
Regularization and Inverse Problems

Caroline Sieger

Host Institution: Universität Bremen

Home Institution: Clemson University

August 5, 2009

Caroline Sieger (Bremen and Clemson) Regularization and Inverse Problems August 5, 2009 1 / 16



Outline

1 Preliminaries
The Inverse Problem
The Moore-Penrose Generalized Inverse
Eigensystems and Singular Systems

2 Regularization
Classical Tikhonov Regularization
Tikhonov Regularization with Sparsity Constraints

Caroline Sieger (Bremen and Clemson) Regularization and Inverse Problems August 5, 2009 2 / 16



Preliminaries

Notation:
T : X → Y is a bounded linear operator
K : X → Y is a compact linear operator
X and Y are Hilbert spaces

Definition

A problem is ill-posed if one or more of the following holds:

a solution does not exist

the solution is not unique
the solultion does not depend continuously on the data
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The Inverse Problem

Find x ∈ X such that Tx = y .

There may be some problems with this, i.e.

T−1 may not exist
NS(T ) 6= {0} ( =⇒ non-unique solutions)

Thus, we seek an approximate solution.

Types of Solutions

x ∈ X is a least-squares solution to Tx = y if
||Tx − y || = inf{||Tz − y || | z ∈ X}
x ∈ X is a best-approximate solution to Tx = y if x is a
least-squares solution and
||x || = inf{||z || | z is a least-squares solution of Tx = y}
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The Moore-Penrose Generalized Inverse

Definition: Moore-Penrose Generalized Inverse

T † is the unique linear extension of T̃−1 to dom(T †) with
NS(T †) = range(T )⊥ where T̃ := T

∣∣
NS(T )⊥

: NS(T )⊥ → range(T ).

If P and Q are orthogonal projectors onto NS(T ) and range(T )

1.) TT †T = T 2.) T †TT † = T †

3.) T †T = I − P 4.) TT † = Q
∣∣
dom(T †)

T † is bounded if range(T ) is closed.
If y ∈ dom(T †) then ∃ a unique best-approximate solution, x† := T †y

Definition: Gaussian Normal Equation

For y ∈ dom(T †), x ∈ X is a least-squares solution ⇔ T ∗Tx = T ∗y .
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Eigensystems and Singular Systems

Definition

A selfadjoint K has the eigensystem (λn; vn) where the λn are non-zero
eigenvalues and the vn are corresponding eigenvectors.

We may diagonalize K by Kx =
∑∞

n=1 λn〈x , vn〉vn for all x ∈ X .

Definition

A non-selfadjoint K has the singular system (σn; vn, un) where

K ∗ is the adjoint of K
{σ2

n}n∈N are the non-zero eigenvalues of K ∗K (and KK ∗)
{vn}n∈N are eigenvectors of K ∗K
{un}n∈N are eigenvectors of KK ∗ defined by un := Kvn

||Kvn||
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Eigensystems and Singular Systems

Properties of a singular system:

Kvn = σnun

K ∗un = σnvn

Kx =
∑∞

n=1 σn〈x , vn〉un

Ky =
∑∞

n=1 σn〈y , un〉vn

Further, iff K has finite dimensional range
=⇒ K has finitely many singular values
=⇒ infinite series involving singular values degenerate to finite sums.

Theorem (Engl,Hanke,Neubauer)

For compact linear operator K with singular system (σn; vn, un) and y ∈ Y
we have:

1 y ∈ dom(K †) ⇔
∑∞

n=1
|〈y ,un〉|2

σ2
n

< ∞ (Picard Criterion for existence of

a best-approximate solution.)
2 For y ∈ dom(K †), K †y =

∑∞
n=1

〈y ,un〉
σn

vn
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Regularization

Recall: we seek to approximate x† := T †y

Normally, we only have an approximation of y , i.e. y δ such that
||y δ − y || ≤ δ
in the ill-posed case, T †y δ is not a good approximation of x† because
of the unboundedness of T †.
We seek an approximation xδ

α of x† such that

1 xδ
α depends continuously on the noisy data yδ (this allows stable

computation of xδ
α)

2 the noise level δ → 0 and for appropriate α, xδ
α → xδ
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Regularization

Definition

Let α0 ∈ (0,∞] then ∀α ∈ (0, α0] let Rα : Y → X be a continuous
operator.

The family {Rα} is a regularization iff ∀y ∈ dom(T †) ∃ a
parameter choice rule α = α(δ, y δ) such that

lim
δ→0

sup
{
||Rα(δ,yδ)y

δ − T †y || | y δ ∈ Y, ||y δ − y || ≤ δ
}

= 0 (1)

and α : R+ × Y → (0, α0) such that

lim
δ→0

sup
{

α(δ, y δ) | y δ ∈ Y, ||y δ − y || ≤ δ
}

= 0 (2)

For a specific y ∈ dom(T †), a pair (Rα, α) is a regularization method if
(1) and (2) hold.
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Regularization

If the parameter choice rule does not depend on y δ, we say it is
a-priori and we write α = α(δ).
Otherwise, it is an a-posteriori parameter choice rule.

Proposition (Engl,Hanke,Neubauer)

Further, (Rα, α) is convergent (for linear Rα) iff lim
δ→0

α(δ) = 0 and

lim
δ→0

δ||Rα(δ)|| = 0.

Xµ,ρ := {x ∈ X | x = (T ∗T )µω, ||ω|| ≤ ρ}, µ > 0

Proposition (Engl,Hanke,Neubauer)

If range(T ) is non-closed, a regularization algorithm cannot converge to

zero faster than δ
2µ

2µ+1 ρ
1

2µ+1 as δ → 0 for x† ∈ Xµ,ρ.
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Regularization

∆(δ,M,Rα) := sup
{
||Rαy δ − x || | x ∈M, y δ ∈ Y, ||Tx − y δ|| ≤ δ

}
for

some M⊂ X

Definition

We say (Rα, α) is optimal in Xµ,ρ if ∆(δ,Xµ,ρ,Rα) = δ
2µ

2µ+1 ρ
1

2µ+1 holds
∀ δ > 0.
(Rα, α) is of optimal order in Xµ,ρ if ∃ C ≥ 1 such that

∆(δ,Xµ,ρ,Rα) ≤ Cδ
2µ

2µ+1 ρ
1

2µ+1 ∀ δ > 0

Theorem (Engl,Hanke,Neubauer)

Let τ > τ0 ≥ 1, then if (Rα, ατ ) is of optimal order in Xµ,ρ for some µ > 0
and ∀ρ > 0 then all (Rα, ατ̃ ) with τ̃ > τ0 are convergent for y ∈ range(T )
and of optimal order ∀Xν,ρ with 0 < ν ≤ µ and ρ > 0.
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Classical Tikhonov Regularization

The Tikhonov Functional

Φ(x) := ||Tx − y δ||2 + α||x ||2

Theorem (Engl,Hanke,Neubauer)

xδ
α := (T ∗T + αI )−1T ∗y δ is the unique minimizer of Φ(x).

Proof

Theorem (Engl,Hanke,Neubauer)

For xδ
α := (T ∗T + αI )−1T ∗y δ, y ∈ range(T ), ||y − y δ|| ≤ δ if α = α(δ)

such that lim
δ→0

α(δ) = 0 and lim
δ→0

δ2

α(δ) = 0 then lim
δ→0

xδ
α(δ) = T †y.
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Classical Tikhonov Regularization

Proposition (Engl,Hanke,Neubauer)

As long as µ ≤ 1, Tikhonov regularization with the a-priori choice rule

α ∼
(

δ
ρ

) 2
2µ+1

is of optimal order in Xµ,ρ, the best possible convergence

rate for µ = 1 is:

α ∼
(

δ

ρ

) 2
3

and ||xδ
α − x†|| = O

(
δ

2
3

)
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Tikhonov Regularization with Sparsity Constraints

In some applications, we require a sparse solution
So use an `p norm of the coefficients of x wrt an orthonormal basis
{ϕi}i∈N with 1 ≤ p ≤ 2

Decreasing p from 2 to 1, we increase the penalty on “small”
coefficients and decrease the penalty on “large” coefficients,
i.e. we encourage representations with large, but fewer coefficients
wrt the orthonormal basis {ϕi}i∈N
Generally, we restrict ourselves to p ≥ 1 since the functional is no
longer convex for p < 1.

The Tikhonov Functional with `1 Penalty

Ψ(x) := ||Tx − y δ||2 + α
∑

i |〈ϕi , x〉|

Denote xδ
α to be the minimizer of Ψ(x).
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Tikhonov Regularization with Sparsity Constraints

Definition

For x† ∈ X and a regularization Rα, x† is an Rα-minimizing solution if
Tx† = y and Rα(x†) = min{Rα(x) | Tx = y}.

Recall, Rα(x) := α
∑

i |〈φi , x〉|

Proposition (Grasmair,Haltmeier,Scherzer)

Assume that T is injective (or finite basis injectivity holds), then ∃ a
unique minimizer xδ

α of Ψ(x) and ∃ a unique Rα-minimizing solution x†.
For y ∈ range(T ) and ||y − y δ|| ≤ δ if α satisfies lim

δ→0
α(δ) = 0 and

lim
δ→0

δ
α(δ) = 0, then lim

δ→0
xδ
α(δ) = x†.
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Tikhonov Regularization with Sparsity Constraints

Theorem (Grasmair,Haltmeier,Scherzer)

Assume that ∂Rα(x†) ∩ range(T ∗) 6= ∅, that the finite basis injectivity
property holds, and that Tx = y has an Rα-minimizing solution that is
sparse wrt {ϕi}i∈N. Then for parameter choice strategy α ∼ δ, we have
||xδ

α − x†|| = O(δ)

In fact, Grasmair,Haltmeier,Scherzer also prove that for 1 ≤ p ≤ 2, if we
know in advance the solution is sparse in the basis {ϕi}i∈N then we obtain
||xδ

α − x†|| = O(δ1/p).

We have not yet answered how to find this minimizer xδ
α. However, Jack

will discuss this in his presentation.
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