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Abstract. We present an adaptive numerical scheme for computing the nonlinear partial
differential equations arising in 3D image multiscale analysis. The scheme is based on a
semi-implicit scale discretization and on an adaptive finite element method in 3D-space.
Successive coarsening of the computational grid is used for increasing the efficiency of the
numerical procedure. Lgo-stability of the suggested numerical method is presented and
computational results related to 3D nonlinear image filtering are discussed.
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1 Introduction

Nonlinear image multiscale analysis is an important task of computer vision. It is related
to selective nonlinear filtering, edge detection, enhancement, segmentation and further
operations of image processing. With a new development of medical applications, an
efficient and robust treating of 3D problems is highly desirable.

The "scaling of the image” is represented by a solution of a nonlinear PDE for which
the processed image gives an initial condition. In the last decade such models have been
suggested and studied, and in general they are based on degenerate diffusion equations, see
for instance [14], [7], [12], [13], [2], [8], [15]. The multiscale approach has been axiomatized,
i.e. derived from “first principles”, in [1]. There, it was proved in a rigorous way that
the majority of image processing operations can be viewed as solutions of second order
degenerate parabolic partial differential equation. In some sense, it summarizes the linear
scale space theories, started in the eighties by Witkin and Koenderink and a few decades
before by Iijima, as well as the ideas of the so-called ”morphological school”, see [10], [18],
[17], [16].

In this paper, we consider the following problem, which is an interesting combination of
linear and nonlinear scale space ideas. Let u be the solution of

(1.1) Ob(u) —V(g(|VGy xu|)Vu) = f(w®—u) imQr=1IxQ,
(1.2) Ou = 0 onl xO0Q,
(1.3) u(0,:) = u® inQ,
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where Q C IR, d = 3 in our case, is a bounded domain with Lipschitz continuous bound-
ary, I = [0,T] is a scale interval, and

(1.4) g is a Lipschitz continuous function, g(0) = 1,0 < g(s) — 0 for s — oo,
1.5 Gy € C®(IR%) is a smoothing kernel, Gy(z)dx =1,
d
R

(1.6)  Gy(z) = 8, for o — 0, / VG, [?dz < C,.

Rd
VG, *u:= / Vi:Go(z — &)u(€)dE, where @ is an extension of u such that
Rd
7)) Mlallp2mey < Cllullz2@)-
(1.8) b is a strictly increasing continuous function for which
(1.9)  b(0) =0, T >¥(s) >v>0,
(1.10)  f is a Lipschitz continuous, nondecreasing function with

Lipschitz constant L, f(0) =0,
(1.11)  w® € Loo(Q) NV, V = WH(Q).

In [6] we have explained the mechanism of selective smoothing process of the model (1.1)—
(1.3) in case b(s) = s. Such equation has been suggested by Catté, Lions, Morel and
Coll and it combines the ideas of linear Gaussian scaling and nonlinear Perona and Malik
anisotropic diffusion equation. We have also reported the role of adaptively coarsened 2D
finite element computational grids used in the discrete scale steps. In this paper we present
a 3D approach to the problem. We use the structure of tetrahedral meshes obtained by the
bisection algorithm ([3], [4], [5]), which can be backwardly coarsened in a straightforward
way. Using the coarsening criterion as in [6] we remove tetrahedra from the image regions
where the gradient of the image intensity function is small. A ”precoarsening” of the initial
image is a first tool. The algorithm of coarsening then continues due to the flattening of
the image intensity function in the regions outside the edges caused by the smoothing
mechanism of (1.1)—(1.3). Moreover, we slightly modify the Catté, Lions, Morel and Coll
nonlinear diffusion equation by adding a faster diffusion into those parts of the image
which are (a-priori) out of interest of providing image processing operation. Using a small
slope of b for such image intensities we speed up the diffusion and thus enhance the grid
coarsening. Such effect, together with the opposite, slowing down of the diffusion process
depending on the image intensity and/or position in the image, has been suggested and
studied in [8], [9]. There, a kind of Jager-Ka¢ur algorithm is used for the proof of existence
of the solution and gives also a numerical approximation. In this paper we consider the
nondegenerate case (1.8)—(1.9) in which we use a simpler numerical approximation scheme
where all nonlinearities are simply treated from the previous discrete scale step. Thus in
each discrete scale step we solve a linear elliptic equation by a finite element method with
decreasing number of elements due to the coarsening.

In Section 2 we prove that such a method is L.-stable in a semi-discrete setting and
the same assertion holds true also for the fully discrete scheme using a specific initial
triangulation. Since an image can be uniquely represented by a system of its level sets,
Loo-stability is an important criterion for image analysis, e.g., it says that no new level



sets are created in selective smoothing. In Section 3 we discuss in detail the 3D adaptive
finite element space discretization and coarsening strategy in 3D. In Section 4 we discuss
some computational results with artificial as well as real images.

1 Notation

Let  C IR? be a bounded domain. Denote by (u,v) := [ u(x)v(z)dz the inner product
for u,v € L2(Q). V := WhH2(Q) is the Sobolev space of L?—functions with square integrable
weak derivatives.

A triangulation T of Q is a set of (non-degenerate) tetrahedra with |J T = Q.
TeT
A triangulation 7 is called conforming if the intersection of two non—disjoint, non—identical

tetrahedra consists either of a common vertex or a common edge. T € T is said to have a
non—conforming node, if there is a vertex P of the triangulation which is not a vertex of
T but P € T. A sequence of triangulations 71, 75, ... has the property of shape regularity

if sup {hr/p(T)} < C. Here, hy := diam(T") and p(T) := max{r | B, C T} denotes
TeTy ke N
the radius of the largest ball inscribed T

2 Numerical approximation scheme

In order to solve (1.1)—(1.3) we use the following semi-implicit linear approximation
scheme:

Let n € IN,T = %,0 < 71 <1/2,t; = i1 and o > 0 be fixed numbers and u° be given by
(1.3). Fori=1,...n, let u' €V be the solution of

(2.1) (b'(ui_l)(ui — ui_l),v) +7(g9(|[VGqy * v ) Vul, V) = 7(f (u® — u*~1), v),

for all v € V. These scale-discrete (u')’s represent approximations of the image intensity
function at the discrete scale instants t;.

For the scale-discrete u'’s we state the following result.
Theorem 1. For every i = 1,...,n there exists a unique solution u® of (2.1). Moreover,

there exists a positive constant C such that

[l ]loo < Ot oo

The constant C' is a nondecreasing function of 1/, T and the Lipschitz constant L of f.
If f =0 then C = 1.

Proof. Our assertion is clearly true for u°. Let it hold for u*~'.

Due to (1.6), (1.7) and the Cauchy-Schwarz inequality we derive
VG, * ui_1| <D, < oo,
and so there exists a constant v, such that

(2.2) gt i=g(I[VGy xu ) > v, > 0.



Thus, for any fixed o, by the Lax—Milgram theorem and (1.9) we have existence and
uniqueness of u’ € V which is the solution of (2.1). Moreover u’ € Ly (), see [11]. Thus
the first part of the assertion is proved.

By the above conclusion we know that v = u‘|u’[P~! € V and we can use it as a test
function in (2.1) for any p € IN. Using (1.9) and (1.10) we obtain

/ b'(uiil)\uﬂp“dx +T/ gi*1p|ui|p*1|Vui|2dx <
Q Q

. . . : L . . :
/ W (u )|t ||l Pdz + L / 0| [Pde + 7 / W () ||t Pd.
Q Q Y Q

Let us denote Cy = % Then due to the positivity of the second term on the left hand side
we have

(2.3) / W (P de < (1+ Cir) / W (wi )i~ Pz + L7 / 0| Pd.
Q Q Q

Now we use Young’s inequality in the form

1
ab< ——aPtl 4 = _po
p+1 p+1

p p+1

in the last term of (2.3) with a = €[u®|, b = L|u’[P. This together with (1.9) gives us

) ) . . . p+1
/ W (@)W PHdz < (1+ Ci7) / W () [ Pdz + L= / 0[P+ dat
Q Q p+1Ja

+C1T—— / b (u -1 |u’|p+1dx

p
p+1.5-

_p
Let us take ¢ = (C1p+1) P*1  Subtracting the last term we get

(1=7 [ B Pde < (14 ) [ ¥l |pdx+L7' /|u0|p+1dw

1

Since for 7 < 3 we have 12~ < (1 + 27) we obtain

/ W (ut )| Pz < (14 Cir)(1 + 27) / W (w1t ||t Pda+
Q Q

+(1+27) LT

/ |u [P .

Let us use Young’s inequality with a = (1 + ClT)(l +27)|u’"Y, b = |[v|P in the first term
on the right hand side and get

(1+ Cy7)PHL(1 + 27)PH!
p+1

/bl(’u,i_l)|ui|p+1d.’l,‘§ /bl 1— 1 | 1— 1|p+1d.’l,‘+
Q

/b’ e + (L 2 /|u0|p+1d:1:

4



Multiplying the previous inequality by p 4+ 1, subtracting the second term on the right
hand side and using (1.9) we obtain the recurrent relation

. T .

/ WP de < (14 Crr)PHL(1 4 27)PH = / Wi P de + (1 4 27)CyrePt! / [P+ d.
Q Y JQ Q

Then by the induction we get

/ |ui|p+1d:z < (1 + ClT)i(p_H)(l + 27-)i(P+1) (E
Q

1
7) 1+(Q +2T)01T6p+1)/ |ul [P de.
Q

Taking the (p + 1)-th root in the previous inequality and sending p — oo (i is fixed and
finite) we derive .
[[6]|oo < ePTT(1 4 C)[u°]|o < C[t]oo,

since (1 +z)* < €**. Here, the constant C depends on T, 1/ and the Lipschitz constant
L of f. Provided f(s) = 0, a review of the arguments used above shows C' = 1 without
any restriction on the time step 7. 1

The image may be understood as a piecewise linear function interpolating the given dis-
crete values of the image intensity function. The centers of the image voxels then corre-
spond in a natural way to the nodes of a finite element grid. Such an approach is natural
for linear finite element discretization, see below.

As the smoothing kernel in (1.1) we use the Gauss function

(2.4) Gy (x) = W—'

with a given positive 0. In that case the term VG, * ! in (2.1) represents the gradient
of the solution at time o of the heat equation in IR® with 4*~' as initial datum. Using
that idea, we replace the convolution term in (2.1) by solving implicitly the linear heat

equation for just one discretization step with length o. Thus, we end up with the following
system of equations, semi—implicit in scale:

(2.5) (O (W Hut,v) + 1(g(|Vu|) Vul, Vo) = (0 (" HDutt + 7 f (@’ — w1, v)
where u¢ € V replaces the convolution G, * =1 and is the solution of the problem
(2.6) (u%,0) +a(Vub, Vo) = (u' 1, v).

The weak identities (2.5)—(2.6) are starting points to derive a fully discrete semi-implicit
finite element discretization of (1.1)-(1.3). To that goal the variational identities (2.5)—
(2.6) are projected to finite dimensional subspaces consisting of piecewise linear finite
elements V, C V, Vj, = V(T;) = {v € CO(Q)|U|T € Py forall T € T;}, where 7; is
a conformal triangulation of @ C IR® at the i~th discrete scale step. By introducing
the Lagrangian bases of hat functions ¢; € V}(7;), determined by ¢;(zy) = d; for all
vertices zx, k = 1,... N; of 7;, N the number of vertices, a function v, € V}, is given by

N N
vp = 2 vk = 2 v(Tk) k-
h=1 h=1



For each discrete scale instant i = 1, ... n we are looking for a function uf, € V},(7;) fulfilling

(2.7) O (uf ) ubs vn)n + T(g(| Vg ) Vg, Vop) = (0 (ul ")l on)n
+ 7(f(uo —ub ), vn)

for all vy, € Vj,(7;) where uj € V},(7;) is the solution of
(2.8) (0§, vp)n + o(Vaug, Vo) = (L;ul L op)n You € Vi(Ti),

where (w;uy,vp)p is the lumped L? inner product, defined by

(w; up, vp)p = Zw(xk)uh(wk)vh(ﬂﬁk)/ﬂwk-

k
Using the above bases representation (2.7)-(2.8) may be written in the form

N

> @i ek 0 + T(9(IVuR) Vior, Vi) Juk = (8 (ul u 0)
h=1

+7(f(uo —uly 1), )
and

N
S {(@r05) + o(Vor, Vooy) Jus = (L, y)
k=1

forallj =1,...N.
Thus solving (2.7)—(2.8) means inverting two linear systems with matrices

MV (uy ) + TA(9(|Vuf ),
M(1) + o A(1L),

with M p(w) = (w; ¢k, ¢;)n the lumped mass matrix and A(w);r = (wWVy, Vi;) the
stiffness matrix.

3 Multiscale image coarsening

As mentioned above, we use a coarsening strategy for the finite element meshes to increase
the effectiveness of the procedure. Since the image is being smoothed as scale time evolves
and we do not expect a movement of contour lines, coarsening is an appropriate way to
decrease the number of unknowns.

To be more precise we proceed as follows. We generate a triangulation 7y by refining
a coarse grid 70, the so called macro triangulation. We choose the bisection method,
which allows for coarsening quite easily and was introduced for the 3D case in [3]. This
refinement procedure generates a sequence 70,7, 72, ... of finer and finer meshes until
the desired (initial) mesh width is reached.

After this initialization we perform some steps of precoarsening to To resulting in the
starting triangulation 7. During time—scale evolution, in every time—step coarsening again
is used to reduce the number of unknowns according to a certain coarsening criterion, see
below.

We briefly recall the bisection method, for further details see [3]:



3.1 Refinement by bisection

Consider a tetrahedron T' € T°, which has been cut open along the three edges which
meet at vertex P, and unfolded:

P,

2
I

Figure 1: Tetrahedron; dashed lines indicate the refinement edges
With each of the four triangular faces of T we associate a refinement edge (one example

is shown in Figure 1). We make the following assumptions:

(A1) For each tetrahedron there is at least one common refinement edge for two different

faces of the tetrahedron adjacent to this edge (F;, P;, in Figure 1). We call such an
edge a global refinement edge of the tetrahedron.

(A2) If Ty, T, are two tetrahedra with 73 NTy = S and S is a triangle, then the refinement
edge of S with respect to 77 and the refinement edge of S with respect to 75 is the
same.

Note that assumptions (A1) and (A2) can be fulfilled for an arbitrary conforming triangu-
lation: There is an ordering of the edges of a triangulation (for instance in terms of their
lengths). Choose the refinement edge of a triangular face as the one with highest index
corresponding to this ordering. Then (A1) and (A2) are fulfilled.

Let us first consider the split of a single tetrahedron:

A single tetrahedron is bisected by cutting through the midpoint of the global refinement
edge to the opposite vertices, thus introducing the midpoint as a new node P,.,,. We get
two new tetrahedra:

Ps Ps P,
2 2
P4 P 4
new ne
P, s

Figure 2: Bisection of a single tet.



The refinement edges of the bisected triangles are chosen as indicated by Figure 2. Here,
* indicates an arbitrary position of the refinement edge which is not affected by the split.
The question then is, how to choose the refinement edge for the new triangle Py ey PyPs.
One requirement is of course the condition that both new tetrahedra must have again a
global refinement edge.

In [3] it is outlined how to choose this refinement edge properly. The above procedure
is the atomic operation to split a single element. For the global situation the following
algorithm is used.

Bisection algorithm:
Let 7% be a given triangulation, either k¥ = 0 or 7% being a refinement of 7%~!. Let &1 C
T* be a set of tetrahedra to be divided.

while 7 #( do

bisect all T € Xt as described above, obtain the
intermediate triangulation 7% (possibly
non-conforming)

let now X1 be the set of those tetrahedra with a
non-conforming node.

endwhile
Tk+1 — ff'k

In [3] the following is shown:

Theorem 2.: Let the conforming triangulation 7% fulfill assumptions (A1) and (A2).
Then the above algorithm stops in a finite number of steps and 7! is conforming. The
sequence 79,71, 72, ... is shape regular.

Remark: Let Q be a cube (which is quite natural in image processing). Then starting
from a natural subdivision into 6 tetrahedra of the cube as the macro triangulation and
using the bisection method to generate the triangulations, it is simple to show that the
fully discrete equations fulfil a discrete maximum principle in the case f = 0, see for
instance [19]. Here, we made use of the fact that Vufy is constant for every tetrahedron
T. Thus we get an estimate .

[[hloo < [t oo

foralli=1,...n.

3.2 Local coarsening

We choose the bisection method to generate the starting triangulation 7 because a trian-
gulation which was derived by a successive application of bisection steps can be derefined
very easily. We make the following definitions:

Definition:



i.) A tet T € T has level [ if T was obtained after [ refinement steps.

ii.) A tet T is said to have locally finest level if the levels of all neighbors are less than
or equal to the level of T'.

iii.) Let '€ T and let 7" be the father of T'. A vertex P of T which was inserted while
bisecting T" is called the coarsening node of T

iv.) Let K be an edge of the triangulation 7 and K’ the “father”—edge of K with midpoint
Q. Set M :=={T € TITNK' # 0}. If Q is the coarsening node for all T € M then
M is called a resolvable patch.

Figure 3 shows a resolvable patch and the coarsened patch.

Figure 3: Resolvable patch and coarsened patch

If M is a resolvable patch, then all T € M can be coarsened without interfering with
T'" € T outside of M. Therefore resolvable patches are the configurations which we allow
to be coarsened. This guarantees that the coarsening process stays local.

We may write the coarsening algorithm in the following form:

Coarsening algorithm:
Let 7" be a triangulation obtained by refinement and coarsening steps. Let 3~ C T" be
the set of tetrahedra to be derefined. Then one coarsening step consists of:

for each T € ¥~ do
if T belongs to a resolvable patch M then
if T"e X~ for all T € M then
derefine M, see Figure 3
endif
endif
enddo




Since we only derefine resolvable patches the question arises whether there are “enough”
resolvable patches in an arbitrary triangulation. In [5] it is shown that at least for so—called
“standard triangulations” the following holds: All tetrahedra of locally finest levels belong
to resolvable patches. This means that using the above algorithm a total derefinement of
a triangulation is possible.

3.3 Coarsening criterion and adaptive method

As the local behavior of Vu determines the evolution process and is an indicator for
edges, the coarsening criterion is based on this value. More precisely, let ¢ > 0 be a given
tolerance. For 7 a time—scale step and uﬁl the corresponding numerical solution on the grid
T; we allow all tetrahedra T € 7; to be coarsened, if

(3.1) hr|Vui| <e onT.

Note that since u}l is piecewise linear, Vuﬁl is constant on each tetrahedron.
Thus we have the following adaptive scheme to approximate (1.1)—(1.3):

Let 7o, ug be given.

for 1=1,2,...n do

set up the matrix M+ cA(1)

compute uf € Vj(7;) solving (2.8)

set up the matrix M+ 7A(g(|Vuj|))

compute u} € Vj(T;) solving (2.7)

define X~ :={T € T; | hr|Vu}| <€ on T}

derefine 7; according to X~ to obtain 7;;
enddo

4 Numerical experiments

In this Section we present two numerical examples computed by the scheme (2.7)—(2.8)
using the 3D coarsening strategy. In the computations we used the following definition for

g:
1

9() = 157

In the first example we added noise to an artificial image containing the object visualized
in Figure 4. In Figure 5 we plot successive filtering of the initially noisy image until the
desired object is extracted. In Figures 6 and 7 we plot the results of scaling together with
a cut of the computational tetrahedral grid in order to illustrate the local coarsening. IN
this example we took b(s) = s. Table 1 shows the decrease in the number of degrees of
freedom due to coarsening. Note that the difference from the Oth to the 1st time step
results from the precoarsening.

Next, we have applied our method to a real image representing an in vivo acquired 3D
echo-cardiography. The acquisition represents a certain time instant of the cardiac cycle
of a real patient. In Figure 8 the isosurface corresponding to the interface between the
cardiac muscle and blood is visualized using an original echo-image (top left) and after
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time step o | 1 | 2 | 3 | 4 | 5 | 6
# unknowns || 274625 | 273948 | 270789 | 256715 | 228774 | 191386 | 138738
time step 7 ‘ 8 ‘ 9 ‘ 10

§ unknowns || 81049 | 47245 | 30929 | 19475

Table 1: Decrease of unknowns, example 1

Figure 4: Original artificial image without noise.

processing by our algorithm. We took advantage of the fact that the grey value describing
this interface is known by setting

b(s) = S for s < s*,
T )] 103s+s* for s> s*,

where s* is sufficiently larger than the level of this isosurface.

timestepHO‘1‘2‘3‘4‘5‘6‘7‘8

# unknowns | 274625 | 141621 | 122273 | 104334 | 94253 | 88066 | 83392 | 79221 | 75392
Table 2: Decrease of unknowns, example 2
Acknowledgment We would like to thank Claudio Lamberti and Alessandro Sarti from
the University of Bologna for providing the 3D echocardiographic data.
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Figure 5: Smoothing of the artificial image.
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Figure 6: Level surface and computational grid at the 4th scale step.
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Figure 7: Level surface and computational grid at the 10th scale step.
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Figure 8: Smoothing of the human left ventricle. Visualization of the corresponding level
surfaces at the Oth, 2nd, 4th and 8th scale steps respectively.
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