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Background

Linear inverse problem

Hm =d,

with H € R"*™ ill-conditioned and the noisy data d

d = d + w ~ noise vector

Least-squares method (Gauss, 1794)

h = arg min {||Hm — dH%}

@ statistically unbiased
@ over-whelming oscillations: huge variance




Background

Linear inverse problem

Hm =d,

with H € R"*™ ill-conditioned and the noisy data d

d = d + w ~ noise vector

Tikhonov regularization (Tikhonov, 1963)

m,, = argmin {||Hm — d|3 + y/Lm|3 |

@ L: (often) discretized diff. oper.
@ mathematically rigorous & well-established
@ choice of regularization parameter n




Background

Linear inverse problem

Hm =d,

with H € R"*™ ill-conditioned and the noisy data d

d = d + w ~ noise vector

Bayesian inference (Bayes, 1764)

p(mi|d) o p(d|m, 7)p(m|))

@ flexible and systematic framework
@ few theoretical results
@ a priori hyperparameters A and 7
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Hierarchical Bayesian formulations
posterior probability density function (PPDF) p(m, A, 7|d)

n T m A
p(m A id) o 74 exp (~IHm — d[3) A% exp (5 Lm )

_)\040—1 e—ﬁo)\ . 7_041—1 6—517'.

underlying assumptions
@ i.i.d. additive Gaussian noise
@ Markov random field for prior model
@ conjugate priors for A and = (Gamma distr.)

PPDF contains all info but is analytically intractable!
popular sampling methods, e.g. MCMC, are expensive
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Augmented Tikhonov regularization
maximum a posteriori of p(m, A, 7|d): J(m, X, 1)

A
F(m, A7) = Z[IHm —d[3+ 2 [Lm[3+abA— foln A+ a7 — By

Withaé):ao—i-%—'l ando/1 = o +g—1.
@ fenl mimics L-curve criterion
@ variance estimate similar to GCV
@ consistency conditions

@ point estimates only, no uncertainty quantification v.s.
complete probabilistic description of PPDF
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Variational approximations

Example: variational method for diff. eq.

@ 1D Poisson problem
—u"=f on (0,1)

and u(0) =u(1)=0
@ numerical methods: FEM, FDM, BEM, ...
@ approximate solution to optimization reformulation
@ let u* be exact solution, and define metric d as

1
d(u, u*) :/0 (U'(x) — u*(x))%dx

d is a distance.
impractical optim.: minimizing d is no use for unknown u*




Variational approximations

Example: variational method for diff. eq. (cont.)
@ practical optim. problem

1

d(u,u™) = /1(u*’(x))2dx — 2/1 u/(x)u*’(x)dx—i—/ (u'(x))2dx

const — u'(x)u™ (x)|§ + /1 u™ (x)u(x)dx + /1(u’(x))2dx

const — /1 f(x)u(x)dx + /1(u’(x))2dx
0 0

up to an unknown const, equivalent to

1
0

J(U) = — /O Hu(a)dx + / (t/(x))2ax
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Example: variational method for diff. eq. (cont.)
@ approximate u(x) by

u) = 3 aig(x)
i=1

@ finite-dim. optim. problem
a* = argmin {2b'a + a'Aa}

with by = [§ f(x)¢;(x)ax and a; = [3 ¢/(x)¢!(x)ax
@ key ingredients: practical optim. problem + approximation




Variational approximations

Variational Bayesian: fundamental idea

approximate intractable PPDF p(m, A, 7|d) by simpler distr.,
while hopefully capturing its salient features.

Kullback-Leibler divergence Dy, (q(m, A, 7)|p(m, A, 7|d))

D — ///qm A7) log C(’( - T|;)dmd/\d7
= ///q (m, A, 7)log ((m)\A Tzl)dmd/\dTJrlogp(d),
@ Dy, unsymmetric in p and g

@ Jensen inequality: Dy, = 0 iff g(m, A, 7) = p(m, A, 7|d)
@ minimizing Dy, directly reprod. p(m, \, 7|d) (intractable)




Variational approximations

Key observations

@ difficulty: strong interactions between m and (A, )

@ conditional independence emerges as the key ingredient in
developing approx. in probability world

@ simpler distr.: separable approx. for posterior distr.

q(ma A, T) = Q(m)Q(N T) or 6(m - ﬁ‘)qo\’ T)

@ similar to ‘mean-field’ theoretic in stat. mechanics
@ variational Bayesian = Dk, + separable approx!

There exists at least one minimizer to the optimization problem.




Variational approximations

optimality system

g‘(m) = N(m*,(T*HTH+)\*LTL)_1),

1
T = 6(Nab SEnmliLmE]+ b)),

1
a'(r) = G(riof. 3B mlIHm -8+ 5 ).

N ~ normal distr., G ~ Gamma distr.
I — Eq*(T)[T], A* = Eq*()\)[)\] and Nt = %

n
ag =3 +apand of = 7 + ay

Observations

inverse sol m ~ normal distri. with mean m* and covariance
COVg+(m) = (T*HTH + )\*LTL)fdl
A\, 7 ~ Gamma distr. <= conjugate prior




Variational approximations

variance estimate

bias-variance decomposition and var(Hw) = Hvar(w)H?

!
* a1

T T THm, —d|B + bu((HTH + " LTL) THTH) L + 3,

rearranging the terms

z[Hm,- —d|5 + 5

20 %\ __
7 ) = T w((HTH - LTL)-THTH)

GCV estimate (let 7(n) = tr (I, — HHTH + nLTL)~'HT))

_ [IHm,, —dZ

V(n) T0)




Variational approximations

variance estimate

identity
T(n) = n—tr(HTH + 7LTL)"'HTH)

noninformative prior for 7: vy ~ 1 and 61 = 0

o?(n) ~ V(n),
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consistency

fix 7 at 00_2
@ Bakushinskii’s negative result
@ GCV is good for variance estimation

7" [||Lmn* 2 4 t((H™H + 7"LTL) " 'L™L)o2 + 250} = 2all02.

Lemma

There exists at least one solution and at most 2p + 1 solutions
on (0, +00).

Lemma

Assume that w satisfies ||w||3 < co3. Then there exist two
const. ¢ o and ¢, 1 dependent on o S.t.

Cr,OU(% <n* < Cr,1f7(2)-




Variational approximations

Assume that w satisfies |w||3 < coa. Then for fixed 3y and
ag ~ (’)(ao‘d) with 0 < d < 2, the mean m,- converges tom™
as oq tends to zero.

The convergence of g*(m) to p*(m) = 6(m —m™) in some
probabilistic metrics, e.g. Prokhorov metric and Ky Fan metric,
might also be established.




Variational approximations

Implications

@ hierarchical formulations with fixed ag and gy might fail for
arbitrarily varying noise (not regularizing).
@ strategies to adapt ag are necessary.

Choice of parameters

@ variance estimate: oy ~ 1, 81 =0

@ convergence analysis: ag ~ O(ogd)(o <d<2),
fo ~ O(|Lm*|3)
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Numerical algorithm

alternating iterative algorithm

strict biconvexity of Dk, (q(m, A\, 7)|p(m, A, 7)):
(i) Give an initial guess g°()\, 7), and set k = 0.
(ii) Find g*(m) by

g*(m) = arg min Drc(q(m)g (X, 7)lp(m, X, 7).
(i) Find g**'(\, ) by
gt (A7) = arg mln) Die (g (m)g(\, 7)|p(m, A, 7)).

(iv) Check the stopping criterion. If not met, set k = k + 1, and
repeat from Step (ii).




Numerical algorithm

alternating iterative algorithm
optimality condition:

g (m) o exp (Egs(s, ) llog p(m, A, 7)])
= N(m,,, [7HTH + A\ LTL] ),

with Tk — Eqk(T)[T], )\k = Eqk()\)[)\] and Nk = )\kT;1

g+ (A, 7) o< exp ( Eqemyllog p(m, A, 7)])

1
PN = G (g 5 EpmlILmIE]-+ o).

gt (r) = G(T;Oq,; gk(my[[HM — dH2]+ﬂ1>




Numerical algorithm

The sequence { Dx.(q*(m)g*(X, 7)|p(m, X\, 7))}, decreases
monotonically.

The sequence {ny}« is uniformly bounded.

Theorem

The sequence {(q*(m)g*(\, 7))}« has a subsequence
converging to a stationary point of the functional D .

Lemma

For fixed T and any 1o, the sequence {ny }x converges
monotonically.
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Numerical results

Cauchy problem for Laplace equation

@ Q c R? open bdd. domain with disjoint bdry. I; and I'¢
@ governing eq: Au(x) =0

@ b.c.: Dirichlet and Neumann data on ',

@ inverse problem: estimate Dirichlet b.c. on T;

@ applications: thermal imaging, NDE and electrocardiogr.
@ analysis: uniqueness, stability, ill-posedness, existence

@ numerical algorithms: BGM, meshfree methods, QRM,
alternating iterative algorithm ...




Numerical results
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comparison of variational method with AT in terms of n* and e*
(density estimated from 1000 simulations).

Observations

e difference in n* is due to Eg-(m)[//Lm||3] > ||ILm*|3
@ difference in e is insignificant




Numerical results
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Numerical results
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Numerical results in case of 3% noise.

Observations

@ mean estimate agrees well

@ both variational method and AT slightly under-est.
uncertainties of the inverse solution
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Convergence of the algorithm.

Observations

@ AT converges faster than variation method
@ variance converges within one-step




Numerical results

Numerical results for Example 1.

€ 70 Tme Tai T aii TImc Nai Naii €mc Cai
1% 1.97e-2 2.10e-2 2.07e-2 1.96e-2 3.70e-5 3.58e-5 6.64e-5 2.54e-2
3% 5.91e-2 6.28e-2  6.20e-2 5.90e-2 3.01e-4  2.87e-4
5% 9.84e-2 1.05e-1 1.03e-1 9.86e-2 7.83e-4

Caii

2.31e-2 1.85e-
6.04e-4  3.44e-2 3.13e-2 2.27e-!
7.52e-4 1.71e-3  3.29e-2 3.34e-2 2.11e-!

Observation

The results by variational method represent better true PPDF.
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Summary

@ brief introduction to variational Bayes
@ prelim. results about the formulation
@ convergence analysis of the algorithm
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