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Linear inverse problem

Hm = d,

with H ∈ Rn×m ill-conditioned and the noisy data d

d = d̄ + ω  noise vector

Least-squares method (Gauss, 1794)

m̂ = arg min
m

{
‖Hm− d‖2

2

}
statistically unbiased
over-whelming oscillations: huge variance
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Linear inverse problem

Hm = d,

with H ∈ Rn×m ill-conditioned and the noisy data d

d = d̄ + ω  noise vector

Tikhonov regularization (Tikhonov, 1963)

mη = arg min
m

{
‖Hm− d‖2

2 + η‖Lm‖2
2

}
L: (often) discretized diff. oper.
mathematically rigorous & well-established
choice of regularization parameter η
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Linear inverse problem

Hm = d,

with H ∈ Rn×m ill-conditioned and the noisy data d

d = d̄ + ω  noise vector

Bayesian inference (Bayes, 1764)

p(m|d) ∝ p(d|m, τ)p(m|λ)

flexible and systematic framework
few theoretical results
a priori hyperparameters λ and τ
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Hierarchical Bayesian formulations
posterior probability density function (PPDF) p(m, λ, τ |d)

p(m, λ, τ |d) ∝ τ
n
2 exp

(
−τ

2
‖Hm− d‖2

2

)
· λ

m
2 exp

(
−λ

2
‖Lm‖2

2

)
·λα0−1e−β0λ · τα1−1e−β1τ .

underlying assumptions
i.i.d. additive Gaussian noise
Markov random field for prior model
conjugate priors for λ and τ (Gamma distr.)

PPDF contains all info but is analytically intractable!
popular sampling methods, e.g. MCMC, are expensive
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Augmented Tikhonov regularization
maximum a posteriori of p(m, λ, τ |d): J (m, λ, τ)

J (m, λ, τ) =
τ

2
‖Hm−d‖2

2 +
λ

2
‖Lm‖2

2 +α′0λ−β0 ln λ+α′1τ −β1τ

with α′0 = α0 + m
2 − 1 and α′1 = α1 + n

2 − 1.

fcnl mimics L-curve criterion
variance estimate similar to GCV
consistency conditions
point estimates only, no uncertainty quantification v.s.
complete probabilistic description of PPDF



Background Variational approximations Numerical algorithm Numerical results Summary

Outline

1 Background

2 Variational approximations

3 Numerical algorithm

4 Numerical results



Background Variational approximations Numerical algorithm Numerical results Summary

Example: variational method for diff. eq.
1D Poisson problem

−u′′ = f on (0, 1)

and u(0) = u(1) = 0
numerical methods: FEM, FDM, BEM, ...
approximate solution to optimization reformulation
let u∗ be exact solution, and define metric d as

d(u, u∗) =

∫ 1

0
(u′(x)− u∗′(x))2dx

d is a distance.
impractical optim.: minimizing d is no use for unknown u∗
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Example: variational method for diff. eq. (cont.)
practical optim. problem

d(u, u∗) =

∫ 1

0
(u∗′(x))2dx − 2

∫ 1

0
u′(x)u∗′(x)dx +

∫ 1

0
(u′(x))2dx

= const − u′(x)u∗(x)|10 +

∫ 1

0
u∗′′(x)u(x)dx +

∫ 1

0
(u′(x))2dx

= const −
∫ 1

0
f (x)u(x)dx +

∫ 1

0
(u′(x))2dx

up to an unknown const, equivalent to

J(u) = −
∫ 1

0
f (x)u(x)dx +

∫ 1

0
(u′(x))2dx
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Example: variational method for diff. eq. (cont.)
approximate u(x) by

u(x) ≈
n∑

i=1

αiφi(x)

finite-dim. optim. problem

α∗ = arg min
{

2bTα + αTAα
}

with bi =
∫ 1

0 f (x)φi(x)dx and aij =
∫ 1

0 φ′i(x)φ′j(x)dx
key ingredients: practical optim. problem + approximation
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Variational Bayesian: fundamental idea
approximate intractable PPDF p(m, λ, τ |d) by simpler distr.,
while hopefully capturing its salient features.

Kullback-Leibler divergence DKL(q(m, λ, τ)|p(m, λ, τ |d))

DKL =

∫ ∫ ∫
q(m, λ, τ) log

q(m, λ, τ)

p(m, λ, τ |d)
dmdλdτ

=

∫ ∫ ∫
q(m, λ, τ) log

q(m, λ, τ)

p(m, λ, τ, d)
dmdλdτ + log p(d),

DKL unsymmetric in p and q
Jensen inequality: DKL = 0 iff q(m, λ, τ) = p(m, λ, τ |d)

minimizing DKL directly reprod. p(m, λ, τ |d) (intractable)
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Key observations
difficulty: strong interactions between m and (λ, τ)

conditional independence emerges as the key ingredient in
developing approx. in probability world
simpler distr.: separable approx. for posterior distr.

q(m, λ, τ) = q(m)q(λ, τ) or δ(m− m̃)q(λ, τ)

similar to ‘mean-field’ theoretic in stat. mechanics
variational Bayesian = DKL + separable approx!

Theorem
There exists at least one minimizer to the optimization problem.
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optimality system

q∗(m) = N
(

m∗, (τ∗HTH + λ∗LTL)−1
)

,

q∗(λ) = G
(

λ;α′′0,
1
2

Eq∗(m)[‖Lm‖2
2] + β0

)
,

q∗(τ) = G
(

τ ;α′′1,
1
2

Eq∗(m)[‖Hm− d‖2
2] + β1

)
,

N ∼ normal distr., G ∼ Gamma distr.
τ∗ = Eq∗(τ)[τ ], λ∗ = Eq∗(λ)[λ] and η∗ = λ∗

τ∗

α′′0 = m
2 + α0 and α′′1 = n

2 + α1

Observations
inverse sol m ∼ normal distri. with mean m∗ and covariance
covq∗(m) = (τ∗HTH + λ∗LTL)−1

λ, τ ∼ Gamma distr. ⇐ conjugate prior
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variance estimate

bias-variance decomposition and var(Hω) = Hvar(ω)HT

τ∗ =
α′′1

1
2‖Hmη∗ − d‖2

2 + 1
2 tr((HTH + η∗LTL)−1HTH) 1

τ∗ + β1
.

rearranging the terms

σ2(η∗) =
1
2‖Hmη∗ − d‖2

2 + β1

α′′1 −
1
2 tr((HTH + η∗LTL)−1HTH)

.

GCV estimate (let T (η) ≡ tr
(
In − H(HTH + ηLTL)−1HT

)
)

V(η) =
‖Hmη − d‖2

2
T (η)
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variance estimate
identity

T (η) = n − tr((HTH + ηLTL)−1HTH)

noninformative prior for τ : α1 ≈ 1 and β1 ≈ 0

σ2(η) ≈ V(η),
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consistency

fix τ at σ−2
0

Bakushinskii’s negative result
GCV is good for variance estimation

η∗
[
‖Lmη∗‖2

2 + tr((HTH + η∗LTL)−1LTL)σ2
0 + 2β0

]
= 2α′′0σ2

0.

Lemma
There exists at least one solution and at most 2p + 1 solutions
on (0,+∞).

Lemma

Assume that ω satisfies ‖ω‖2
2 ≤ cσ2

0. Then there exist two
const. cr ,0 and cr ,1 dependent on α′′0 s.t.

cr ,0σ
2
0 ≤ η∗ ≤ cr ,1σ

2
0.
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Theorem

Assume that ω satisfies ‖ω‖2
2 ≤ cσ2

0. Then for fixed β0 and
α′′0 ∼ O(σ−d

0 ) with 0 < d < 2, the mean mη∗ converges to m+

as σ0 tends to zero.

Remark
The convergence of q∗(m) to p+(m) = δ(m−m+) in some
probabilistic metrics, e.g. Prokhorov metric and Ky Fan metric,
might also be established.
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Implications
hierarchical formulations with fixed α0 and β0 might fail for
arbitrarily varying noise (not regularizing).
strategies to adapt α0 are necessary.

Choice of parameters
variance estimate: α1 ≈ 1, β1 ≈ 0
convergence analysis: α0 ∼ O(σ−d

0 )(0 < d < 2),
β0 ≈ O(‖Lm+‖2

2)
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alternating iterative algorithm
strict biconvexity of DKL(q(m, λ, τ)|p(m, λ, τ)):
(i) Give an initial guess q0(λ, τ), and set k = 0.
(ii) Find qk (m) by

qk (m) = arg min
q(m)

DKL(q(m)qk (λ, τ)|p(m, λ, τ)).

(iii) Find qk+1(λ, τ) by

qk+1(λ, τ) = arg min
q(λ,τ)

DKL(qk (m)q(λ, τ)|p(m, λ, τ)).

(iv) Check the stopping criterion. If not met, set k = k + 1, and
repeat from Step (ii).
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alternating iterative algorithm
optimality condition:

qk (m) ∝ exp
(

Eqk (λ,τ)[log p(m, λ, τ)]
)

= N (mηk ,
[
τkHTH + λkLTL

]−1
),

with τk = Eqk (τ)[τ ], λk = Eqk (λ)[λ] and ηk = λkτ−1
k

qk+1(λ, τ) ∝ exp
(

Eqk (m)[log p(m, λ, τ)]
)

.

qk+1(λ) = G
(

λ;α′′0,
1
2

Eqk (m)[‖Lm‖2
2] + β0

)
,

qk+1(τ) = G
(

τ ;α′′1,
1
2

Eqk (m)[‖Hm− d‖2
2] + β1

)
.
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Theorem

The sequence
{

DKL(qk (m)qk (λ, τ)|p(m, λ, τ))
}

k decreases
monotonically.

Lemma
The sequence {ηk}k is uniformly bounded.

Theorem

The sequence {(qk (m)qk (λ, τ))}k has a subsequence
converging to a stationary point of the functional DKL.

Lemma
For fixed τ and any η0, the sequence {ηk}k converges
monotonically.
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Cauchy problem for Laplace equation

Ω ⊂ R2 open bdd. domain with disjoint bdry. Γi and Γc

governing eq: ∆u(x) = 0
b.c.: Dirichlet and Neumann data on Γc

inverse problem: estimate Dirichlet b.c. on Γi

applications: thermal imaging, NDE and electrocardiogr.
analysis: uniqueness, stability, ill-posedness, existence
numerical algorithms: BGM, meshfree methods, QRM,
alternating iterative algorithm ...
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comparison of variational method with AT in terms of η∗ and e∗

(density estimated from 1000 simulations).

Observations

difference in η∗ is due to Eq∗(m)[‖Lm‖2
2] � ‖Lm∗‖2

2

difference in e is insignificant
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variance estimates

variational method agrees
well with AT, and slightly
larger
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Numerical results in case of 3% noise.

Observations
mean estimate agrees well
both variational method and AT slightly under-est.
uncertainties of the inverse solution
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Convergence of the algorithm.

Observations
AT converges faster than variation method
variance converges within one-step
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Numerical results for Example 1.
ε σ0 σmc σai σaii ηmc ηai ηaii emc eai eaii

1% 1.97e-2 2.10e-2 2.07e-2 1.96e-2 3.70e-5 3.58e-5 6.64e-5 2.54e-2 2.31e-2 1.85e-2
3% 5.91e-2 6.28e-2 6.20e-2 5.90e-2 3.01e-4 2.87e-4 6.04e-4 3.44e-2 3.13e-2 2.27e-2
5% 9.84e-2 1.05e-1 1.03e-1 9.86e-2 7.83e-4 7.52e-4 1.71e-3 3.29e-2 3.34e-2 2.11e-2

Observation
The results by variational method represent better true PPDF.
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Summary

Summary
brief introduction to variational Bayes
prelim. results about the formulation
convergence analysis of the algorithm
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1996.
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New York; 2006.
5 Jin B, Zou J. Linear inversion via variational method, submitted.
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