UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Numerical Solution of Schur Stable
Linear Matrix Equations on
Multicomputers

Peter Benner Enrique S. Quintana-Orti
Gregorio Quintana-Orti

Report 99-13

Berichte aus der Technomathematik

Report 99-13 November 1999

Numerical Solution of Schur Stable Linear Matrix Equations
on Multicomputers*

Peter Bennerf Enrique S. Quintana-Orti* Gregorio Quintana-Ort{3

November 8, 1999

Abstract

We investigate the parallel performance of numerical algorithms for solving discrete
Sylvester and Stein equations as they appear for instance in discrete-time control prob-
lems, filtering, and image restoration. We assume that the coefficient matrices of the
equations are stable with respect to the unit circle. The methods used here are the
squared Smith iteration and the sign function method on a Cayley transformation of the
original equation. For Stein equations with semidefinite right-hand side these methods are
modified such that the Cholesky factor of the solution can be computed directly without
forming the solution matrix explicitly. We report experimental results of these algorithms
on distributed-memory multicomputers.

1 Introduction

We study the numerical solution of the discrete Sylvester equation
AXB-X+C=0, (1)

where A € R™*", B € R™*™ (C € R"™™ and X € R™™ is the sought-after solution of (1).
A particular instance of equation (1) is the Stein equation, often also referred to as discrete
Lyapunov equation, which is a symmetric version of (1) and takes the form

AXAT - X +C =0, (2)

where A,C € R*"*, C = CT, and X € R™™. That is, (2) results from (1) by setting m = n,
B = AT and C = C7. It easily follows that if there exists a unique solution X to (2), then
this solution has to be symmetric.

Equations of the form (1), (2) play a fundamental role in linear control and filtering theory
for discrete-time systems; see, e.g., [32, 29, 37]. Equations of the form (1) also have to be
solved in methods for restoration of noisy images; see, e.g., [13]. Throughout this paper we

*Partially supported by the DAAD programme Acciones Integradas Hispano-Alemanas. Enrique S.
Quintana-Orti and Gregorio Quintana-Ort{ were also supported by the Spanish CICYT Project TIC96-1062-
C03-03.

tZentrum fiir Technomathematik, Fachbereich 3 — Mathematik und Informatik, Universitit Bremen, D—
28334 Bremen, Germany; e-mail: benner@math.uni-bremen.de.

iDepartamento de Informatica, Universidad Jaime I, 12080 Castellén, Spain; e-mail: quintana@inf.uji.es.

$Departamento de Informética, Universidad Jaime I, 12080 Castellén, Spain; e-mail: gquintan@inf.uji.es.

assume equations (1) and (2) to be Schur stable, that is, if p(A) denotes the spectral radius
of a square matrix A, then we assume p(A) < 1 and p(B) < 1. In case of the Stein equation
this is equivalent to the usual Schur stability of the matrix A, i.e., 0 (A) C {2z € C : |z| < 1},
where o (A) denotes the spectrum of A. Defining the operator vec : R¥*¢ — R¥ mapping
any M € RF*¢ to

vec (M) = [mn,m21, . ,mk,l,mlg, ... ,mk’Q, . ,mk’g]T, (3)

we can rewrite (1) as a system of linear equations

(BT ® A — I,;p)vec (X) = —vec (C). (4)

Here, ® denotes the Kronecker product; see, e.g., [30] for details. If we set W := BT® A—1I,,,,,
z := vec (X), and ¢ := —vec (C) then (4) can be written in the standard form

Wz=c (5)

and the spectrum of the coeflicient matrix W is given by
U(W) = {>‘in - 1|>\i € U(A)auj EU(B)a 1=1,...,m, g = 1,...,m}.

From the stability assumption used in this paper it follows that W is nonsingular. Hence (5)
and thereby (4), (1) as well as the Stein equation (2) have unique solutions; see, e.g., [30].
We will also consider the generalized Stein equation

AXAT —EXET +C =0, (6)

with A, X, C as above and E € R™*" nonsingular. This equation and its solution inherits all
its mathematical properties from (2) as it is equivalent to (2) if pre-multiplied with £~ ! and
post-multiplied by E~T. Such a transformation may introduce large rounding errors into the
data if E is ill-conditioned and should be avoided for practical computations if possible. The
equation (6) is Schur stable if the matrix pencil A — AE has all its eigenvalues in the open
unit disk, i.e., under the given assumptions if E~'A is Schur stable.

Schur stable equations of the form (1) arise for instance in the design of optimal regulators
for the reference tracking problem (see, e.g., [37]) and in model reduction methods (see, e.g.,
[36]). (Generalized) Stein equations with Schur stable coefficient matrix A (or matrix pencil
A — AE) appear in many computational problems for linear control systems. For example,
such an equation has to be solved in each step of Newton’s method for (generalized) discrete-
time algebraic Riccati equations [25, 32]. Moreover, the controllability Gramian W, and
observability Gramian W, of a discrete-time linear time-invariant (LTI) system of the form

Tk+1 :A$k+Buka yk:C:L'ka k:0’152""’ 'TO::C(O)a
are given by the solutions of the corresponding Stein equations
AW AT —w.+BBT =0, ATW,A-w,+cCTC=0. (7)

The Gramians of LTT systems play a fundamental role in many analysis and design problems
for LTT systems such as computing balanced, minimal, or partial realizations, the Hankel
singular values, the Hankel norm or Hs-norm of the system, and model reduction. Often,

the Cholesky factors of the solutions to the above equations are needed, i.e., one is interested
in computing the factors in the Cholesky factorizations W, = LLT and W, = RTR. Hence,
special algorithms are designed to compute these factors without ever forming the solution
matrices explicitly.

The need for parallel computing in this area can be seen from the fact that already for
a system with state-space dimension n = 1000, the corresponding Stein equations represent
a set of linear equations with about half a million unknowns (exploiting the symmetry of
X). Moreover, in some applications as the reference tracking problem mentioned above, often
on-line solutions of these equations are required. Even for small state-space dimension n this
means that a system of linear equations with a few thousand unknowns has to be solved in a
few milli- or even microseconds. We assume here that the coefficient matrices are dense. If
sparsity of matrices is to be exploited, other computational techniques have to be employed.

The standard methods for solving equations (1) or (2) are based on the Bartels-Stewart
method or Hessenberg-Schur methods; see [3, 19, 37]. These algorithms in a first stage
reduce the coefficient matrices A and B to quasi-upper triangular form by the QR algorithm.
(For the Hessenberg-Schur method, B needs only to be transformed to upper Hessenberg
form.) Hence, in order to use these methods on parallel computers, it is necessary to have
an efficient parallelization of the QR algorithm. However, several experimental studies report
the difficulties in parallelizing the double implicit shifted QR algorithm on parallel distributed
multiprocessors; see, e.g., [11, 18, 23, 39]. The algorithm presents a fine granularity which
introduces a loss of performance due to communication start-up overhead (latency). Besides,
traditional data layouts (column/row block scattered) lead to an unbalanced distribution of
the computational load. A different approach relies on a block Hankel distribution, which
improves the balancing of the computational load [23]. Attempts to increase the granularity
by employing multishift techniques have been recently proposed in [12, 24]. Nevertheless, the
parallelism and scalability of these algorithms are still far from those of matrix multiplications,
matrix factorizations, triangular linear systems solvers, etc.; see, e.g., [10] and the references
given therein.

For the generalized Stein equation, the situation is even worse. If this equation is to be
solved directly using a Bartels-Stewart type algorithm without transforming it to the standard
case (2) as proposed in [16, 17, 34], then the QZ algorithm (see, e.g., [20]) has to be employed
for the initial reduction of the matrix pair (A, E) to generalized Schur form. We are not
aware of any attempt to parallelize the QZ algorithm. From the above considerations and
taking into account the even more complex computational work in this algorithm, even worse
parallelism and scalability than for the QR algorithm are to be expected.

For these reasons we will use methods that are purely based on easy to parallelize com-
putational kernels. These are the squared Smith iteration applied to (1) or (2) and the sign
function method applied to the Sylvester or (generalized) Lyapunov equations resulting from
a Cayley transformation of (1), (2), or (6), respectively. The employed algorithms will be
reviewed in Section 2. In Section 3 we show how to use the squared Smith iteration in order
to compute the Cholesky factor of the solution of a semidefinite Stein equation without com-
puting the solution matrix explicitly. The algorithms considered here are implemented using
the kernels in libraries BLACS, PBLAS, and ScaLAPACK [10]. This ensures the portability
of the codes across a wide variety of platforms for distributed memory computing. The com-
putational performance of the implemented algorithms with respect to accuracy, execution
time as well as scalability will be reported in Section 4. Some final remarks are given in
Section 5.

2 Numerical Algorithms

2.1 The Smith Iteration

Consider (1) and recall that (2) is a special instance of (1). We can rewrite equation (1) in
fixed point form, X = AXB + C, and form the fixed point iteration

Xo:=0C, Xp1 =C+AXB, k=0,1,2,....

Then this iteration converges to X if p(A)p(B) < 1, i.e., convergence is guaranteed under the
given assumptions. The convergence rate of this iteration is linear. A quadratically convergent
version of this fixed point iteration is suggested in [14, 38]. Setting X, := C, Ag := A, and
By := B, this iteration can be written as

A() = A, B() = B, X() = C,
X1 = ApXyBy + Xy,

8)
k=0,1,2,.... (
Apy1 = A}, Bpy = B,

The above iteration is referred to as the squared Smith iteration. In case (2) is to be solved
with the Smith iteration, the iterative scheme given in (8) simplifies as no sequence of By has
to be computed.

The most appealing feature of the squared Smith iteration regarding its parallel imple-
mentation is that all the computational cost comes from matrix products. These are known
to be highly parallelizable; see, e.g., [10].

The convergence theory of the Smith iteration derived in [38] yields that for p(A)p(B) < 1
there exist real constants 0 < g and 0 < p < 1 such that

1X — Xyl < ul|Cll2(1 — p)~1p%". (9)

This shows that the method converges for all equations with Schur stable coefficient matrices
A and B. One of them may even be only almost stable, i.e., have eigenvalues on the unit
circle. Nevertheless, if any of the coefficient matrices A or B is highly non-normal such that
|All2 > 1 or ||B]l2 > 1, then overflow may occur in the early stages of the iteration due
to increasing ||Ag||2 or ||Bgll2 although eventually, limy ,o Ay = 0 and limg_,oo By = 0 if
p(A) <1 and p(B) < 1.

We can derive a conservative bound on the number of iteration steps of the squared Smith
iteration before overflow can occur as follows. Let a := ||A||2, 8 := ||B||2. We can scale the
equation such that ||C||2 = 1 by setting C = C/||C||2 and X = X/||C|lo. As for any matrix
M, max;; |m; ;| < |M]|| [20, Chapter 2], overflow does not occur as long as || Xj|| < Tmax,
where mmax is the overflow threshold of the arithmetic used. (For example, in IEEE double
precision arithmetic, logy(rmax) = 1024.) It is easy to see that

2k 1
Xy=Y» AICB. (10)
j=0

Overflow will occur if one of the terms A7 C B overflows. It is rather unlikely that the sum will
overflow if all the terms remain bounded below rmax. As we assume ||C||2 = 1, we can derive

bounds from the highest order term in (10) requiring || Ak|l2 < v/Tmax and ||Bkll2 < /Tmax-
Hence, for a > 1, 8 > 1 we obtain the bounds

. 10g5 (Tmax) logy (Tmax)

k< min{on, (e) voms (e) -
Note that the bounds in (11) may be very conservative. On the other hand, (11) only requires
a priori knowledge and can thus be computed before staring the iteration. As the 2-norm
computation is in general too expensive, other norms have to be employed if the bounds
from (11) are to be checked. The Frobenius norm can be used without changes if «, § are
replaced by ||A||F, ||Bl|F, respectively (where the scaling has then also to be performed using
the Frobenius norm). Using |M |3 < ||[M||1]|M |« [20, Chapter 2], (11) transforms to

. 10g2 ("'max)) log2 (Tmax)
k< mln{log (,log . 12
2 \ T Togy (JAIL A1)) %82 \ T T Tog, (18111 Bll) (12)

Another way to get an easy computable bound on the element growth in A% is via the
departure from normality which is defined as (see [20, Chapter 7.1])

na = n(A) = /| Al% — trace(42). (13)

For any Schur decomposition A = Q(D+N)Q with unitary), diagonal matrix of eigenvalues
D, and nilpotent, strictly upper triangular matrix N, we have ||Alls < ||Allr = ||D + N||r
due to the unitary invariance of the Frobenius and spectral norms. Moreover, |[N||p = 74
regardless of the choice of @ (see [20, Chapter 7.1]). Using N7 = 0 for all j > n— 1 we obtain

min{n—1,2%} ok .
1472 <1147 [lp < JAE =[P+ NIE < 3 (;)nﬁ- (14)
7=0

An analogous expression gives a bound for the growth in B. The right-hand side expression is
easy to evaluate and can hence be checked without significant effort as A? has to be computed
in the first iteration step anyway. The bounds implied by (14) can be checked in each iteration
and the iteration can be stopped if they indicate that ||A2k |2 or ||B2k |l2 will overflow in the
next step.

Note that all these bounds do not take rounding errors into account. In case the spectral
radii of A or B are close to one it can happen that rounding errors will cause p(Ay) > 1 or
p(By) > 1 and hence the whole convergence theory breaks down. In that case, overflow may
occur even if the bounds derived above give no indication for this. This usually happens only
if there are defective eigenvalues very close to one and almost never occurs in practice. (In
control theory this means that the underlying system is highly sensitive to perturbations and
can therefore be considered as ill designed.)

The spectral norm (and other norms as well) of a matrix and its departure from normality
can sometimes be significantly be reduced using balancing [33, 20]. A balancing procedure
computes a diagonal scaling matrix D such that the rows and columns of A := D~'AD have
almost equal 1-norms. If C := DCD and X := DX D, then the solution of (2) can be retrieved
from the solution of the equivalent Stein equation AT X A— X 4+ C = 0. This approach usually
yields no advantage for the discrete Sylvester equation (1) as the simultaneous balancing of
A and B is seldom possible.

If the generalized Stein equation (6) is to be solved by the Smith iteration, one has to
invert either A or E in order to transform it to a standard equation as in (2). We therefore
consider this approach not any further and propose in this case to use the sign function
method which will be reviewed in the next section.

2.2 The Sign Function Method

The sign function method was first introduced in 1971 by Roberts [35] for solving algebraic
Riccati equations. Roberts also shows how to solve Sylvester equations of the form

AX—XB—}—CA’:O, AERnxn’BERmxméeRnxm’ (15)

~

via the matrix sign function if both ¢ (A) and o (—B) are contained in the open left half
complex plane, i.e., if A and —B are Hurwitz stable.

Let Z € R™ ™ have no eigenvalues on the imaginary axis and denote by Z = S [J(; JO+] St

its Jordan decomposition with J— € Ck*k_ J+ e C(n—k)x(n—k) containing the Jordan blocks
corresponding to the eigenvalues in the open left and right half planes, respectively. Then

the matriz sign function of Z is defined as sign (Z) := S [_Olk In(ik] S~ Note that sign (Z)
is unique and independent of the order of the eigenvalues in the Jordan decomposition of Z.
Many other equivalent definitions for sign (Z) can be given. For more details see, e.g., the
survey paper [28].

The sign function can be computed via the Newton iteration for the equation Z? = T
where the starting point is chosen as Z, i.e.,

Zo = Z, Zry1 = (Z+ 21 /2 k=0,1,2,.... (16)

It is shown in [35] that sign (Z) = limy_, o Z and moreover that

~ A

. A C 0 X

Slgn([0 B :|>+In+m = 2[0 I :|a (17)
i.e., under the given assumptions, (15) can be solved by applying the iteration (16) to Zj :=
[‘3 g] The same algorithm was later again derived in [4, 27].

The computation of the sign function via (16) only requires basic numerical linear al-
gebra tools like matrix multiplication, inversion and/or solution of linear systems. These
computations are implemented efficiently on most parallel architectures and, in particular,
ScaLAPACK [10] provides easy to use and portable computational kernels for these oper-
ations. Hence, the sign function method is an appropriate tool to design and implement
efficient and portable numerical software for distributed memory parallel computers.

If we apply the Cayley transformation

c(4) = (A—In) (A +1I,) (18)

to A from (2), then the Stein equation (2) is equivalent to the Lyapunov equation (15) with
A= —-BT = ¢(A) and C = 2(4 — I,) 'C(A — I,,)"T. The transformation of the discrete
Sylvester equation (1) to a (continuous) Sylvester equation as in (15) is achieved analogously
by setting A := ¢(A4), B := —(B + I,)(B — I,;)~", and C = 2(A — I,)"'C(B — I,,)"".
Hence the discrete Sylvester and Stein equations can be solved by applying the sign function

iteration to the Sylvester and Lyapunov equations, respectively, resulting from the Cayley
transformation. o
o [4 ¢

In [35] it is observed that applying the Newton iteration (16) to the matrix [0 B] and

exploiting the block-triangular structure of all matrices involved, (16) boils down to

Ay = A, Apn = (A + ALY,
By :== B, By = L(Be+B.Y), k=0,1,2,..., (19)
Co == C, Cpu = 3 (Ce+ A CeBY),

and hence from (17) it follows that X = 1 (limj_,c, Ck). For the Cayley-transformed Stein
equation, the iteration for the By’s equals the one for the Ax’s and hence can be omitted.
Moreover, in that case all C}’s are symmetric as By = Ag which can also be exploited to save
some arithmetic and work space. We will compare the Smith iteration for (1) and (2) to the
iteration (19) applied to the Cayley-transformed equations in Section 4.

Other iterative schemes for computing the sign function like the Newton-Schulz iteration
or Halley’s method (see, e.g., [28]) can also be implemented efficiently to solve Sylvester and
Lyapunov equations and can therefore also be used for Cayley-transformed discrete Sylvester
and Stein equations; details of the resulting algorithms are reported in [8].

The generalized Stein equation (6) can be transformed to a Lyapunov equation via the
generalized Cayley transformation

c(A,E) = ((BA+ E),(A—pE)), ‘:u‘ =1

In order to keep computations real, the shift parameter y must satisfy p = +1. It is well
known (see, e.g., [15]) that for a Schur stable matrix pencil A — AE, both (uA + E) and
(A — pE) are nonsingular and (A — pE)~'(uA + E) is Hurwitz stable. Hence we use in the
following without loss of generality = 1. Now let A:= A+ E, E:= A— E, and C := 2C.
Then, (6) is equivalent to

AXET + EXAT +C =0. (20)

This is a Hurwitz stable generalized Lyapunov equation with the same solution as (6). Note
that no matrix inverses or multiplications are needed to derive (20) from (6). The numerical
solution of generalized Lyapunov equations is considered in [7]. It is shown there that the
generalized sign function iteration of [15] applied to (20) simplifies to

Ao — A, Ap %(AkJrEA,;lE), o o
ork=0,1,2,...

Co « O, Cpp1 « %(CkJrE’TA,;TCkA,;lE),

and that X = %E’*T (limy_,0 Cy) E—1. Hence we can solve (6) by applying the generalized
Cayley transformation to the coefficient matrices and using the algorithms and implementa-
tions reported in [5, 7]. The generalized Stein equation (6) can also be reduced further to a
standard Lyapunov equation, i.e., B = —AT in (15), by multiplying (2) from the left with £~
and from the right by £-T. The resulting Lyapunov equation with A = (4 — E)"'(A + E)
and C = 2(A — E)"'C(A — E)~" can then be solved using the standard Newton iteration
(19).

2.3 Iterative Refinement

The computed solution of a system of linear equations can often be improved by iterative
refinement; see, e.g., [20, Section 3.53]. As the discrete Sylvester and (generalized) Stein

1 .
% ,respectively, unknowns,

equations represent also systems of linear equations in nm and
this can be used here as well to refine an approximate solution.

Let X be an approximate solution to (1), (2), or (6) and define the defect N := X — X as
well as the residual R of the respective equation. Then N satisfies the corresponding defect

equations

ANB-N = R:=AXB-X+C, (22)
ANAT - N = R:=AXAT -X+C, (23)
ANAT —ENET = R:= AXA" - EXE" +C. (24)

These equations can then again be solved via any of the methods proposed above where a
combination of the methods is possible, i.e., the approximation X and the defect N can be
computed using different methods. A (hopefully) improved solution of the original equation
is then obtained by X := X + N.

Note that for the methods considered here, the convergence rate only depends on the
spectrum of A, B, or A — AE and hence the same number of iterations needed to solve the
original equation is required to solve the defect equation. In other words, iterative refinement
doubles the cost of the computation in contrast to standard linear systems where for instance,
the LU decomposition of the coefficient matrix can be reused when solving the defect equation
[20, Section 3.5.3].

Therefore and as an improvement is not to be expected if X is sufficiently close to the exact
solution, iterative refinement should only be used if the computed solution is not accurate
enough. This can be decided, using, e.g., the relative residual defined for the equations under
consideration (see [26, Section 15.2]) as

2]

I - G for (1)), 25
JANBIIZ] + 1X] +[C (for (1) (25)

. IR .

' AIIAT | X+ 1 X]| + [(for (2)), (26)

A M (for (6)), (27)

(LANATI -+ NENIETIDIX] + 1C)

where R denotes the corresponding residuals as defined in (22)—(24). As for a numerically
backward stable method, the relative residual should be close to the machine precision ¢ (see
[26, Section 1.10] and the references given there), one should require for the approximate
solution that r, < ce where c is a constant depending mildly on the dimensions n, m and also
on the chosen norm. For instance, for (2), ¢ = 104/ seems to work very well. Note that if X
yields already a small relative residual, then iterative refinement will usually only improve the
computed solution if the residual is computed with extended precision, see [20, Section 3.53].

3 Solving Semidefinite Stein Equations for the Cholesky
Factor

If the “right-hand side” C of the generalized Stein equation (6) is positive semidefinite, then
so is the solution matrix X and hence can be factored as X = LLT. We can therefore write
(6) as

ALLT"AT — ELL"E" + BBT = 0, (28)

where B € RP*" with BBT = C. (For (2), set E = I, in (28).) The factor L € R**¢ is called
the Cholesky factor of the solution. Usually, £ = n such that L is a square, possibly singular,
matrix [21, 22, 40]. Here we will also use “Cholesky factor” to denote a full rank factor of the
solution, i.e., rank (L) = rank (X) = ¢ < n. This has several advantages

The equation (28) is called a semidefinite generalized Stein equation. In many applications,
the Cholesky factor L of X is required rather than the solution X itself, e.g., most model
reduction algorithms for discrete-time systems based on the system Gramians as defined in (7)
use their Cholesky factors, see [36] and the references given therein. Hammarling’s algorithm
[21, 22, 34, 40] computes this factor without forming the product BB or the solution X
explicitly. The advantage of this approach is that the condition number of X can be up to
the square of that of its Cholesky factor L. Hence, a significant increase in accuracy can often
be observed working with L instead of X if X is ill-conditioned. Moreover, if £ < n, usually
significant savings in computational work is obtained by using the full-rank Cholesky factor
rather than X for subsequent computations [9].

The sign function method applied to the (generalized) Lyapunov equation resulting from
the Cayley-transformation of the (generalized) Stein equation can be modified to compute
the (full-rank) Cholesky factor of X directly; see [31, 5, 7, 9]. Here we will show that this
is also possible (and even simpler) for the squared Smith iteration. As the generalized Stein
equation has to be rewritten as a standard Stein equation in order to apply the iteration (8),
we will focus here on equations of the form (2), i.e., set E = I,, in (28).

Setting C = BB the iteration for X in (8) can be re-written as

Ly «+ B, (29)
LT
Lyl « LgLi + Ap(LyLy)A} =Ly, AxLy] [T] , fork=0,1,2,....
k*"k

In each step of the resulting algorithm the current iterate L is augmented by Ay Ly such that

The computational cost for the k-th iteration step of such a procedure is 2(2kp)n2, where p
is the number of columns of B. This compares to 3n? flops for each iteration step for the Ly
in (8).

The above approach requires to double in each iteration step the workspace needed for
the iterates Li. We will outline two approaches that limit the required workspace to a fixed
size.

As the rank of the solution X of (28) and hence of its Cholesky factor R can not be
predicted by the rank of B, the implementation of Hammarling’s algorithm in [34] requires a
work array of dimension at least n x n for B if it is supposed to be overwritten by R. This

suggests to use (29) only as long as 2¥p is less than n/2 which is also the bound for which
the original iteration (8) becomes cheaper than (29). This bound is given by

ko> {mg2 %J , (30)

where | z | denotes the integer part of x.

If k has reached the bound given above (which is the case for k = 0 if p > n/2), we propose
to form the augmented matrix Ly1 = [Ly, ApLg] € R**2% where L € R**% with £y = p.
Then compute its LQ factorization

Ly = [Liy, 0 Uy,
Ley1 20—k

where (1 == I‘a.l;lk (Lj41)- Tt follows that Lk+1Lf+1 = f/kﬂflfﬂ = IA/kHZALfH and hence we
can set Lgy1 := Lgy1. Note that in order to obtain the Cholesky factor of X, a QR factoriza-
tion of Li41 has to be computed at convergence even if k£ does not reach the bound in (30).
A similar, but less efficient version of this iteration is considered in [1, Section 3.1]. In order
to determine the rank of Ly, correctly, it is more reasonable to employ a LQ factorization
with row pivoting or even a rank-revealing LQ factorization (see, e.g., [20, Chapter 5] and

the references therein). In that case Ly is obtained as the left n x £;1 part of the product
of a permutation matrix IIx,; and the lower triangular matrix Lgy1, i.e.,

(Me41)11 (Meg1)12] [(li)k+1)11 0
(Mgt1)21 (Mgt1)22 | | (Lgga)2r O

An alternative approach is to compute a rank-revealing L.QQ factorization of the augmented
matrix in each iteration step, starting from L(obtained by a rank-revealing LQ factorization
of B. As rank (X) may be up to n, this requires a work space of size up to 2n x n. On the
other hand, this approach is preferable when the semidefinite Lyapunov equation is solved
during some model reduction algorithms for large-scale systems. As the (numerical) rank of
the Cholesky factors is then often much smaller than n, the additional work of performing
LQ factorizations is well counter-balanced by keeping the number of columns of Ly, small.
This approach can also be used to compute low-rank approximations to the full-rank factor
by either increasing the tolerance threshold for determining the numerical rank or by fixing
the allowed number of columns in L.

] = [Lg41, 0].

Remark 3.1 There is a possibility that in practice, the iteration (29) terminates but we have

rank (Ly) < rank (X). Suppose that Ay has converged to zero before Ly has converged to

L (and hence, before we have achieved rank (L) = rank (X)). Then the second part of the

iteration (29) will stagnate, i.e., Ly will not be changed in the subsequent iterations. But as
|X — Xl = |ILL" — LyLY|| =0 for k — oo,

the “low-rank” approximation Ly is already a very good approrimation of L such that further
changes in the rank of Ly do not affect the error in the solution itself. This can be interpreted
as having computed the Cholesky factor with respect to the numerical rank of L.

Premature convergence as considered above has never occurred during our numerical ex-
periments. In order to avoid such an undesired termination, one might monitor rank (L), do

10

another iteration step if at convergence this rank has still changed during the final two steps,
and continue until it remains constant. On the other hand, early convergence with a low rank
Ly may prove useful in connection with model reduction algorithms as mentioned above.

4 Performance Results

In this section we compare the accuracy and performance of several solvers for discrete
Sylvester and Stein equations of the forms (1) and (2). (As equations of the form (6) are
solved using the generalized Lyapunov equation resulting from a Cayley transformation, we
do not discuss this method here. Accuracy and performance results for generalized Lyapunov
equations can be found in [5, 7].) All the experiments were performed on a PC cluster of 25
nodes, connected with a myrinet cross-bar switch. Each node consists of an Intel Pentium-II
processor at 300MHz and 128MBytes of RAM. The algorithms were coded in Fortran-77,
using IEEE double-precision arithmetic (¢ ~ 2.2 x 10!6), a tuned BLAS library for Intel
Pentium-IT processors, and the LAPACK 2.0 [2], BLACS 1.1, PBLAS 2.0c, and ScaLAPACK
1.6 libraries [10]. The experiments regarding numerical accuracy and serial performance were
obtained on one node of the cluster, using serial tuned implementations of the solvers.

4.1 Numerical Accuracy

We first analyze the reliability of our Stein solvers by means of several numerical examples.
Specifically, we compare the following Stein solvers:

— SBO3PD. The Bartels-Stewart method for the Stein equation as implemented in the
Subroutine Library in Control Theory — SLICOT! [6]. The method is numerically back-
ward stable and hence gives a lower bound for the accuracy that any numerically reliable
method should obtain.

— DGEDLSM. The squared Smith iteration for the Stein equation as given in (8).

— DGEDLSG. The sign function method applied to the Lyapunov equation resulting from
the Cayley-transformation of the Stein equation.

Example 4.1 In this example A has the following structure:

l—«o a
A A

0 A22 ’ A22 = _A{l ’

A:UT[]U, Ay =

a2 l1-«a

where A1o is a 4 X 4 random matriz (not necessarily symmetric), U is a random orthogonal
matriz, and C = Ig. As a approaches 0, the eigenvalues of A get closer to the unit circle. We
evaluate the accuracy of the solvers using the normalized residual ||AX AT — X + C||1/||C||1,
with X the computed solution. Table 1 reports that DGEDLSM and DGEDLSG obtain less accurate
results than SBO3PD. However, by applying iterative refinement, the results obtained by this
method (denoted as DGEDLSM-ref.) constantly outperform those of SBO3PD. As a — 0, even

! Available from ftp://wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT.

11

with iterative refinement there is no hope for algorithm DGEDLSG due to the increasing ill-
conditioning of the Cayley transformed matriz c(A) that has to be inverted during the Newton
iteration for the sign function. Note that iterative refinement does not improve the solution
obtained by SBO3PD as the computed solution already has a small relative residual.

a SBO3PD DGEDLSM DGEDLSM-ref. DGEDLSG DGEDLSG-ref.
107" | 1.403 x 10713 | 8.504 x 10~ | 2.828 x 10~ | 1.427 x 10~'2 | 2.220 x 10~'4
1072 | 1.236 x 10712 | 2.874 x 10~ | 3.695 x 10713 | 2.759 x 10710 | 3.020 x 10~'3
1073 | 2.127 x 1071 | 5.441 x 1072 | 2.956 x 1072 | 1.9747 x 10~8 | 3.160 x 10~10
1074] 3.160 x 10719 | 1.091 x 107% | 6.321 x 10711 | 4.608 x 107 | 5.730 x 10~ 11
1075 | 2.103 x 1079 | 4.781 x 107° | 2.692 x 10~ | 1.755 x 10~* | 6.352 x 10~°
1076 | 2782 x 1078 | 5205 x 1073 | 5.180 x 1079 | 4.813 x 1072 | 1.625 x 1074

Table 1: Normalized residuals for Example 4.1.

Example 4.2 We generated Stein equations of order n from 100 to 1000. A stable matriz
A was generated by dividing a matriz with random entries uniformly distributed in [0,1] by
the 1-norm of that matriz. The solution matriz was then generated to be symmetric and
positive semidefinite as X = GT G, with a random uniform matriz G. Finally, C was set to
C:=X-AXAT.

The relative errors, || X — X||1/||X||1, were similar for solvers SBO3PD and DGEDLSM. For
the largest problem sizes, the solutions obtained by DGEDLSM used to be two digits more accurate
than those obtained by SBO3PD. No iterative refinement was required in any of these random
experiments.

Similar accuracy results were obtained for the discrete Sylvester equation solvers, and the
Stein equation solver for the Cholesky factor obtained from (29) as denoted by DGEDLSC.

4.2 Serial performance

In this subsection we investigate the performance of the serial Stein and discrete Sylvester
equation solvers.

The matrices in the following experiments were generated as described in Example 4.2
(in case of the discrete Sylvester equation, B was generated as A). Although the execution
time of the iterative solvers depends on the number of iterations necessary for convergence,
we always perform a fixed amount of 10 iterations. Our experiments showed than in practice,
8-10 iterations are enough for convergence.

The left-hand plot in Figure 1 reports the execution time of the solvers for Stein equations
of size n varying from 100 to 1000. Here we consider the execution time of the serial routine
SBO3PD as the unit time and we report how much “faster” are the iterative solvers DGEDLSM
and DGEDLSG. Routine DGEDLSM consistently requires only 60-65% of the execution time of
SBO3PD. Routine DGEDLSG requires (except for the smaller problem sizes) around 90-95% of
the execution time of SBO3PD.

In the right-hand plot of Figure 1 we fix n = 500 and report the execution time of the
solvers for the Cholesky factor of semidefinite Stein equations with m varying from 1 to 500.
We compare the SLICOT routine SBO3PD and the specific routine to obtain the Cholesky

12

factor, SB030D (Hammarling’s method), with the iterative solver DGEDLSC. DGEDLSC is more
efficient than SBO3PD and SBO30D as long as m <100.

150
* 1+
B i]
~ * o %"*”%‘*‘—*
= :0.8(7 ’,%" q
% * X g 969-;5-_0___07,e__@_-@,@_-e——o
% 1 . | * | % w
KoK * ’
a} a) X
g * %0.6—/
P oo %~ o |*
N2 ~0.45
Q L [}
£0° E{
= F
0.2r
G L L L L L 0 L L L L L
0 200 400 600 800 1000 0 100 200 300 400 500
Problem size (n) Problem size (m)

Figure 1: Execution times of the serial Stein equation solvers. Legend: “—+—" = SBO3PD,
“_ _o——" = DGEDLSM, “--x--.” = DGEDLSG, “—- —o—-—" = SB030D, and “— - — % —- —”
= DGEDLSC.

In our next experiment, we analyze the performance of the discrete Sylvester solver. As
currently there is no appropriate solver in SLICOT, we estimate its cost by scaling the execu-
tion time of the Stein solver SBO3PD proportionally by the theoretical cost of the Hessenberg-
Schur method for the discrete Sylvester equation [19]. We compare the results with those of
the following two iterative solvers:

— DGEDSSM. The squared Smith iteration for the discrete Sylvester equation.

— DGEDSSG. The sign function method applied to the Sylvester equation resulting from the
Cayley-transformation of the discrete Sylvester equation.

Figure 2 reports the execution time of the solvers for discrete Sylvester equations of size
n varying from 100 to 1000, and m = n (left) or m = n/2 (right).

When m = n, we obtain results similar to those obtained for the Stein equation, with the
execution time of iterative solvers DGEDSSM and DGEDSSG below the estimated time for the
Hessenberg-Schur method. For m = n/2 the picture is quite different; in this case routine
DGEDSSG clearly requires a larger execution time than the Hessenberg-Schur method and
DGEDSSM.

4.3 Parallel performance

Our next experiment is designed to analyze the scalability and performance of the parallel
Stein equation solvers PDGEDLSM, PDGEDLSG, and PDGEDLSC, and the discrete Sylvester equa-
tion solvers PDGEDSSM and PDGEDSSG. (Following the naming convention in SCALAPACK
we use the prefix “P-" for the parallel versions of the routines.) No parallel implementa-
tion of the Bartels-Stewart algorithm is included as that requires a parallel kernel for solving

13

2,
1.2+ * *
1.8F
o 1f X ; =1.6f *
5 “x 5
0 Tk o L4 *
©0.8f * @ Ko g
7 KooK Ry 01z I T
T 6 _ O T <9 o
o~ ~e--6- === < ! ! . ; :
706 R R T L) 7 1 L R S P S
w w
~ ~0.8r
Eos g
c ':0.6*
0.4r
0.2
0.2r
G L L L L L 0 L L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
Problem size (n) Problem size (n)

Figure 2: Execution times of the serial discrete Sylvester equation solvers; m = n (left) and
m = n/2 (right). Legend: “—+—” = Estimated cost for Hessenberg-Schur (H-S) method,
“— —o— —”" = DGEDSSM, and “-- % ---” = DGEDSSG.

Stein/discrete Sylvester equations with the coefficient matrices reduced to real Schur form
which is not available in the current version of ScaLAPACK (version 1.6).

Figure 3 reports the MFlops rate per node (millions of floating-point arithmetic operation
per second) of the serial and the parallel implementations. We evaluate the parallel algorithms
on p=4, 9, 16, and 25 nodes and we set n so that n/,/p is constant and equal to 1000. Our
parallel algorithms were evaluated using several distribution block sizes (32 was the optimal
in our experiments) and both square and rectangular logical topologies. The results in the
figure shows a high scalability of the parallel routines as the performance remains almost
constant as p is increased.

5 Concluding Remarks

We have described iterative algorithms for solving discrete Sylvester and Stein equations on
parallel distributed memory architectures. Our experiments for Stein equations with stable
random matrices show similar numerical accuracies for the iterative solvers and the numeri-
cally stable Bartels-Stewart method. For coefficient matrices with spectra well-separated from
the unit circle the Smith iteration is faster by a factor of about 1.5 than the Bartels-Stewart
method.

The Smith iteration basically consists of products of matrices. The experimental results
on a PC cluster show the scalability and efficiency of this algorithm, both for discrete Sylvester
and Stein equations. The Newton iteration for the matrix sign function only requires scalable
parallel kernels. The performance of this algorithm is only slightly worse than that of the
Smith iteration.

14

180 *\N]
L * |
160 " y .
140t
P
) L TV
w120 R e S
2100
kel
S 80
60r
40r
20¢
0 L L L L L
0 5 10 15 20 25

Number of processors (np)

Figure 3: Performance of the parallel Stein and discrete Sylvester equation solvers with

n/\/p = 1000. Legend: “—4—” = PDGEDSSM, “— — o — —” = PDGEDSSG, “-- % ---” =
PDGEDLSM, “— - —x —-—” = PDGEDLSG, and “--- 4+ ---” = PDGEDLSC.
References

[1] F.A. Aliev and V.B. Larin. Optimization of Linear Control Systems: Analytical Methods

[2]

[3]

[4]

[5]

[6]

[7]

(8]

and Computational Algorithms, volume 8 of Stability and Control: Theory, Methods and
Applications. Gordon and Breach, 1998.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
STAM, Philadelphia, PA, second edition, 1995.

A.Y. Barraud. A numerical algorithm to solve AT XA — X = Q. IEEE Trans. Automat.
Control, AC-22:883-885, 1977.

A. N. Beavers and E. D. Denman. A new solution method for the Lyapunov matrix
equations. SIAM J. Appl. Math., 29:416-421, 1975.

P. Benner, J.M. Claver, and E.S. Quintana-Orti. Parallel distributed solvers for large
stable generalized Lyapunov equations. Parallel Processing Letters, 9(1):147-158, 1999.

P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT - a subroutine
library in systems and control theory. In B.N. Datta, editor, Applied and Computational
Control, Signals, and Circuits, volume 1, chapter 10, pages 499-539. Birkhiuser, Boston,
MA, 1999.

P. Benner and E.S. Quintana-Orti. Solving stable generalized Lyapunov equations with
the matrix sign function. Numer. Algorithms, 20(1):75-100, 1999.

P. Benner, E.S. Quintana-Orti, and G. Quintana-Orti. Solving linear matrix equations
via rational iterative schemes. In preparation.

15

[9]

[10]

[11]

[12]

[19]

[20]

[21]

[22]

P. Benner, E.S. Quintana-Orti, and G. Quintana-Orti. Balanced truncation
model reduction of large-scale dense systems on parallel computers. Berichte aus
der Technomathematik, Report 99-07, FB3 — Mathematik und Informatik, Uni-
versitit Bremen, 28334 Bremen (Germany), September 1999. Available from
http://www.math.uni-bremen.de/zetem/berichte.html.

L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaL A-
PACK Users’ Guide. STAM, Philadelphia, PA, 1997.

D. Boley and R. Maier. A parallel QR algorithm for the unsymmetric eigenvalue problem.
Technical Report TR-88-12, University of Minnesota at Minneapolis, Department of
Computer Science, Minneapolis, MN, 1988.

K. Braman, R. Byers, and R. Mathias. The multi-shift QR-algorithm: Aggressive de-
flation, maintaining well focused shifts, and level 3 performance. Preprint 99-05-01, De-
partment of Mathematics, University of Kansas, Lawrence, KS 66045-2142, May 1999.
Available from http://www.math.ukans.edu/ reports/1999.html.

D. Calvetti and L. Reichel. Application of ADI iterative methods to the restoration of
noisy images. SIAM J. Matriz Anal. Appl., 17:165-186, 1996.

E.J. Davison and F.T. Man. The numerical solution of A'Q + QA = —C. IEEFE Trans.
Automat. Control, AC-13:448-449, 1968.

J.D. Gardiner and A.J. Laub. A generalization of the matrix-sign-function solution for
algebraic Riccati equations. Internat. J. Control, 44:823-832, 1986.

J.D. Gardiner, A.J. Laub, J.J. Amato, and C.B. Moler. Solution of the Sylvester matrix
equation AXB+ CXD = E. ACM Trans. Math. Software, 18:223-231, 1992.

J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato, and C.B. Moler. Algorithm 705: A
Fortran-77 software package for solving the Sylvester matrix equation AX BT +CX DT =
E. ACM Trans. Math. Software, 18:232-238, 1992.

G.A. Geist, R.C. Ward, G.J. Davis, and R.E. Funderlic. Finding eigenvalues and eigen-
vectors of unsymmetric matrices using a hypercube multiprocessor. In G. Fox, editor,
Proc. 3rd Conference on Hypercube Concurrent Computers and Appl., pages 15771582,
1988.

G. H. Golub, S. Nash, and C. F. Van Loan. A Hessenberg—Schur method for the problem
AX + XB = C. IEEE Trans. Automat. Control, AC-24:909-913, 1979.

G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, second edition, 1989.

S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equa-
tion. IMA J. Numer. Anal., 2:303-323, 1982.

S.J. Hammarling. Numerical solution of the discrete-time, convergent, non-negative
definite Lyapunov equation. Sys. Control Lett., 17:137-139, 1991.

16

[23]

[24]

G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric
algebraic eigenvalue problem: myths and reality. SIAM J. Sci. Comput., 17:870-883,
1997.

G. Henry, D.S. Watkins, and J.J. Dongarra. A parallel implementation of the nonsym-
metric QR algorithm for distributed memory architectures. LAPACK Working Note 121,
University of Tennessee at Knoxville, 1997.

G.A. Hewer. An iterative technique for the computation of steady state gains for the
discrete optimal regulator. IEEE Trans. Automat. Control, AC-16:382-384, 1971.

N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications,
Philadelphia, PA, 1996.

W.D. Hoskins, D.S. Meek, and D.J. Walton. The numerical solution of A'Q+ QA = —C.
IEEE Trans. Automat. Control, AC-22:882-883, 1977.

C. Kenney and A.J. Laub. The matrix sign function. IEEE Trans. Automat. Control,
40(8):1330-1348, 1995.

V. Kucera. Analysis and Design of Discrete Linear Control Systems. Academia, Prague,
Czech Republic, 1991.

P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, Orlando,
2nd edition, 1985.

V.B. Larin and F.A. Aliev. Construction of square root factor for solution of the Lya-
punov matrix equation. Sys. Control Lett., 20:109-112, 1993.

V. Mehrmann. The Autonomous Linear Quadratic Control Problem, Theory and Nu-
merical Solution. Number 163 in Lecture Notes in Control and Information Sciences.
Springer-Verlag, Heidelberg, July 1991.

B.N. Parlett and C. Reinsch. Balancing a matrix for calculation of eigenvalues and
eigenvectors. Numer. Math., 13:296-304, 1969.

T. Penzl. Numerical solution of generalized Lyapunov equations. Adv. Comp. Math.,
8:33-48, 1997.

J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by
use of the sign function. Internat. J. Control, 32:677-687, 1980. (Reprint of Technical
Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department,
1971).

G. Schelfhout. Model Reduction for Control Design. PhD thesis, Dept. Electrical Engi-
neering, KU Leuven, 3001 Leuven—Heverlee, Belgium, 1996.

V. Sima. Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied
Mathematics. Marcel Dekker, Inc., New York, NY, 1996.

R.A. Smith. Matrix equation XA + BX = C. SIAM J. Appl. Math., 16(1):198-201,
1968.

17

[39] G.W. Stewart. A parallel implementation of the QR algorithm. Parallel Computing,
5:187-196, 1987.

[40] A. Varga. A note on Hammarling’s algorithm for the discrete Lyapunov equation. Sys.
Control Lett., 15(3):273-275, 1990.

18

Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 9. November 1999

98-01. Peter Benner, Heike Fafibender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:

On the rate of convergence of infinite horizon discounted optimal value functions, November
1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complex Hamiltonian and Skew-Hamiltonian Eigen-
value Problems, November 1998.

98-08. Eberhard Bansch, Burkhard Hohn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Falbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.

99-02. Heike Faflbender:
Error Analysis of the symplectic Lanczos Method for the symplectic FEigenvalue Problem,
Marz 1999.

99-03. Eberhard Béansch, Alfred Schmidt:

Simulation of dendritic crystal growth with thermal convection, Mérz 1999.
99-04. Eberhard Bansch:

Finite element discretization of the Navier-Stokes equations with a free capillary surface,

Marz 1999.

99-05. Peter Benner:
Mathematik in der Berufsprazis, Juli 1999.

99-06. Andrew D.B. Paice, Fabian R. Wirth:
Robustness of nonlinear systems and their domains of attraction, August 1999.

99-07. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Comput-
ers, September 1999.

99-08. Ronald Stover:
Collocation methods for solving linear differential-algebraic boundary value problems, Septem-
ber 1999.

99-09. Huseyin Akcay:
Modelling with Orthonormal Basis Functions, September 1999.

99-10. Heike Faflbender, D. Steven Mackey, Niloufer Mackey:
Hamilton and Jacobi come full circle: Jacobi algorithms for structured Hamiltonian eigen-
problems, Oktober 1999.

99-11. Peter Benner, Vincente Hernidndez, Antonio Pastor:
On the Kleinman Iteration for Nonstabilizable System, Oktober 1999.

99-12. Peter Benner, Heike Faflbender:
A Hybrid Method for the Numerical Solution of Discrete-Time Algebraic Riccati Equations,
November 1999.

99-13. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Numerical Solution of Schur Stable Linear Matriz Equations on Multicomputers, November
1999.

