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Signal Properties

Characteristics of a Power Signal (Xu)

Low frequency harmonics - caused by power electronic devices, arc
furnaces, transformers, rotational machines, and aggregate loads.
Swells and Sags of the RMS Voltage.
Transients - caused by lightnings, equipment faults, switching
operations, and more.



Background Theory Algorithms Dictionary/Operators Application Conclusions

Signal Properties

Characteristics of a Power Signal (Xu)

Low frequency harmonics - caused by power electronic devices, arc
furnaces, transformers, rotational machines, and aggregate loads.

Swells and Sags of the RMS Voltage.
Transients - caused by lightnings, equipment faults, switching
operations, and more.



Background Theory Algorithms Dictionary/Operators Application Conclusions

Signal Properties

Characteristics of a Power Signal (Xu)

Low frequency harmonics - caused by power electronic devices, arc
furnaces, transformers, rotational machines, and aggregate loads.
Swells and Sags of the RMS Voltage.

Transients - caused by lightnings, equipment faults, switching
operations, and more.



Background Theory Algorithms Dictionary/Operators Application Conclusions

Signal Properties

Characteristics of a Power Signal (Xu)

Low frequency harmonics - caused by power electronic devices, arc
furnaces, transformers, rotational machines, and aggregate loads.
Swells and Sags of the RMS Voltage.
Transients - caused by lightnings, equipment faults, switching
operations, and more.



Background Theory Algorithms Dictionary/Operators Application Conclusions

Transients

Transient Disturbances

Superimposed to the fundamental frequency.
Modeled by damped sinusoids to appear as short lived impulses.
Capacitor switching transients

damped sinusoids with frequency around 1000-2000 Hz
damping factor 450-500
phase angle −π/2 to π/2.
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Example Signal with 60Hz Component

Figure: The test signal with the 60 Hz component, without noise sampled at
1024 points from 0 to .1 seconds.
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Sparse Framework

Feature extraction - detect and identify transient disturbance

Finding sparse solutions allows for a more crisp identification, more
robust in noise

min
α
‖α‖0 subject to x = Φα (1)

NP-Hard, instead

min
α
‖α‖1 subject to x = Φα (2)

Or in noise,

min
α

λ ‖α‖1 +
1
2
‖x− Φα‖22 (3)
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Clemson Research

Bruckstein, Donoho, Elad - From Sparse Solutions of Systems of
Equations to Sparse Modeling of Signals and Images

Chen, Donoho, Saunders - Atomic Decomposition by Basis Pursuit

Donoho, Elad - On the Stability of Basis Pursuit in the Presence of
Noise

Donoho, Elad, Temlyakov - Stable Recovery of Sparse Overcomplete
Representations in the Precense of Noise

Tropp - Greed is Good: Algorithmic Results for Sparse
Approximation
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Clemson Research

Two different (overcomplete) dictionaries - Wavelet Packet and
Damped Sinusoid

Two different algorithms - Matching Pursuit and Interior Point
Method

Mutual Coherence analysis

µ(Φ) = max
1≤k,j≤m,k 6=j

∣∣φT
k φj

∣∣
‖φk‖2 ‖φj‖2

Used for criterea on finding sparest solution possible without noise,
stability in noise, etc. Often insufficient.

Time Frequency Plane Comparision
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Lingering Questions

What about the infinite dimesional setting?

What other dictionaries might be better?

What other algorithms are there?
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Infinite Dimensional Setting

Daubechies, Defrise, De Mol - An Iterative Thresholding Algorithm
for Linear Inverse Problems with a Sparsity Constraint

Using an operator K, instead of a Dictionary Φ
Considering problem as ill-posed, unbounded or badly conditioned
generalized inverse in need or regularization

Frequent restriction to injective K instead of Mutual Coherence.

excludes overcomplete basis.

Choose sparse solution from overcomplete basis versus use sparsity
constraint as regularization of ill posed problem with injective K

Difference in how the l1 penalty function is brought in:
regularization compared to the recasting of

min
α
||α||1 subject to |S −Dα| ≤ δ

to

min
α

λ ‖α‖1 +
1
2
‖x− Φα‖22 (4)
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Regularization

To what extent is minimizing the functional

Φ(f) =
1
2
||Kf − g||22 + α||f ||1 (5)

a successful regularization?



Background Theory Algorithms Dictionary/Operators Application Conclusions

Daubechies

Theorem (Daubechies, Defrise, De Mol)

For injective K, a bounded linear operator with ||K|| < 1 and α > 0, let
f∗ be the minimizer of Φ. Then for any observed image g, if α(ε) satisfies

lim
ε→0

α(ε) = 0 and lim
ε→0

ε2

α(ε)
= 0

Then,
lim
ε→0

[ sup
||g−Kf0||≤ε

||f∗ − f0||] = 0

where f0 is the “true” solution.

This is presented in the literature with a range for p. p=1 is used for this
context.
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Donoho, Elad

Theorem (Donoho, Elad)

With noise level ε, a dictionary D of size NxL, and mutual coherence
µ(D), then if the true solution α0 is sparse enough, satisfying

||α0||0 <
1 + µ(D)

2µ(D) +
√

N(ε + δ)/T

then the solution α̂ of

min
α
||α||1 subject to |S −Dα| ≤ δ

with δ ≥ ε exhibits stability

||α̂− α0||1 < T.

The dictionary can be overcomplete.
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Donoho, Elad, Temlyakov

Theorem (Donoho, Elad, Temlyakov)

With noise level ε, a dictionary D of size NxL, and mutual coherence
µ(D), then if the true solution α0 exists with

M = ||α0||0 <
( 1

µ(D) + 1)

4

then the solution α̂ of

min
α
||α||1 subject to |S −Dα| ≤ δ

with δ ≥ ε exhibits stability

||α̂− α0||22 ≤
(ε + δ)2

1− µ(D)(4M − 1)
.

Other conditions from Tropp
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Iterative Soft Thresholding - Daubechies, Defrise, De Mol

Paper in infinite dimensional setting

One parameter choice is to minimize l1 penalty functional

Φα(f) = ||Kf − g||22 + α||f ||1

Minimize this by minimizing a surrogate functional

ΦSUR
α (f ; a) = ||Kf − g||2 + α||f ||1 − ||Kf −Ka||2 + ||f − a||2

Iterate to with fn = arg min(ΦSUR
α (f ; fn−1))

This minimizer satisfies f = Sα (a + [K∗(g −Ka)]) where

Sα(x) =


x− ω

2 if x ≥ ω
2

0 if |x| < ω
2

x + ω
2 ifx ≤ −ω

2

Iterate using fn−1 for a.
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Iterative Soft Thresholding

When these fn’s converge to the surrogate minimizer, it also
matches the minimizer of Φ!

if ||K|| < 1 and injective then these iterations converge strongly to
the minimizer of Φ, regardless of the initial choice.
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Iterative Hard Thresholding - Bredies, Lorenz

Similar to soft thresholding but with a function

H(x) =

{
0 for |x| ≤ 1
||f ||2
2α for |x| > 1

Another function used in the algorithm:

ϕ(x) =

{
|x| for |x| ≤ ||f ||2

2α
α

||f ||2 (x2 + ( ||f ||
2

2α )2 for |x| > ||f ||2
2α
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Iterative Hard Thresholding - Bredies, Lorenz

Initialize u0 = 0

Direction Determination:

vn = H

(
− (K∗ (Kun − f))

α

)
.

Step Size:

sn = min{1,
α(ϕ(un)− ϕ(vn)) + (K∗(Kun − f))(un − vn)

||K(vn − un)||2
}

where the expression makes sense and sn = 1 otherwise.

Iterate: un+1 = un + sn(vn − un)

Converges like n−
1
2 for the l1 case
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Semismooth Newton Method - Griesse, Lorenz

Solve l1 penalty minimization by finding the solution to

u− Sα(u− γK∗(Ku− f)) = 0

where
Sα(uk) = max{0, |uk| − α}sgn(uk)

for some γ > 0.

Active Set Algorithm
1 Initialize Active Sets, set sign vector
2 Set un

In
= 0 and calculate un

An
by solving

K∗KAn,Anun
An

= (K∗f + (sgn)nα)An

3 Update Active Set

An+1 = {k ∈ N|un − γK∗(Kun − f)|k > γα}

4 Update sign vector
5 End if active set does not change, iterate if it does
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Semismooth Newton Method

Converges locally superlinear

If it converges, then it converges to the global solution
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Feature Sign Search - Lee, Battle, Raina, Ng

Paper written in finite dimensional setting

Active Set algorithm

1 Initialize Active Set, sign vector
2 Find i = arg maxi | ∂||y−Ax||2

∂xi
|

3 Activate x1 if it improves the objective ie if

|∂||y − Ax||2

∂xi
| > α

then add i to the active set and adjust the sign vector accordingly
4 Feature Sign Step

Compute the solution to the unconstrainted QP over just the active
set, A

xnew = (AT A)−1(AT y − αsgn(x)

2
)

Using a line search from x to xnew choose the x that minimizes the
objective. Update the active set and the sign vector
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Feature Sign Search

Check optimality

For nonzero coefficients: ∂||y−Ax||2
∂xi

+ αsgn(xi) = 0
If not go back to Step 4 (no new activation)

For zero coefficients: |∂||y−Ax||2
∂xi

| ≤ α If not go back to Step 3

Finds the Global Minimizer

Considers overcomplete dictionaries
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Elastic Net

Extend the l1 penalty to include an l2 regularization also

Φα(f) = ||Kf − g||22 + α||f ||1 +
β

2
||f ||22

Same algorithms, different functional

Helps ill-conditioning in Active Set algorithms

Has unique minimizer even for noninjective K
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Basis Learning - Lee, Battle, Raina, Ng

Optimize basis vectors for sparse reconstruction by fixing the
observed and the input.

Use a sparse coding algorithm to represent training signals in basis
then optimize using Lagrange Dual:

trace(XT X −XST (SST + Λ)−1(XST )T − cΛ)

Newton search to maximize this dual

Optimal basis is of the form

BT = (SST + Λ)−1(XST )T

Iterate this, shrinking B based on zero columns.
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Test Signal 1

Figure: Test Signal 1 sampled at 1024 points from 0 to .1
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Test Signal 2

Figure: Test Signal 2 sampled at 1024 points from 0 to .1
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How to choose alpha?

Figure: Alpha values versus the residual of the reconstruction and the noiseless
signal. The minimizer is chosen.
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Level 4 depth

Previously enumerated all waveforms of a wavelet packet -
prohibitavely big, now can use function handle
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Wavelet Dictionary Results

The optimal alpha value is selected at .1467

The number of nonzeros is 113.

Figure: The reconstruction compared to the noiseless signal
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Wavelet Dictionary Results

Figure: The coefficient vector
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Wavelet Dictionary Results

Algorithm Runtime (s)

Soft Thresholding 0.022067
Hard Thresholding max Iter

SSN ∞
FSS 0.690612

Elastic Net SSN 0.370986
Elastic Net FSS 0.729112

GPSR 0.099766
Interior Point 15.021680

Table: Algorithm running times on Wavelet Operator, Test Signal 1
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Wavelet Dictionary Results Signal 2

The optimal alpha value is selected at .0747

The number of nonzeros is 291

Figure: The reconstruction compared to the noiseless signal



Background Theory Algorithms Dictionary/Operators Application Conclusions

Wavelet Dictionary Results Signal 2

Figure: The coefficient vector
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Wavelet Dictionary Results Signal 2

Algorithm Runtime (s)

Soft Thresholding 0.021567
Hard Thresholding max Iter

SSN ∞
FSS 2.305259

Elastic Net SSN 0.392921
Elastic Net FSS 2.449922

GPSR 0.162870
Interior Point 14.193927

Table: Algorithm running times on Wavelet Operator, Test Signal 2



Background Theory Algorithms Dictionary/Operators Application Conclusions

Learned Dictionary

Trained from 1600 signals of single damped sinusoids

Frequencies, damping factors over range associated with capacitor
switches

Starting points range over 0 to .1

Sized pared down to 354 from learning, much easier to deal with
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Frequencies, damping factors over range associated with capacitor
switches

Starting points range over 0 to .1

Sized pared down to 354 from learning, much easier to deal with
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Learned Dictionary Results

The optimal alpha is .0495.

The number of nonzeros is 13.

Figure: The reconstruction compared to the noiseless signal
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Learned Dictionary Results

Figure: The coefficient vector
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Learned Dictionary Results

Algorithm Runtime (s)

Soft Thresholding 0.633864
Hard Thresholding max iter

SSN ∞
FSS 0.078537

Elastic Net SSN 0.089418
Elastic Net FSS 0.078365

GPSR 0.099766
Interior Point 7.790935

Table: Algorithm running times on Learned Basis Dictionary, Test Signal 1
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Learned Dictionary Results Signal 2

The optimal alpha is alpha=5.6000e-06

The number of nonzeros is 249.

Figure: The reconstruction compared to the noiseless signal
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Learned Dictionary Results Signal 2

Figure: The coefficient vector
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Learned Dictionary Results Signal 2

Algorithm Runtime (s)

Soft Thresholding max Iter
Hard Thresholding max Iter

SSN ∞
FSS 7.975966

Elastic Net SSN 0.348048
Elastic Net FSS 5.441613

GPSR max Iter
Interior Point 73.504971

Table: Algorithm running times on Learned B, Test Signal 2

This time the elastic net beta parameter had an effect resulting a
solution of 322 nonzeros, but improved running time. beta taken as 1e-6.



Background Theory Algorithms Dictionary/Operators Application Conclusions

Conclusions - Questions - Thoughts

Sparsity Constraint research is approached from many angles. It is
hard to say any setting is better than any other setting, or any
algorithm is the best. The answer is always, it depends.

Overcomplete basis are particularly left out of a lot of the theoretical
framework by the injective operator assumptions. Have to rely on
empirical evidence.

How to find the best alpha value? How to find the best alpha and
beta in Elastic Net?

Elastic Net helps SSN converge on a solution - particularly in the
messy last case

The learned dictionary is very sparse when close to the training
signals, not so much otherwise
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Conclusions - Questions - Thoughts

The wavelet dictionary is more adaptable to different signals, but
does not have as high of an underlying sparsity

When there are a small number of nonzero elements FSS is
appropriate.

GPSR and Soft Thresholding preform very well with the wavelet
operator.

Most algorithms are faster than the one I was using at Clemson.

How would OMP preform in this case?

How to classify detected transients?
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Solver Developers

Iterative Thresholding Methods - Dirk Lorenz

FSS - Stefan Schiffler

SNN - Stefan Schiffler

Basis Learning - Klaus Steinhorst

GPSR - Mario Figueiredo, Robert Nowak, Stephen Wright

Interior Point Method - SparseLab

Wavelet Operator - Sparco
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Thanks

Thanks to those who wrote the code I plundered, to Stefan for helping,
and to the audience for listening.
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