What your parents did not tell you about $\alpha\text{-modulation spaces}$

Mariusz Piotrowski

Null/

http://homepage.univie.ac.at/mariusz.piotrowski

Seminar talk, Bremen, February 19, 2009

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

Outline

2 α -modulation space

(1日) (日) (日)

2 α -modulation space

3 Known results

(4) Pseudodifferential Operators on lpha-modulation spaces

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Admissible coverings, examples

admissible coverings

A countable set $\mathcal I$ of subsets $\mathit{I} \subset \mathbb R$ is called an *admissible covering* if

(i)
$$\mathbb{R} = \bigcup_{I \in \mathcal{I}} I$$
,
(ii) $\# \{I \in \mathcal{I} : x \in I\} \le 2$ for all $x \in \mathbb{R}$

Uniform and dyadic coverings $\alpha = 0$ 0 $\alpha = 1$ 0

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

Admissible coverings, examples

admissible coverings

A countable set $\mathcal I$ of subsets $\mathit{I} \subset \mathbb R$ is called an *admissible covering* if

(i)
$$\mathbb{R} = \bigcup_{I \in \mathcal{I}} I$$
,
(ii) $\# \{I \in \mathcal{I} : x \in I\} \le 2$ for all $x \in \mathbb{R}$

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

Definitions

Bounded admissible partition of unity

Given an admissible covering *I* of ℝ, a corresponding BAPU (φ_I)_{I∈I} is a family of functions satisfying
(i) supp(φ_I) ⊂ I,
(ii) Σ_{I∈I} φ_I(x) = 1 for all x ∈ ℝ,
(iii) sup_{I∈I} ||F⁻¹φ_I|L₁(ℝ)|| is finite.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Examples: Modulation and Besov spaces

Let φ be a compactly supported C^{∞} function on \mathbb{R} .

Uniform covering – Modulation spaces $M_{pq}(\mathbb{R}), 1 \le p, q \le \infty$ $\varphi_i(t) = \varphi(t-j)$

$$\left\|f \mid M_{pq}(\mathbb{R})\right\| = \left(\sum_{j \in \mathbb{Z}} \left\|(\varphi_j \widehat{f})^{\vee} \mid L_p(\mathbb{R})\right\|^q\right)^{1/q}$$

Dyadic covering – Besov spaces $B^s_{pq}(\mathbb{R}), 1 \leq p, q \leq \infty, s > 0$

 $arphi_0(t)=arphi,\,arphi_1(t)=arphi(t/2)-arphi(t)$ and $arphi_j(t)=arphi_1(2^{-j+1}t),j\in\mathbb{N},$

$$\left\|f \left\|B_{pq}^{s}(\mathbb{R})\right\| = \left(\sum_{j=0}^{\infty} 2^{jsq} \left\|(\varphi_{j}\widehat{f})^{\vee}|L_{p}(\mathbb{R})\right\|^{q}\right)^{1/q}$$

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

Examples: Modulation and Besov spaces

Let φ be a compactly supported C^{∞} function on \mathbb{R} .

Uniform covering – Modulation spaces $M_{pq}(\mathbb{R}), 1 \le p, q \le \infty$ $\varphi_i(t) = \varphi(t-j)$

$$\left\|f \mid M_{pq}(\mathbb{R})\right\| = \left(\sum_{j \in \mathbb{Z}} \left\|(\varphi_j \widehat{f})^{\vee} \mid L_p(\mathbb{R})\right\|^q\right)^{1/q}$$

Dyadic covering – Besov spaces $B^s_{pq}(\mathbb{R}), 1 \leq p, q \leq \infty, s > 0$

 $arphi_0(t)=arphi, \, arphi_1(t)=arphi(t/2)-arphi(t) \, ext{and} \, \, arphi_j(t)=arphi_1(2^{-j+1}t), j\in \mathbb{N},$

$$\left\|f \mid B^{s}_{pq}(\mathbb{R})\right\| = \left(\sum_{j=0}^{\infty} 2^{jsq} \left\|(\varphi_{j}\widehat{f})^{\vee}|L_{p}(\mathbb{R})\right\|^{q}\right)^{1/q}$$

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

 $\begin{array}{c} \mbox{Introduction and motivation}\\ \alpha\mbox{-modulation space}\\ \mbox{Known results}\\ \mbox{Pseudodifferential Operators on α-modulation spaces} \end{array}$

Intermediate question

Question by H. Triebel:

Probably the congruent covering is a limiting case for that purpose and of peculiar interest may be coverings which are between the congruent and the dyadic covering...

P. Gröbners answer:

uniform: $|B_{r_k}(x_k)|^{1/n} \sim |x_k|^{\mathbb{C}}$ dyadic: $|B_{r_k}(x_k)|^{1/n} \sim |x_k|^{1}$

Intermediate covering:

$$|B_{r_k}(x_k)|^{1/n} \sim |x_k|^{\alpha}, \quad 0 \le \alpha \le 1.$$

=

 $\begin{array}{c} \mbox{Introduction and motivation}\\ \alpha\mbox{-modulation space}\\ \mbox{Known results}\\ \mbox{Pseudodifferential Operators on α-modulation spaces} \end{array}$

Intermediate question

Question by H. Triebel:

Probably the congruent covering is a limiting case for that purpose and of peculiar interest may be coverings which are between the congruent and the dyadic covering...

P. Gröbners answer:

uniform:
$$|B_{r_k}(x_k)|^{1/n} \sim |x_k|^{\complement}$$

dyadic: $|B_{r_k}(x_k)|^{1/n} \sim |x_k|^1$

Intermediate covering:

$$|B_{r_k}(x_k)|^{1/n} \sim |x_k|^{lpha}, \quad 0 \leq lpha \leq 1.$$

(I) (I) (I) (I) (I)

 $\begin{array}{l} \mbox{Introduction and motivation}\\ \alpha\mbox{-modulation space}\\ \mbox{Known results} \end{array}$ Pseudodifferential Operators on $\alpha\mbox{-modulation spaces}$

α -coverings

Definition

An admissible covering is called an α -covering, $0 \le \alpha \le 1$, of \mathbb{R} (denoted by \mathcal{I}_{α}) if $|I| \sim (1 + |x|)^{\alpha}$ for all $I \in \mathcal{I}_{\alpha}$.

• position map: $p_{\alpha} : \mathbb{Z} \to \mathbb{R}$,

• size map:
$$s_{\alpha} : \mathbb{Z} \to \mathbb{R}_+$$
,

$$\mathbb{Z} \to \mathcal{I}_{\alpha} : j \mapsto I_j := p_{\alpha}(j) + [0, s_{\alpha}(j)].$$

Example (H. Feichtinger, M. Fornasier):

Let b > 0 and $\alpha \in [0, 1)$.

•
$$p_{\alpha}(j) = \operatorname{sgn}(j) \Big((1 + (1 - \alpha) \cdot b \cdot |j|)^{1/1 - \alpha} - 1 \Big),$$

•
$$s_{\alpha}(j) = b \Big(1 + (1 - \alpha) \cdot b \cdot (|j| + 1) \Big)^{\alpha/1 - c}$$

 $\begin{array}{l} \mbox{Introduction and motivation}\\ \alpha-\mbox{modulation space}\\ \mbox{Known results}\\ \mbox{Pseudodifferential Operators on α-modulation spaces} \end{array}$

α -coverings

Definition

An admissible covering is called an α -covering, $0 \le \alpha \le 1$, of \mathbb{R} (denoted by \mathcal{I}_{α}) if $|I| \sim (1 + |x|)^{\alpha}$ for all $I \in \mathcal{I}_{\alpha}$.

• position map: $p_{\alpha} : \mathbb{Z} \to \mathbb{R}$,

• size map:
$$s_{\alpha} : \mathbb{Z} \to \mathbb{R}_+$$
,

$$\mathbb{Z} \to \mathcal{I}_{\alpha} : j \mapsto I_j := p_{\alpha}(j) + [0, s_{\alpha}(j)].$$

Example (H. Feichtinger, M. Fornasier):

Let b > 0 and $\alpha \in [0, 1)$.

•
$$p_{\alpha}(j) = \operatorname{sgn}(j) \Big((1 + (1 - \alpha) \cdot b \cdot |j|)^{1/1 - \alpha} - 1 \Big),$$

•
$$s_{\alpha}(j) = b \Big(1 + (1 - \alpha) \cdot b \cdot (|j| + 1) \Big)^{\alpha/1 - \alpha}$$

Introduction and motivation

 $\begin{array}{l} \alpha \text{-modulation space} \\ \text{Known results} \\ \text{Pseudodifferential Operators on } \alpha \text{-modulation spaces} \end{array}$

1/4-covering

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

Introduction and motivation

 $\begin{array}{l} \alpha \text{-modulation space} \\ \text{Known results} \\ \text{Pseudodifferential Operators on } \alpha \text{-modulation spaces} \end{array}$

1/2-covering

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

Introduction and motivation

 $\begin{array}{l} \alpha \text{-modulation space} \\ \text{Known results} \\ \text{Pseudodifferential Operators on } \alpha \text{-modulation spaces} \end{array}$

3/4-covering

Mariusz Piotrowski

What your parents did not tell you about α -modulation spaces

(4) Pseudodifferential Operators on lpha-modulation spaces

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

α -modulation space

Definition

Given $1 \leq p, q \leq \infty$, $s \in \mathbb{R}$, and $0 \leq \alpha \leq 1$, let \mathcal{I}_{α} be an α -covering of \mathbb{R} and let $(\varphi_I)_{I \in \mathcal{I}_{\alpha}}$ be a corresponding BAPU. Then the α -modulation space $M_{pq}^{s,\alpha}(\mathbb{R})$ is defined to be the set of all $f \in \mathcal{S}'(\mathbb{R})$ such that

$$\left\|f|M_{pq}^{s,\alpha}(\mathbb{R})\right\| = \left(\sum_{I\in\mathcal{I}_{\alpha}}\left\|(\varphi_{I}\widehat{f})^{\vee}|L_{p}(\mathbb{R})\right\|^{q}(1+|\omega_{I}|)^{qs}\right)^{1/q}$$

is finite. Here $\omega_I \in I$ for all $I \in \mathcal{I}_{\alpha}$.

Modulation and Besov spaces

Special cases $\alpha = 0$ and $\alpha = 1$

- (i) For α = 0 the space M^{s,0}_{pq}(ℝ) coincides with the modulation space M^s_{pq}(ℝ). Gabor theory !!!
- (ii) For $\alpha \to 1$ the space $M_{pq}^{s,1}(\mathbb{R})$ coincides with the Besov space $B_{pq}^{s}(\mathbb{R})$. Wavelet theory !!!

 $\begin{array}{c} \mbox{Introduction and motivation}\\ \alpha-\mbox{modulation space}\\ \mbox{Known results}\\ \mbox{Pseudodifferential Operators on α-modulation spaces} \end{array}$

α -modulation space

Embeddings between α -modulation spaces

Theorem (P. Gröbner):

Let $1 \leq p,q \leq \infty$, $s \in \mathbb{R}$ and $0 \leq \alpha_1 < \alpha_2 \leq 1$. Then we have

$$M^{s',\alpha_2}_{pq}(\mathbb{R}^n)\subset M^{s,\alpha_1}_{pq}(\mathbb{R}^n), \quad s'=s+rac{lpha_2-lpha_1}{q}$$

$$M^{s,\alpha_1}_{pq}(\mathbb{R}^n)\subset M^{s',\alpha_2}_{pq}(\mathbb{R}^n), \quad s'=s-(1-1/q)(lpha_2-lpha_1).$$

In particular, for $\alpha_2 = 1$ and $\alpha_1 = 0$ we get

$$B^{s+1/q}_{pq}(\mathbb{R}^n) \subset M^s_{pq}(\mathbb{R}^n).$$

2 α -modulation space

3 Known results

4 Pseudodifferential Operators on lpha-modulation spaces

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Coorbit spaces

Feichtinger-Gröchenig theory

- S: the reservoir, a space of functions or distributions
- **V**: the voice transform, a linear transform which assigns to each $f \in \mathbf{S}$ a function **V** f on some locally compact space X.

Y: some Banach function space on X.

Then the *coorbit space* is defined to be

$$\operatorname{Co} \mathbf{Y} = \{ f \in \mathbf{S} : \mathbf{V} \ f \in \mathbf{Y} \}$$

equipped with the norm

$$\|f|\mathrm{Co}\mathbf{Y}\| = \|\mathbf{V} f\|\mathbf{Y}\|$$

(D) (A) (A) (A) (A)

Coorbit spaces

Feichtinger-Gröchenig theory

- S: the reservoir, a space of functions or distributions
- **V**: the voice transform, a linear transform which assigns to each $f \in \mathbf{S}$ a function **V** f on some locally compact space X.

Y: some Banach function space on X.

Then the coorbit space is defined to be

$$Co\mathbf{Y} = \{ f \in \mathbf{S} : \mathbf{V} \ f \in \mathbf{Y} \}$$

equipped with the norm

$$\|f|\mathrm{Co}\mathbf{Y}\| = \|\mathbf{V} f\|\mathbf{Y}\|$$

(D) (A) (A) (A) (A)

Introduction and motivation α -modulation space Known results

Pseudodifferential Operators on α -modulation spaces

Wavelet and Time–Frequency analysis

Translation: $T_x f(t) = f(t - x)$, Modulation: $M_\omega f(t) = e^{2\pi i t \cdot \omega} f(t)$, Dilation: $D_a f(t) = |a|^{-1/2} f(t/a)$.

Short Time Fourier Transform

For $f,g\in L_2(\mathbb{R})$, $(x,\omega)\in\mathbb{R} imes\mathbb{R}$,

$$V_g^0f(x,\omega)=\langle f,M_{\omega}T_xg\rangle.$$

Continuous Wavelet Transform

For $f \in L_2(\mathbb{R})$ and wavelet *g*-radial bandlimited Schwartz function on \mathbb{R} , $(x, a) \in \mathbb{R} \times (0, \infty)$

Mariusz Piotrowski

What your parents did not tell you about α -modulation spaces

Introduction and motivation α -modulation space Known results

Pseudodifferential Operators on α -modulation spaces

Wavelet and Time–Frequency analysis

Translation:
$$T_x f(t) = f(t - x)$$
,
Modulation: $M_\omega f(t) = e^{2\pi i t \cdot \omega} f(t)$,
Dilation: $D_a f(t) = |a|^{-1/2} f(t/a)$.

Short Time Fourier Transform

For $f,g\in L_2(\mathbb{R})$, $(x,\omega)\in\mathbb{R} imes\mathbb{R}$,

$$V_g^0f(x,\omega)=\langle f,M_{\omega}T_xg\rangle.$$

Continuous Wavelet Transform

For $f \in L_2(\mathbb{R})$ and wavelet g- radial bandlimited Schwartz function on \mathbb{R} , $(x, a) \in \mathbb{R} \times (0, \infty)$

$$V_g^1f(x,a)=\langle f,T_xD_ag\rangle.$$

Mariusz Piotrowski

What your parents did not tell you about α -modulation spaces

Modulation spaces and the Heisenberg group

The mixed norm space $L_m^{p,q}$, $1 \le p,q \le \infty$ with moderate weights

$$\|F\|L^{p,q}_m\| = \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(x,\omega)|^p m(x,\omega)^p \, \mathrm{d}x\right)^{q/p} \mathrm{d}\omega\right)^{1/q}$$

Characterization of modulation spaces

$$M_m^{p,q} := \{ f \in \mathcal{S}'(\mathbb{R}) : V_g^0 f \in L_m^{p,q} \}, \quad \| f \| M_m^{p,q} \| = \| V_g^0 f \| L_m^{p,q} \|$$
$$M_m^{pq} = \operatorname{Co} L_m^{p,q}.$$

Modulation spaces and the Heisenberg group

The mixed norm space $L_m^{p,q}$, $1 \le p,q \le \infty$ with moderate weights

$$\|F\|L^{p,q}_m\| = \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(x,\omega)|^p m(x,\omega)^p \, \mathrm{d}x\right)^{q/p} \mathrm{d}\omega\right)^{1/q}$$

Characterization of modulation spaces

$$\begin{split} M^{p,q}_m &:= \{ f \in \mathcal{S}'(\mathbb{R}) : \, V^0_g f \in L^{p,q}_m \}, \quad \| f \ | M^{p,q}_m \| = \| V^0_g f | \ L^{p,q}_m \| \\ M^{pq}_m &= \mathrm{Co} L^{p,q}_m. \end{split}$$

Besov spaces and the affine group

The mixed norm space $L_s^{p,q}$ on the ax + b group

$$\|F|L^{p,q}_s\| = \left(\int_0^\infty \left(\int_{\mathbb{R}} |F(x,a)|^p a^{-sp} \mathrm{d}x\right)^{q/p} \frac{\mathrm{d}a}{a^2}\right)^{1/q}$$

Characterization of homogeneous Besov spaces

$$\dot{B}_{pq}^{s} = \{ f \in \mathcal{S}_{0}' : \quad V_{g}^{1} f \in L_{s+1/2-1/q}^{p,q} \}, \quad 1 \le p,q \le \infty, s \in \mathbb{R}.$$

$$\dot{B}_{pq}^{s} = \operatorname{Co} L_{s+1/2-1/q}^{p,q}.$$

Besov spaces and the affine group

The mixed norm space $L_s^{p,q}$ on the ax + b group

$$\|F|L_s^{p,q}\| = \left(\int_0^\infty \left(\int_{\mathbb{R}} |F(x,a)|^p a^{-sp} \mathrm{d}x\right)^{q/p} \frac{\mathrm{d}a}{a^2}\right)^{1/q}$$

Characterization of homogeneous Besov spaces

$$\dot{B}^{s}_{pq} = \{ f \in \mathcal{S}_{0}' : V^{1}_{g} f \in L^{p,q}_{s+1/2-1/q} \}, \quad 1 \leq p,q \leq \infty, s \in \mathbb{R}.$$

 $\dot{B}^{s}_{pq} = \operatorname{Co} L^{p,q}_{s+1/2-1/q}.$

The affine-Heisenberg group

Bad news by B. Torresani

$$G_{\mathrm{aWH}} = \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{T}$$

No representation of the affine-Heisenberg group is ever square integrable.

Remedy of S. Dahlke et al.

Factor out a suitable closed subgroup and work with the quotient group!!! **Generalized coorbit theory**

The affine-Heisenberg group

Bad news by B. Torresani

$$G_{\mathrm{aWH}} = \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{+} \times \mathbb{T}$$

No representation of the affine-Heisenberg group is ever square integrable.

Remedy of S. Dahlke et al.

Factor out a suitable closed subgroup and work with the quotient group!!! Generalized coorbit theory

Intermediate theory

Wave packets: superposition of modulation translation and dilation Let $\eta_{\alpha}(\omega) = (1 + |\omega|)^{\alpha}$ for $\alpha \in [0, 1]$.

$$egin{aligned} g^lpha_{ imes,\omega}(t) &= T_{ imes} M_\omega D_{\eta_lpha(\omega)^{-1}} g(t) \ &= (1+|\omega|)^{lpha d/2} e^{2\pi i \omega (t-x)} \ g((1+|\omega|)^lpha)(t-x)). \end{aligned}$$

Flexible Gabor-wavelet transform, α -transform

$$V_g^{\alpha}f(x,\omega) = \langle f, T_x M_{\omega} D_{\eta_{\alpha}(\omega)^{-1}}g \rangle.$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Intermediate theory

Wave packets: superposition of modulation translation and dilation Let $\eta_{\alpha}(\omega) = (1 + |\omega|)^{\alpha}$ for $\alpha \in [0, 1]$.

$$egin{aligned} g^lpha_{x,\omega}(t) &= T_x M_\omega D_{\eta_lpha(\omega)^{-1}} g(t) \ &= (1+|\omega|)^{lpha d/2} e^{2\pi i \omega (t-x)} \ g((1+|\omega|)^lpha)(t-x)). \end{aligned}$$

Flexible Gabor-wavelet transform, α -transform

$$V_g^{\alpha}f(x,\omega) = \langle f, T_x M_{\omega} D_{\eta_{\alpha}(\omega)^{-1}}g \rangle.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Introduction and motivation α -modulation space Known results

Pseudodifferential Operators on α -modulation spaces

Characterization of L_2 - Sobolev spaces

Theorem (B. Nazaret, M. Holschneider)

Let $g \in \mathcal{S}(\mathbb{R})$. Assume that there is A > 0 such that

$$A^{-1} \leq \int_{\mathbb{R}} |\widehat{g}((1+|t|)^{-\alpha}(\omega-t))|^2 (1+|t|)^{-\alpha} \mathrm{d}t \leq A \text{ for a.e } \omega \in \mathbb{R}.$$

Then

$$f \in H^{s}(\mathbb{R})$$
 if, and only if, $V_{g}^{\alpha}f \in L^{2}_{(1+|\omega|^{2})^{s/2}}(\mathbb{R}^{2}).$

Discrete versus continuous α modulation spaces

Theorem (H. Feichtinger, M. Fornasier)

Assume $s \in \mathbb{R}$ and $1 \leq p,q \leq \infty$. Let $m_s(x,\omega) = (1+|\omega|)^s$

$$\mathbb{M}_{p,q}^{s,\alpha}(\mathbb{R}) := \{ f \in \mathcal{S}'(\mathbb{R}) : V_g^{\alpha} f \in L_{m_s}^{p,q}(\mathbb{R}^2) \} \quad \| f \| \mathbb{M}_{p,q}^{s,\alpha} \| = \| V_g^{\alpha} f \| L_{m_s}^{p,q} \|.$$

For a band-limited $g \in \mathcal{S}(\mathbb{R}) \setminus \{0\}$

$$M^{s+lpha(1/q-1/2),lpha}_{p,q}(\mathbb{R})=\mathbb{M}^{s,lpha}_{p,q}(\mathbb{R}).$$

Furthermore,

$$\left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}} |V_g^{\alpha} f(x,\omega)|^p \, \mathrm{d}x\right)^{q/p} (1+|\omega|)^{sq} \mathrm{d}\omega\right)^{1/q}$$

is an equivalent norm on $M^{s+\alpha(1/q-1/2),\alpha}_{p,q}(\mathbb{R}).$

Banach frames and atomic decompositions

Gabor frames and Modulation spaces

$$\mathcal{G}_0 = \mathcal{G}_0(g, a, b) = \{T_{ak}M_{bj}g\}_{k,j\in\mathbb{Z}}.$$

Wavelet frames and Besov spaces

$$\mathcal{G}_1 = \mathcal{G}_1(\varphi, \psi) = \{T_k \varphi\}_{k \in \mathbb{Z}} \cup \{D_{2^{-j}} T_k \psi\}_{k, j \in \mathbb{Z}}.$$

Flexible Gabor-wavelet frames and α -modulation spaces

$$\mathcal{G}_{\alpha} = \mathcal{G}_{\alpha}(g, p_{\alpha}, s_{\alpha}, a) = \{M_{p_{\alpha}(j)}D_{s_{\alpha}^{-1}(j)}T_{ak}g\}_{k,j\in\mathbb{Z}}.$$

Banach frames and atomic decompositions

Gabor frames and Modulation spaces

$$\mathcal{G}_0 = \mathcal{G}_0(g, a, b) = \{T_{ak}M_{bj}g\}_{k,j\in\mathbb{Z}}.$$

Wavelet frames and Besov spaces

$$\mathcal{G}_1 = \mathcal{G}_1(\varphi, \psi) = \{T_k \varphi\}_{k \in \mathbb{Z}} \cup \{D_{2^{-j}} T_k \psi\}_{k, j \in \mathbb{Z}}.$$

Flexible Gabor-wavelet frames and α -modulation spaces

$$\mathcal{G}_{\alpha} = \mathcal{G}_{\alpha}(g, p_{\alpha}, s_{\alpha}, a) = \{M_{p_{\alpha}(j)}D_{s_{\alpha}^{-1}(j)}T_{ak}g\}_{k,j\in\mathbb{Z}}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

2 α -modulation space

4 Pseudodifferential Operators on α -modulation spaces

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Kohn-Nirenberg correspondence, Hörmander class

Definition

Then the operator

$$\mathcal{K}_{\sigma}f(x)=\int_{\mathbb{R}^d}\sigma(x,\omega)\widehat{f}(\omega)e^{2\pi ix\cdot\omega}\mathrm{d}\omega$$

is called the *pseudodifferential operator* with symbol σ .

Hörmander classes

$$\mathcal{S}_{
ho,\delta}^{m{N}} = \{\sigma \in \mathcal{C}^{\infty}(\mathbb{R}^{2n}) : |D_x^{lpha} D_{\omega}^{eta} \sigma(x,\omega)| \leq \mathcal{C}_{lpha,eta}(1+|\omega|)^{m{N}+\delta|lpha|-
ho|eta|}\}$$

Boundedness of PSOs on α -modulation spaces

Theorem (L. Borup, M. Nielsen)

Suppose $N \in \mathbb{R}$, $\alpha \in [0, 1]$, $\sigma \in S_{\rho,0}^N$, $\alpha \le \rho \le 1$, $s \in \mathbb{R}$ and $1 < \rho < \infty$. Then

$$\mathcal{K}_{\sigma}: M^{s,lpha}_{
ho q}(\mathbb{R}^n)
ightarrow M^{s-N, lpha}_{
ho q}(\mathbb{R}^n).$$

THANK YOU FOR YOUR ATTENTION

Mariusz Piotrowski What your parents did not tell you about α -modulation spaces

・ロン ・回 と ・ ヨ と ・ ヨ と