_\alpha : \mathcal{Y} \to \mathcal{X}$ be a continuous operator. The family $\{R_\alpha\}$ is a **regularization** iff $\forall y \in dom(T^{\dagger}) \exists$ a parameter choice rule $\alpha = \alpha(\delta, y^{\delta})$ such that

$$\lim_{\delta \to 0} \sup \left\{ ||R_{\alpha(\delta, y^{\delta})} y^{\delta} - T^{\dagger} y|| \mid y^{\delta} \in \mathcal{Y}, \ ||y^{\delta} - y|| \le \delta \right\} = 0$$
(1)

and $\alpha:\mathbb{R}^+\times\mathcal{Y}\to(\mathbf{0},\alpha_\mathbf{0})$ such that

$$\lim_{\delta \to 0} \sup \left\{ \alpha(\delta, y^{\delta}) \mid y^{\delta} \in \mathcal{Y}, \ ||y^{\delta} - y|| \le \delta \right\} = 0$$
(2)

For a specific $y \in dom(T^{\dagger})$, a pair (R_{α}, α) is a **regularization method** if (1) and (2) hold.

- If the parameter choice rule does not depend on y^{δ} , we say it is **a-priori** and we write $\alpha = \alpha(\delta)$.
- Otherwise, it is an a-posteriori parameter choice rule.

- If the parameter choice rule does not depend on y^{δ} , we say it is **a-priori** and we write $\alpha = \alpha(\delta)$.
- Otherwise, it is an a-posteriori parameter choice rule.

Proposition (Engl,Hanke,Neubauer) Further, (R_{α}, α) is convergent (for linear R_{α}) iff $\lim_{\delta \to 0} \alpha(\delta) = 0$ and $\lim_{\delta \to 0} \delta ||R_{\alpha(\delta)}|| = 0$.

- If the parameter choice rule does not depend on y^{δ} , we say it is **a-priori** and we write $\alpha = \alpha(\delta)$.
- Otherwise, it is an **a-posteriori** parameter choice rule.

Proposition (Engl,Hanke,Neubauer) Further, (R_{α}, α) is convergent (for linear R_{α}) iff $\lim_{\delta \to 0} \alpha(\delta) = 0$ and $\lim_{\delta \to 0} \delta ||R_{\alpha(\delta)}|| = 0.$

$$\mathcal{X}_{\mu,
ho}:=\{x\in\mathcal{X}\mid x=(T^{*}T)^{\mu}\omega,\;||\omega||\leq
ho\}$$
, $\mu>0$

Proposition (Engl, Hanke, Neubauer)

If range(T) is non-closed, a regularization algorithm cannot converge to zero faster than $\delta^{\frac{2\mu}{2\mu+1}}\rho^{\frac{1}{2\mu+1}}$ as $\delta \to 0$ for $x^{\dagger} \in \mathcal{X}_{\mu,\rho}$.

$\begin{array}{l} \Delta(\delta,\mathcal{M},R_{\alpha}):=\sup\left\{||R_{\alpha}y^{\delta}-x||\mid x\in\mathcal{M},y^{\delta}\in\mathcal{Y},||\mathit{T}x-y^{\delta}||\leq\delta\right\} \text{ for some }\mathcal{M}\subset\mathcal{X} \end{array}$

4 E b

$$\Delta(\delta, \mathcal{M}, R_{\alpha}) := \sup \left\{ ||R_{\alpha}y^{\delta} - x|| \mid x \in \mathcal{M}, y^{\delta} \in \mathcal{Y}, ||Tx - y^{\delta}|| \leq \delta \right\} \text{ for some } \mathcal{M} \subset \mathcal{X}$$

Definition

We say (R_{α}, α) is **optimal** in $\mathcal{X}_{\mu,\rho}$ if $\Delta(\delta, \mathcal{X}_{\mu,\rho}, R_{\alpha}) = \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}}$ holds $\forall \delta > 0$.

47 ▶ ∢

 $\Delta(\delta, \mathcal{M}, R_{\alpha}) := \sup \left\{ ||R_{\alpha}y^{\delta} - x|| \mid x \in \mathcal{M}, y^{\delta} \in \mathcal{Y}, ||Tx - y^{\delta}|| \leq \delta \right\} \text{ for some } \mathcal{M} \subset \mathcal{X}$

Definition

We say (R_{α}, α) is **optimal** in $\mathcal{X}_{\mu,\rho}$ if $\Delta(\delta, \mathcal{X}_{\mu,\rho}, R_{\alpha}) = \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}}$ holds $\forall \delta > 0.$ (R_{α}, α) is of **optimal order** in $\mathcal{X}_{\mu,\rho}$ if $\exists C \ge 1$ such that $\Delta(\delta, \mathcal{X}_{\mu,\rho}, R_{\alpha}) \le C \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}} \quad \forall \delta > 0$

 $\Delta(\delta, \mathcal{M}, R_{\alpha}) := \sup \left\{ ||R_{\alpha}y^{\delta} - x|| \mid x \in \mathcal{M}, y^{\delta} \in \mathcal{Y}, ||Tx - y^{\delta}|| \leq \delta \right\} \text{ for some } \mathcal{M} \subset \mathcal{X}$

Definition

We say (R_{α}, α) is **optimal** in $\mathcal{X}_{\mu,\rho}$ if $\Delta(\delta, \mathcal{X}_{\mu,\rho}, R_{\alpha}) = \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}}$ holds $\forall \delta > 0.$ (R_{α}, α) is of **optimal order** in $\mathcal{X}_{\mu,\rho}$ if $\exists C \ge 1$ such that $\Delta(\delta, \mathcal{X}_{\mu,\rho}, R_{\alpha}) \le C \delta^{\frac{2\mu}{2\mu+1}} \rho^{\frac{1}{2\mu+1}} \quad \forall \delta > 0$

Theorem (Engl, Hanke, Neubauer)

Let $\tau > \tau_0 \ge 1$, then if $(R_{\alpha}, \alpha_{\tau})$ is of optimal order in $\mathcal{X}_{\mu,\rho}$ for some $\mu > 0$ and $\forall \rho > 0$ then all $(R_{\alpha}, \alpha_{\tilde{\tau}})$ with $\tilde{\tau} > \tau_0$ are convergent for $y \in range(T)$ and of optimal order $\forall \mathcal{X}_{\nu,\rho}$ with $0 < \nu \le \mu$ and $\rho > 0$.

Classical Tikhonov Regularization

The Tikhonov Functional

 $\Phi(x) := ||Tx - y^{\delta}||^{2} + \alpha ||x||^{2}$

Theorem (Engl, Hanke, Neubauer)

 $x_{\alpha}^{\delta} := (T^*T + \alpha I)^{-1}T^*y^{\delta}$ is the unique minimizer of $\Phi(x)$.

Proof

Classical Tikhonov Regularization

The Tikhonov Functional $\Phi(x) := ||Tx - y^{\delta}||^2 + \alpha ||x||^2$

Theorem (Engl, Hanke, Neubauer)

 $x_{\alpha}^{\delta} := (T^*T + \alpha I)^{-1}T^*y^{\delta}$ is the unique minimizer of $\Phi(x)$.

Proof

Theorem (Engl, Hanke, Neubauer)

For
$$x_{\alpha}^{\delta} := (T^*T + \alpha I)^{-1}T^*y^{\delta}$$
, $y \in range(T)$, $||y - y^{\delta}|| \le \delta$ if $\alpha = \alpha(\delta)$
such that $\lim_{\delta \to 0} \alpha(\delta) = 0$ and $\lim_{\delta \to 0} \frac{\delta^2}{\alpha(\delta)} = 0$ then $\lim_{\delta \to 0} x_{\alpha(\delta)}^{\delta} = T^{\dagger}y$.

- 4 @ > - 4 @ > - 4 @ >

Classical Tikhonov Regularization

Proposition (Engl, Hanke, Neubauer)

As long as $\mu \leq 1$, Tikhonov regularization with the a-priori choice rule $\alpha \sim \left(\frac{\delta}{\rho}\right)^{\frac{2}{2\mu+1}}$ is of optimal order in $\mathcal{X}_{\mu,\rho}$, the best possible convergence rate for $\mu = 1$ is:

$$lpha \sim \left(rac{\delta}{
ho}
ight)^{rac{2}{3}} \quad ext{and} \quad ||x_lpha^\delta - x^\dagger|| = O\left(\delta^{rac{2}{3}}
ight)$$

- In some applications, we require a sparse solution
- So use an ℓ^p norm of the coefficients of x wrt an orthonormal basis $\{\varphi_i\}_{i\in\mathbb{N}}$ with $1\leq p\leq 2$

- In some applications, we require a sparse solution
- So use an ℓ^p norm of the coefficients of x wrt an orthonormal basis $\{\varphi_i\}_{i\in\mathbb{N}}$ with $1\leq p\leq 2$
- Decreasing *p* from 2 to 1, we increase the penalty on "small" coefficients *and* decrease the penalty on "large" coefficients,
- i.e. we encourage representations with large, but fewer coefficients wrt the orthonormal basis $\{\varphi_i\}_{i\in\mathbb{N}}$

- In some applications, we require a sparse solution
- So use an ℓ^p norm of the coefficients of x wrt an orthonormal basis $\{\varphi_i\}_{i\in\mathbb{N}}$ with $1\leq p\leq 2$
- Decreasing *p* from 2 to 1, we increase the penalty on "small" coefficients *and* decrease the penalty on "large" coefficients,
- i.e. we encourage representations with large, but fewer coefficients wrt the orthonormal basis {φ_i}_{i∈ℕ}
- Generally, we restrict ourselves to $p \ge 1$ since the functional is no longer convex for p < 1.

- In some applications, we require a sparse solution
- So use an ℓ^p norm of the coefficients of x wrt an orthonormal basis $\{\varphi_i\}_{i\in\mathbb{N}}$ with $1\leq p\leq 2$
- Decreasing *p* from 2 to 1, we increase the penalty on "small" coefficients *and* decrease the penalty on "large" coefficients,
- i.e. we encourage representations with large, but fewer coefficients wrt the orthonormal basis $\{\varphi_i\}_{i\in\mathbb{N}}$
- Generally, we restrict ourselves to $p \ge 1$ since the functional is no longer convex for p < 1.

The Tikhonov Functional with ℓ^1 Penalty $\Psi(x) := ||Tx - y^{\delta}||^2 + \alpha \sum_i |\langle \varphi_i, x \rangle|$

Denote x_{α}^{δ} to be the minimizer of $\Psi(x)$.

Definition

For $x^{\dagger} \in \mathcal{X}$ and a regularization R_{α} , x^{\dagger} is an **R**_{α}-minimizing solution if $Tx^{\dagger} = y$ and $R_{\alpha}(x^{\dagger}) = \min\{R_{\alpha}(x) \mid Tx = y\}$.

Definition

For $x^{\dagger} \in \mathcal{X}$ and a regularization R_{α} , x^{\dagger} is an **R**_{α}-minimizing solution if $Tx^{\dagger} = y$ and $R_{\alpha}(x^{\dagger}) = \min\{R_{\alpha}(x) \mid Tx = y\}$.

Recall, $R_{\alpha}(x) := \alpha \sum_{i} |\langle \phi_i, x \rangle|$

Definition

For $x^{\dagger} \in \mathcal{X}$ and a regularization R_{α} , x^{\dagger} is an **R**_{α}-minimizing solution if $Tx^{\dagger} = y$ and $R_{\alpha}(x^{\dagger}) = \min\{R_{\alpha}(x) \mid Tx = y\}$.

Recall,
$$R_{lpha}(x) := lpha \sum_{i} |\langle \phi_i, x \rangle|$$

Proposition (Grasmair, Haltmeier, Scherzer)

Assume that T is injective (or finite basis injectivity holds), then \exists a unique minimizer x_{α}^{δ} of $\Psi(x)$ and \exists a unique R_{α} -minimizing solution x^{\dagger} . For $y \in range(T)$ and $||y - y^{\delta}|| \leq \delta$ if α satisfies $\lim_{\delta \to 0} \alpha(\delta) = 0$ and $\lim_{\delta \to 0} \frac{\delta}{\alpha(\delta)} = 0$, then $\lim_{\delta \to 0} x_{\alpha(\delta)}^{\delta} = x^{\dagger}$.

Theorem (Grasmair, Haltmeier, Scherzer)

Assume that $\partial R_{\alpha}(x^{\dagger}) \cap range(T^{*}) \neq \emptyset$, that the finite basis injectivity property holds, and that Tx = y has an R_{α} -minimizing solution that is sparse wrt $\{\varphi_i\}_{i \in \mathbb{N}}$. Then for parameter choice strategy $\alpha \sim \delta$, we have $||x_{\alpha}^{\delta} - x^{\dagger}|| = O(\delta)$

Theorem (Grasmair, Haltmeier, Scherzer)

Assume that $\partial R_{\alpha}(x^{\dagger}) \cap range(T^{*}) \neq \emptyset$, that the finite basis injectivity property holds, and that Tx = y has an R_{α} -minimizing solution that is sparse wrt $\{\varphi_i\}_{i\in\mathbb{N}}$. Then for parameter choice strategy $\alpha \sim \delta$, we have $||x_{\alpha}^{\delta} - x^{\dagger}|| = O(\delta)$

In fact, Grasmair,Haltmeier,Scherzer also prove that for $1 \le p \le 2$, if we know in advance the solution is sparse in the basis $\{\varphi_i\}_{i\in\mathbb{N}}$ then we obtain $||x_{\alpha}^{\delta} - x^{\dagger}|| = O(\delta^{1/p}).$

Theorem (Grasmair, Haltmeier, Scherzer)

Assume that $\partial R_{\alpha}(x^{\dagger}) \cap range(T^{*}) \neq \emptyset$, that the finite basis injectivity property holds, and that Tx = y has an R_{α} -minimizing solution that is sparse wrt $\{\varphi_i\}_{i\in\mathbb{N}}$. Then for parameter choice strategy $\alpha \sim \delta$, we have $||x_{\alpha}^{\delta} - x^{\dagger}|| = O(\delta)$

In fact, Grasmair,Haltmeier,Scherzer also prove that for $1 \le p \le 2$, if we know in advance the solution is sparse in the basis $\{\varphi_i\}_{i\in\mathbb{N}}$ then we obtain $||x_{\alpha}^{\delta} - x^{\dagger}|| = O(\delta^{1/p}).$

We have not yet answered how to find this minimizer x_{α}^{δ} . However, Jack will discuss this in his presentation.

