Linear Inversion via Variational Method

Bangti JIN

Universität Bremen, Zentrum für Technomathematik

Seminar, January 15, 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Background	Variational approximations	Numerical algorithm	Numerical results	Summary
Outline				


```
3 Numerical algorithm
```


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Background	Variational approximations	Numerical algorithm	Numerical results	Summary
Outline				

2 Variational approximations

3 Numerical algorithm

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Backgro	ound Variatio	nal approximations	Numerical algorithm	Numerical results	Summary
Linear inverse problem					
Hm = d,					
Ň	with $\mathbf{H} \in \mathbb{R}^{n imes m}$ ill-conditioned and the noisy data \mathbf{d}				

 $\mathbf{d} = \bar{\mathbf{d}} + \omega \rightsquigarrow \text{noise vector}$

Least-squares method (Gauss, 1794)

$$\hat{\mathbf{m}} = \arg\min_{\mathbf{m}} \left\{ \|\mathbf{H}\mathbf{m} - \mathbf{d}\|_2^2 \right\}$$

- statistically unbiased
- over-whelming oscillations: huge variance

Background	Variational approximations	Numerical algorithm	Numerical results	Summary
Linea	r inverse problem			
		Hm – d		

with $\mathbf{H} \in \mathbb{R}^{n \times m}$ ill-conditioned and the noisy data \mathbf{d}

 $\mathbf{d} = \bar{\mathbf{d}} + \omega \rightsquigarrow \text{noise vector}$

Tikhonov regularization (Tikhonov, 1963)

$$\mathbf{m}_{\eta} = \arg\min_{\mathbf{m}} \left\{ \|\mathbf{H}\mathbf{m} - \mathbf{d}\|_{2}^{2} + \eta \|\mathbf{L}\mathbf{m}\|_{2}^{2} \right\}$$

- L: (often) discretized diff. oper.
- mathematically rigorous & well-established
- choice of regularization parameter η

Background	Variational approximations	Numerical algorithm	Numerical results	Summary	
Linea	ar inverse problem				
Hm = d,					
with I	with $\mathbf{H} \in \mathbb{R}^{n \times m}$ ill-conditioned and the noisy data d				

 $\mathbf{d} = \bar{\mathbf{d}} + \omega \rightsquigarrow \text{noise vector}$

Bayesian inference (Bayes, 1764)

 $p(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m}, \tau) p(\mathbf{m}|\lambda)$

- flexible and systematic framework
- few theoretical results
- a priori hyperparameters λ and τ

Hierarchical Bayesian formulations

posterior probability density function (PPDF) $p(\mathbf{m}, \lambda, \tau | \mathbf{d})$

$$\begin{split} \rho(\mathbf{m},\lambda,\tau|\mathbf{d}) &\propto \quad \tau^{\frac{n}{2}}\exp\left(-\frac{\tau}{2}\|\mathbf{H}\mathbf{m}-\mathbf{d}\|_{2}^{2}\right) \cdot \lambda^{\frac{m}{2}}\exp\left(-\frac{\lambda}{2}\|\mathbf{L}\mathbf{m}\|_{2}^{2}\right) \\ &\cdot \lambda^{\alpha_{0}-1}e^{-\beta_{0}\lambda} \cdot \tau^{\alpha_{1}-1}e^{-\beta_{1}\tau}. \end{split}$$

underlying assumptions

- i.i.d. additive Gaussian noise
- Markov random field for prior model
- conjugate priors for λ and τ (Gamma distr.)

PPDF contains all info but is analytically intractable! popular sampling methods, e.g. MCMC, are expensive

Background	Variational approximations	Numerical algorithm	Numerical results	Summary

Augmented Tikhonov regularization

maximum *a posteriori* of $p(\mathbf{m}, \lambda, \tau | \mathbf{d})$: $\mathcal{J}(\mathbf{m}, \lambda, \tau)$

$$\mathcal{J}(\mathbf{m},\lambda,\tau) = \frac{\tau}{2} \|\mathbf{H}\mathbf{m} - \mathbf{d}\|_2^2 + \frac{\lambda}{2} \|\mathbf{L}\mathbf{m}\|_2^2 + \alpha_0'\lambda - \beta_0 \ln \lambda + \alpha_1'\tau - \beta_1\tau$$

with
$$\alpha'_0 = \alpha_0 + \frac{m}{2} - 1$$
 and $\alpha'_1 = \alpha_1 + \frac{n}{2} - 1$.

- fcnl mimics L-curve criterion
- variance estimate similar to GCV
- consistency conditions
- point estimates only, no uncertainty quantification v.s. complete probabilistic description of PPDF

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Background V	/ariational approximations	Numerical algorithm	Numerical results	Summary
Outline				

3 Numerical algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Example: variational method for diff. eq.

ID Poisson problem

$$-u'' = f$$
 on $(0, 1)$

and u(0) = u(1) = 0

- numerical methods: FEM, FDM, BEM, ...
- approximate solution to optimization reformulation
- let u* be exact solution, and define metric d as

$$d(u, u^*) = \int_0^1 (u'(x) - u^{*'}(x))^2 dx$$

d is a distance. impractical optim.: minimizing *d* is no use for unknown u^*

Example: variational method for diff. eq. (cont.)

practical optim. problem

$$d(u, u^*) = \int_0^1 (u^{*'}(x))^2 dx - 2 \int_0^1 u'(x) u^{*'}(x) dx + \int_0^1 (u'(x))^2 dx$$

= const - u'(x)u^*(x)|_0^1 + \int_0^1 u^{*''}(x)u(x) dx + \int_0^1 (u'(x))^2 dx
= const - $\int_0^1 f(x)u(x) dx + \int_0^1 (u'(x))^2 dx$

up to an unknown const, equivalent to

$$J(u) = -\int_0^1 f(x)u(x)dx + \int_0^1 (u'(x))^2 dx$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: variational method for diff. eq. (cont.)

approximate u(x) by

$$u(\mathbf{x}) \approx \sum_{i=1}^{n} \alpha_i \phi_i(\mathbf{x})$$

finite-dim. optim. problem

$$\boldsymbol{\alpha}^* = \arg\min\left\{2\mathbf{b}^{\mathrm{T}}\boldsymbol{\alpha} + \boldsymbol{\alpha}^{\mathrm{T}}\mathbf{A}\boldsymbol{\alpha}\right\}$$

with $b_i = \int_0^1 f(x)\phi_i(x)dx$ and $a_{ij} = \int_0^1 \phi'_i(x)\phi'_j(x)dx$ • key ingredients: practical optim. problem + approximation

Variational Bayesian: fundamental idea

approximate intractable PPDF $p(\mathbf{m}, \lambda, \tau | \mathbf{d})$ by simpler distr., while hopefully capturing its salient features.

Kullback-Leibler divergence $D_{KL}(q(\mathbf{m}, \lambda, \tau)|p(\mathbf{m}, \lambda, \tau|\mathbf{d}))$

$$D_{KL} = \int \int \int q(\mathbf{m}, \lambda, \tau) \log \frac{q(\mathbf{m}, \lambda, \tau)}{p(\mathbf{m}, \lambda, \tau | \mathbf{d})} d\mathbf{m} d\lambda d\tau$$

= $\int \int \int q(\mathbf{m}, \lambda, \tau) \log \frac{q(\mathbf{m}, \lambda, \tau)}{p(\mathbf{m}, \lambda, \tau, \mathbf{d})} d\mathbf{m} d\lambda d\tau + \log p(\mathbf{d}),$

- *D_{KL}* unsymmetric in *p* and *q*
- Jensen inequality: $D_{KL} = 0$ iff $q(\mathbf{m}, \lambda, \tau) = p(\mathbf{m}, \lambda, \tau | \mathbf{d})$
- minimizing D_{KL} directly reprod. $p(\mathbf{m}, \lambda, \tau | \mathbf{d})$ (intractable)

Key observations

- difficulty: strong interactions between **m** and (λ, τ)
- conditional independence emerges as the key ingredient in developing approx. in probability world
- simpler distr.: separable approx. for posterior distr.

$$q(\mathbf{m}, \lambda, \tau) = q(\mathbf{m})q(\lambda, \tau)$$
 or $\delta(\mathbf{m} - \tilde{\mathbf{m}})q(\lambda, \tau)$

- similar to 'mean-field' theoretic in stat. mechanics
- variational Bayesian = D_{KL} + separable approx!

Theorem

There exists at least one minimizer to the optimization problem.

optimality system

$$\begin{aligned} q^*(\mathbf{m}) &= \mathcal{N}\left(\mathbf{m}^*, (\tau^* \mathbf{H}^T \mathbf{H} + \lambda^* \mathbf{L}^T \mathbf{L})^{-1}\right), \\ q^*(\lambda) &= G\left(\lambda; \alpha_0'', \frac{1}{2} E_{q^*(\mathbf{m})}[\|\mathbf{L}\mathbf{m}\|_2^2] + \beta_0\right), \\ q^*(\tau) &= G\left(\tau; \alpha_1'', \frac{1}{2} E_{q^*(\mathbf{m})}[\|\mathbf{H}\mathbf{m} - \mathbf{d}\|_2^2] + \beta_1\right), \end{aligned}$$

 $\begin{array}{l} \mathcal{N} \sim \text{normal distr., } \boldsymbol{G} \sim \text{Gamma distr.} \\ \tau^* = \boldsymbol{E}_{q^*(\tau)}[\tau], \, \lambda^* = \boldsymbol{E}_{q^*(\lambda)}[\lambda] \text{ and } \eta^* = \frac{\lambda^*}{\tau^*} \\ \alpha_0^{\prime\prime} = \frac{m}{2} + \alpha_0 \text{ and } \alpha_1^{\prime\prime} = \frac{n}{2} + \alpha_1 \end{array}$

Observations

inverse sol $\mathbf{m} \sim$ normal distri. with mean \mathbf{m}^* and covariance $\operatorname{cov}_{q^*(\mathbf{m})} = (\tau^* \mathbf{H}^T \mathbf{H} + \lambda^* \mathbf{L}^T \mathbf{L})^{-1} \lambda, \tau \sim$ Gamma distr. \Leftarrow conjugate prior

variance estimate

bias-variance decomposition and $var(H\omega) = Hvar(\omega)H^{T}$

$$\tau^* = \frac{\alpha_1''}{\frac{1}{2} \|\mathbf{H}\mathbf{m}_{\eta^*} - \mathbf{d}\|_2^2 + \frac{1}{2} \operatorname{tr}((\mathbf{H}^{\mathrm{T}}\mathbf{H} + \eta^* \mathbf{L}^{\mathrm{T}}\mathbf{L})^{-1} \mathbf{H}^{\mathrm{T}}\mathbf{H}) \frac{1}{\tau^*} + \beta_1}$$

rearranging the terms

$$\sigma^{2}(\eta^{*}) = \frac{\frac{1}{2} \|\mathbf{H}\mathbf{m}_{\eta^{*}} - \mathbf{d}\|_{2}^{2} + \beta_{1}}{\alpha_{1}^{\prime\prime} - \frac{1}{2} \operatorname{tr}((\mathbf{H}^{\mathrm{T}}\mathbf{H} + \eta^{*}\mathbf{L}^{\mathrm{T}}\mathbf{L})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{H})}.$$

GCV estimate (let $\mathcal{T}(\eta) \equiv \operatorname{tr} \left(\mathbf{I}_{n} - \mathbf{H} (\mathbf{H}^{\mathrm{T}}\mathbf{H} + \eta \mathbf{L}^{\mathrm{T}}\mathbf{L})^{-1}\mathbf{H}^{\mathrm{T}} \right)$)

$$\mathcal{V}(\eta) = rac{\|\mathbf{H}\mathbf{m}_\eta - \mathbf{d}\|_2^2}{\mathcal{T}(\eta)}$$

variance estimate

identity

$$\mathcal{T}(\eta) = n - \operatorname{tr}((\mathbf{H}^{\mathrm{T}}\mathbf{H} + \eta \mathbf{L}^{\mathrm{T}}\mathbf{L})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{H})$$

noninformative prior for τ : $\alpha_1 \approx 1$ and $\beta_1 \approx 0$

$$\sigma^2(\eta) \approx \mathcal{V}(\eta),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Background	Variational approximations	Numerical algorithm	Numerical results	Summa		
consi	istency					
fix $ au$ a	at σ_0^{-2}					
• E	akushinskii's negativ	e result				
• 0	GCV is good for variar	nce estimation				
$\eta^{*}\left[ight.$	$\eta^* \left[\ \mathbf{L}\mathbf{m}_{\eta^*}\ _2^2 + \operatorname{tr}((\mathbf{H}^{\mathrm{T}}\mathbf{H} + \eta^*\mathbf{L}^{\mathrm{T}}\mathbf{L})^{-1}\mathbf{L}^{\mathrm{T}}\mathbf{L})\sigma_0^2 + 2\beta_0 \right] = 2\alpha_0''\sigma_0^2.$					
Lemn	na					
There exists at least one solution and at most $2p + 1$ solon $(0, +\infty)$.				ins		
Lemn	na					
Assur const	me that ω satisfies $\Vert \omega$. $c_{r,0}$ and $c_{r,1}$ depend	$\ v \ _2^2 \leq c \sigma_0^2.$ Then a lent on $lpha_0''$ s.t.	there exist two			

 $c_{r,0}\sigma_0^2 \leq \eta^* \leq c_{r,1}\sigma_0^2.$

Theorem

Assume that ω satisfies $\|\omega\|_2^2 \leq c\sigma_0^2$. Then for fixed β_0 and $\alpha_0'' \sim \mathcal{O}(\sigma_0^{-d})$ with 0 < d < 2, the mean \mathbf{m}_{η^*} converges to \mathbf{m}^+ as σ_0 tends to zero.

Remark

The convergence of $q^*(\mathbf{m})$ to $p^+(\mathbf{m}) = \delta(\mathbf{m} - \mathbf{m}^+)$ in some probabilistic metrics, e.g. Prokhorov metric and Ky Fan metric, might also be established.

(日) (日) (日) (日) (日) (日) (日)

Implications

 hierarchical formulations with fixed α₀ and β₀ might fail for arbitrarily varying noise (not regularizing).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

strategies to adapt α₀ are necessary.

Choice of parameters

- variance estimate: $\alpha_1 \approx 1$, $\beta_1 \approx 0$
- convergence analysis: $\alpha_0 \sim \mathcal{O}(\sigma_0^{-d})(0 < d < 2), \beta_0 \approx \mathcal{O}(\|\mathbf{Lm}^+\|_2^2)$

Background	Variational approximations	Numerical algorithm	Numerical results	Summary
Outline				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Background

- 2 Variational approximations
- 3 Numerical algorithm
- A Numerical results

Background	Variational approximations	Numerical algorithm	Numerical results	Summary	

alternating iterative algorithm

strict biconvexity of $D_{KL}(q(\mathbf{m}, \lambda, \tau) | p(\mathbf{m}, \lambda, \tau))$:

(i) Give an initial guess $q^0(\lambda, \tau)$, and set k = 0. (ii) Find $q^k(\mathbf{m})$ by

$$q^k(\mathbf{m}) = rg\min_{q(\mathbf{m})} D_{\mathcal{KL}}(q(\mathbf{m})q^k(\lambda, au)|p(\mathbf{m}, \lambda, au)).$$

(iii) Find $q^{k+1}(\lambda, \tau)$ by

$$q^{k+1}(\lambda, \tau) = \arg\min_{q(\lambda, \tau)} D_{KL}(q^k(\mathbf{m})q(\lambda, \tau)|p(\mathbf{m}, \lambda, \tau)).$$

(iv) Check the stopping criterion. If not met, set k = k + 1, and repeat from Step (ii).

alternating iterative algorithm

optimality condition:

$$egin{aligned} & q^k(\mathbf{m}) \propto \exp\left(E_{q^k(\lambda, au)}[\log p(\mathbf{m},\lambda, au)]
ight) \ &= \mathcal{N}(\mathbf{m}_{\eta_k}, \left[au_k \mathbf{H}^{\mathrm{T}} \mathbf{H} + \lambda_k \mathbf{L}^{\mathrm{T}} \mathbf{L}
ight]^{-1}), \end{aligned}$$

with
$$\tau_k = E_{q^k(\tau)}[\tau]$$
, $\lambda_k = E_{q^k(\lambda)}[\lambda]$ and $\eta_k = \lambda_k \tau_k^{-1}$

$$q^{k+1}(\lambda, \tau) \propto \exp\left(E_{q^k(\mathbf{m})}[\log p(\mathbf{m}, \lambda, \tau)]\right).$$

$$\begin{aligned} q^{k+1}(\lambda) &= G\left(\lambda; \alpha_0'', \frac{1}{2} E_{q^k(\mathbf{m})}[\|\mathbf{Lm}\|_2^2] + \beta_0\right), \\ q^{k+1}(\tau) &= G\left(\tau; \alpha_1'', \frac{1}{2} E_{q^k(\mathbf{m})}[\|\mathbf{Hm} - \mathbf{d}\|_2^2] + \beta_1\right). \end{aligned}$$

Theorem

The sequence $\{D_{KL}(q^k(\mathbf{m})q^k(\lambda,\tau)|p(\mathbf{m},\lambda,\tau))\}_k$ decreases monotonically.

Lemma

The sequence $\{\eta_k\}_k$ is uniformly bounded.

Theorem

The sequence $\{(q^k(\mathbf{m})q^k(\lambda, \tau))\}_k$ has a subsequence converging to a stationary point of the functional D_{KL} .

Lemma

For fixed τ and any η_0 , the sequence $\{\eta_k\}_k$ converges monotonically.

Background	Variational approximations	Numerical algorithm	Numerical results	Summary
Outline				

Background

- 2 Variational approximations
- 3 Numerical algorithm

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

Cauchy problem for Laplace equation

- $\Omega \subset \mathbb{R}^2$ open bdd. domain with disjoint bdry. Γ_i and Γ_c
- governing eq: $\Delta u(x) = 0$
- b.c.: Dirichlet and Neumann data on Γ_c
- inverse problem: estimate Dirichlet b.c. on Γ_i
- applications: thermal imaging, NDE and electrocardiogr.
- analysis: uniqueness, stability, ill-posedness, existence
- numerical algorithms: BGM, meshfree methods, QRM, alternating iterative algorithm ...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

comparison of variational method with AT in terms of η^* and e^* (density estimated from 1000 simulations).

Observations

- difference in η^* is due to $E_{q^*(\mathbf{m})}[\|\mathbf{Lm}\|_2^2] \gg \|\mathbf{Lm}^*\|_2^2$
- difference in e is insignificant

variance estimates

 variational method agrees well with AT, and slightly larger

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical results in case of 3% noise.

Convergence of the algorithm.

Observations AT converges faster than variation method variance converges within one-step

Numerical results for Example 1.

	ε	σ_0	$\sigma_{ m mc}$	$\sigma_{ m ai}$	$\sigma_{ m aii}$	$\eta_{\rm mc}$	$\eta_{ m ai}$	$\eta_{ m aii}$	e _{mc}	eai	eaii
Ĩ	1%	1.97e-2	2.10e-2	2.07e-2	1.96e-2	3.70e-5	3.58e-5	6.64e-5	2.54e-2	2.31e-2	1.85e-
	3%	5.91e-2	6.28e-2	6.20e-2	5.90e-2	3.01e-4	2.87e-4	6.04e-4	3.44e-2	3.13e-2	2.27e-
	5%	9.84e-2	1.05e-1	1.03e-1	9.86e-2	7.83e-4	7.52e-4	1.71e-3	3.29e-2	3.34e-2	2.11e-
-											

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Observation

The results by variational method represent better true PPDF.

Background	Variational approximations	Numerical algorithm	Numerical results	Summary
Summar	y			

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary

- brief introduction to variational Bayes
- prelim. results about the formulation
- convergence analysis of the algorithm

Further reading list

- Eggermont PPB. Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 1993;24: 1557–1576.
- Engl HW, Hanke M, Neubauer A. Regularization of Inverse Problems. Kluwer, 1996.
- Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK. An introduction to variational methods for graphical models. Machine Learning 1999;37: 183–233.
- Smidl V, Quinn A. The Variational Bayes Method in Signal Processing. Springer: New York; 2006.
- 5 Jin B, Zou J. Linear inversion via variational method, submitted.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶