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On the Kleinman Iteration for
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Peter Bennerf Vicente Hernéndez? Antonio Pastor?

Abstract

We consider the computation of Hermitian nonnegative definite so-
lutions of algebraic Riccati equations. These solutions are the limit,
P = lim;, P;, of a sequence of matrices obtained by solving a se-
quence of Lyapunov equations. The procedure parallels the well-known
Kleinman technique but the stabilizability condition on the underly-
ing linear time-invariant system is removed. The convergence of the
constructed sequence {F;},., is guaranteed by the minimality of P;
in the set of Hermitian nonnegative definite solutions of the Lyapunov
equation in the ¢th iteration step.

Key words. algebraic Riccati equation, Newton’s method, Kleinman iter-
ation, Lyapunov equation, continuous-time linear systems.

1 Introduction

This paper is devoted to the analysis of algebraic Riccati equations (ARE)
of the form

0= A*P+ PA— PBB*P + C*C =: F(P) (1)

where A € C"*", B € C"*™, C € CP*", and P € C"*" is the Hermitian
nonnegative definite solution to be determined.
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Equations of the form (1) appear in many areas of control theory; see,
e.g., [BLWI1, LR95, Meh91, Sim96]. The ARE is a quadratic matrix equa-
tion, i.e., the Riccati function F(X) is a quadratic, matrix-valued polyno-
mial. The ARE (1) usually arises in continuous-time applications and is
therefore also called the continuous-time ARE in order to distinguish it
from the ARE related to control problems for discrete-time systems.

It is the purpose of this paper to provide an iterative method for the
determination of the nonnegative definite solutions of the ARE without us-
ing the system-theoretic assumptions of stabilizability or detectability of
the linear time-invariant system corresponding to the coefficient matrices
A, B, C in (1). The proposed procedure can be seen as an extension of
the well-known Kleinman technique [Kle68], where the nonnegative definite
solution of (1) is obtained as the limit of nonnegative definite solutions of
suitable Lyapunov equations. This iteration can be seen as applying New-
ton’s method to the Riccati function F(X). Though there have been several
extensions and generalizations of Newton’s method for AREs in the litera-
ture (see, e.g., [AL84, BB98, GL98, LR95, Meh91]), all results for Newton’s
method so far assume the stabilizability of (A4, B). We will show how this
assumption can be removed at the cost of keeping the constant term in the
ARE positive semidefinite such that it can always be expressed in the form
C*C as in (1). This iteration can thus be used to solve the linear-quadratic
optimal control problem without stability as considered in [Gee88].

The following notation is adopted from [Wim94, Wim95] and will be
used throughout this paper. The conjugate transpose matrix of a matrix
M is denoted by M* and M > 0 means that M is nonnegative definite.
The abbreviation M~* is used for (M*)~!. We use the usual ordering of
Hermitian matrices, i.e., M > N if and only if M — N > 0.

The complex plane is partitioned as

C:(C<UC:UC> ) (CS:(C<U(C: ) (CZ:(C:U(C>,

where the subscripts indicate the relation of the real parts to zero. For
example, Cs = {\ € C| Re(\) > 0}.

The spectrum of a matrix M € C"*" is denoted by o (M). For the
generalized eigenspaces we use the notation

B\ (M) = ker (M — AI)" = ker (M — AI)"
i>0

and the corresponding decompositions

C"=E> (M)® E<(M), E>(M)=E>(M)o®E=(M),

where the subscripts refer to the real parts of the eigenvalues. For example,
E< (M) = @{Ex(M),Re(}) <0}.



A matrix A is stable (or Hurwitz) iff E> (A) = {0} or in other words,
if o (M) is contained in the open left half plane; (A, B) is stabilizable if
there exists a matrix F' € C™*" such that A — BF is stable; and (4,C) is
detectable if there exists L € C"*P such that A — LC is stable. Moreover,
from the modal characterization of stability and taking into account the
invariance of the reachability and unobservability subspaces, the pair (A, B)
is stabilizable if and only if

R(A,B)* nEs (A*) = {0},
where R (A, B) is the reachability subspace defined as
R(A,B)=Im (B, AB, ... ,A" 'B)

and L denotes the orthogonal complement. The matrix pair (A4, B) is con-
trollable if rank (R(A, B)) = n. Analogously, the pair (A,C) is detectable
if

Vv (A, C) n EZ (A) = {O}a
where V (A, C) is the unobservability subspace, given by
V (4,C) = ker (CT, (CA)T ..., (CAH)T)".

The matrix pair (A4,C) is observable if rank (V(A,C)) = n. Finally, it is
convenient to define for each A-invariant subspace, V € Inv (A), the sets

Vi=VNE, (A

and, analogous to the notation introduced above, V., V5, V_, and V<, V.

We will frequently make use of the well-known Kalman canonical form of
linear time-invariant systems [Kal62, Kal63, Kal82]. This form corresponds
to the direct sum decomposition of C" given by

where V1 @ Vo = R(A, B) and V; @ V3 = V (A, C). Using nonsingular state-
space transformations only, it is therefore possible to transform (A, B, C) to
the form

T
Ay A Az Au By OT
0 Ay 0 An By Cs
= = = 2
A 0 0 Az Aszq |’ B 0 , © 0 ( )
0 0 0 A 0 of

Originally, the Kleinman iteration arises from the computation of the
stabilizing solution of (1), which, if it exists, is the only solution P yielding



a stable closed-loop matrix A — BB*P; see, e.g., [LR95]. In [Kle68], conver-
gence of the method is proved for controllable and observable systems. Using
that stabilizability and detectability of (A, B, C) are sufficient conditions for
the existence of the stabilizing solution (see [Kuc72]), the convergence of the
Kleinman iteration was also proved in this context in [San74]. Further gen-
eralizations yield the so far most general result given in [LR95] which is
based only on stabilizability and the existence of a Hermitian solution to
the inequality F(X) > 0. There, Newton’s method (or the Kleinman itera-
tion) is used to prove the existence of the unique mazimal (with respect to
the ordering of Hermitian matrices) solution of the ARE where the constant
term is allowed to be indefinite. It is shown that the iterates of the method
converge to this solution. Note that the maximal and stabilizing solution
coincide if the latter one exists.

The stabilizability of (A, B) and the stability of the initial matrix A —
BB*PF, in the Kleinman process are two conditions which have been main-
tained as hypothesis in the literature. However, in some situations where
(4, B) is not stabilizable the Kleinman iteration yields a non-increasing se-
quence of nonnegative definite matrices. Using the Kalman decomposition
of the linear system defined by (4, B, C), we can prove a more general con-
vergence result for the Kleinman iteration.

The outline of the paper is as follows. Section 2 contains auxiliary re-
sults and the well-known convergence theory for the Kleinman procedure in
the context of stabilizable systems. Section 3 is devoted to extending this
iterative linearization method to general, not necessarily stabilizable sys-
tems. In Section 4 the obtained results are used for giving new necessary
and sufficient conditions for the existence of a particular nonnegative definite
solution of the ARE (1). Some concluding remarks are given in Section 5.

2 The Kleinman Iteration for Stabilizable Systems

In this section we review the convergence theory of the Kleinman iteration
for the case that (A4, B) is stabilizable. First, we give some preliminary
results. Lemmas 2.1-2.3 are used in Theorem 2.4 to obtain the convergence
of the sequence of solutions of the Lyapunov equations to the stabilizing
solution of the ARE.

The first lemma establishes a well-known result about the solutions of
Lyapunov equations; see, e.g., [LT85].

Lemma 2.1 If A € C"*™ is stable, then the Lyapunov equation
A*P+PA+C*C =0 (3)

admits a unique solution which is nonnegative definite. This solution is



given by the formula
[e.e]
P :/ exp (A*t) C*C exp (At) dt .
0

In the following, let L£(A,C) denote the set of Hermitian solutions of
(3) and Lxr(A,C) the subset of nonnegative definite matrices in L(A4,C).
Analogously, by R (A,B,C) and Ry (4, B,C) we will denote the set of
Hermitian and nonnegative definite Hermitian solutions of the ARE (1).

The following two lemmas can be found in [Won74].

Lemma 2.2 If (A,C) is detectable, then for every G € C™*™ and every
positive semidefinite Q € C"*" | the pair (A+ BG,C*C + Q + G*G) is also
detectable.

In particular, Lemma 2.2 holds for all (A, C) with A stable.
Lemma 2.3 If (A, C) is detectable and Ly (A, C) # 0, then A is stable.

With the above results it is now possible to prove that the stabiliz-
ability of (A, B) is sufficient for the existence of the maximal solution in
Ry (A,B,C).

Theorem 2.4 (stabilizable systems) If the system (A, B) is stabilizable,
then choosing Fy € C™*™ such that Ag = A — BF} is stable, the sequence of
solutions of the Lyapunov equations

Ai P+ P A+ CFC; =0, (4)
where
F; = B*P, Jor i #0, (5)
A, = A—BF;, and (6)
C;C; = F/F;+C*C >0, (7)

satisfies the following assertions:

(i) For each i > 0, the matriz A; is stable and the Lyapunov equation
(4) admits a unique solution which, moreover, is nonnegative definite,
i.e.,

L(A;, Ci) = Ly (A3, Ci) = {Piy1}-
(ii) {Pi}z-21 is a nmon-increasing sequence satisfying P, > 0 for all 1 > 1.
Moreowver, P =lim;_,o P, exists and P € Ry (A,B,C).
(iii) P =lim;_,o P; is mazimal in Ry (A,B,C) and R (A,B,C).



(iv) If P is stabilizing, i.e., A— BB*P is stable, then the convergence rate
of the process is quadratic, that is

1P =Pl <v-|IP = Bil*  fori>1,
where v is a constant, independent of P.

Proof. A complete proof for the above result can be found, e.g., in [LR95].
We will sketch proofs of Parts (i)—(iii) as this is instructive for the theory
derived in the next section.

Part (i) is proved by induction. Assuming the stability of A;, which is
true for ¢ = 0, it is shown by Lemma 2.1 that P,y; € Lx(A;, C;) exists.

Moreover, P11 € La(Ai+1,Cit1) where
Ci11Cix1 = (Fy — Fi1)* (Fi — Fi) 4+ Cf 1 Cig. (8)

Using Lemma 2.2 applied to the detectable matrix pair (4;,C) with G =
(F; — Fiy1) and Q = F} | Fiy1, it follows that (441, C‘;:_l, Ci;+1) and hence
also (A;4+1,Ci+1) is detectable. Thus, Lemma 2.3 guarantees the stability of
Aiy1-

Part (i) is a consequence of the stability of A; together with the fact
that D; = P, — P41 € L(A;, Fi_1 — F;). Thus, D; > 0 using Lemma 2.1.
As FP; > 0 from Lemma 2.1, the P; form a non-increasing sequence which
is bounded from below. It follows that their limit, denoted by P, exists.
Taking limits in (4) yields P € Ry (4, B, C).

For Part (iii) note that P, — P € L(A;, F; — B*P) if P € R(A, B, C).
This implies, using Lemma 2.1, that P41 — P > 0 for all 4 and hence,
P = lim; o P; is maximal in R (4,B,C). =

As mentioned earlier, the Kleinman iteration is equivalent to Newton’s
method applied to the ARE (1). Re-arranging the standard formulae for
Newton’s method shows that P;;; can be computed from P; by solving the
Lyapunov equation (4). Thus, the convergence theorems for the Kleinman
iteration are only convergence theorems for a particular Newton algorithm
and consequently the stabilizability of (A, B) is not necessarily required for
the convergence of the process. We will give conditions under which the
Kleinman iteration converges to a nonnegative definite solution of the ARE
for possibly nonstabilizable systems.

3 The Kleinman Iteration for General Systems

In this section a sequence of nonnegative definite matrices { P;},-, is defined
using the same approach as in Theorem 2.4. However, the corresponding
system is not necessarily stabilizable and consequently, the coefficient ma-
trices A; in the Lyapunov equations (4) are not necessarily stable. Thus,
the Lyapunov equation may have no or infinitely many solutions.



Now, for the proof of the convergence in the general case, some additional
results replacing Lemmas 2.1-2.3 and the existence of a minimal solution
in Lxr(4,C) are also needed. These results as well as their proofs can for
the most part be found in [Pas95] and will be proven here for the sake of
completeness.

Lemma 3.1 Ly (A,C) # 0 if and only if the unstable part of A is unob-
servable, that is, if

E>(A) C ker(C). 9)
Moreover, there is a unique solution in Ly (A,C) if and only if
E_(A) ={0}. (10)

Proof. The first part follows immediately from the fact that (1) has a
positive semidefinite solution if and only if

V(A,C) + R(A, B) + E.(A) = C" (11)

(see [GHI0] and also [Wim95]) by observing that (3) is a special case of (1)
with B = 0.
Let S € C"*™ be nonsingular such that

A11 0

1.— 9149 —
A= AS_[ 0 Ay

], C:=CS=[C, Ca], (12)
where 0 (A11) C C> and 0 (A22) C Cc. Now Ly (A,C) # 0 is equivalent
to Lar(A,C) # 0. Hence, we have E>(A) C ker(C) by the first part. This
implies that C; = 0.

Pre-multiplying (3) by S*, post-multiplying by S, and then partitioning
P := S*PS = [g; %2] according to (12), the Lyapunov equation (3) now
decouples into

A P+ PiAn = 0, (13)
AT Py + PjpAyy = 0, (14)
A9 Po1 + Py1Ajy = 0, (15)
A5 Pog + PyoAgg = —C5C5. (16)

As Ay is stable, (16) has a unique nonnegative solution by Lemma, 2.1.
Now suppose that (10) holds. This implies o (A;;) N C- = § and
by Sylvester’s Theorem (see, e.g., [LT85, Theorem 12.3.2]), (13) has the
unique nonnegative solution P;; = 0. So for any element in /_‘,N(A, C’),
Pi1 = 0 and Py > 0 are fixed. For a nonnegative definite matrix of
this structure it follows necessarily that Pio = 0 and P»; = 0. Hence



La(A,C) = {S~*diag (0, P»2) S~'}, where P is the unique solution of
(16).

On the other hand, assume there exists a unique positive semidefinite so-
lution in Lxr(A,C) and E—(A) # {0}. Then there exists z € ker (411 — AI),
z # 0, for some X € o (A1) with Re(\) = 0. Hence Pj; := (az)(az*) satis-
fies (13) for any a € C. This implies that there are infinitely many solutions
of (3) which contradicts the assumption. =

To illustrate the above result, consider the following example.

Example 3.2 Let A= [ 2] fora >0 and C =[2, ¢] for c € R. Then
P11 = 1 and there can only be a nonnegative solution of the corresponding
Lyapunov equation (3) if c =0. If a # 0, this solution is unique and given
by P =[§98] while fora=0, [{ 0] € Ly (A,C) for all z > 0.

In the following, the term minimal solution (or mazimal solution) is used
to denote the nonnegative definite solution which is minimal (or maximal)
in Ly (A,C). The same terminology is employed for solutions of the ARE
in Ry (4, B, 0).

Lemma 3.3 If L (A,C) # 0, then a minimal solution in Ly (A, C) exists
and is unique.

Proof. Without loss of generality we may assume that A is transformed via
a similarity transformation such that A := § 1AS = diag (A1, Ago, Ass),
where o (A11) C Cs, o (Az) C C—, and o (433) C C.. Partitioning C :=
CS =[C1, Cy, C5] accordingly, it follows from the first part of Lemma 3.1
that C; = 0 and C2 = 0. Partitioning the solutions of (3) analogously as

) Py Py P
P:=S*PS=| Py Py P |, (17)
Py Py Py

we can split the transformed equation (3) into nine equations. By inspect-
ing these equations we can deduce from Sylvester’s Theorem that F;; = 0
for (4,7) € {(1,1),(1,2),(2,1),(2,3),(3,2)}. As Ass is stable, there is a
unique nonnegative definite solution Ps3 to the (3, 3) equation. This follows
from Lyapunov’s Theorem in the version of Carlson and Schneider (see, e.g.,
[LT85, Theorem 13.1.3]). As Py is zero, it follows that Pj3 = 0 = P for any
element of Lx7(A, ). The only non-unique submatrix of any P € Lr(4,C)
partitioned as in (17) is Pyy. As Py, > 0 for any Pe EN(A, é’) and Py, =0
yields an element of Lxr(A,C) it is clear that P = diag (0, 0, Ps3) is the
unique minimal solution of the transformed equation (3).

As the ordering of Hermitian matrices is preserved under equivalence
transformations, the minimal solution of the original equation is given by

Py := S~*diag (0, 0, P33) S~ m (18)



The next lemma provides a characterization for the minimal solution
which is obviously satisfied in Example 3.2.

Lemma 3.4 If P € L(A,C), then P is the minimal solution if and only if
E>(A) C ker(P). (19)

Proof. If P € L(A,C) is the minimal solution, then (19) follows from (18).

On the other hand, as P € L(A,C) it follows that ker(P) C ker(C).
This is easily seen when pre-multiplying (3) by z* and post-multiplying by
z for any x € ker(P). Hence, from (19) we obtain E>(A) C ker(C). Using
the same transformations as in the proof of Lemma 3.1 such that A,C are
as in (12), it follows that C; = 0 and P = S*PS € L£(A,C) has the form
P = [0 A, | partitioned according to (12). By Lemma 2.1, Py is nonneg-
ative definite and uniquely defined because Ags is stable and furthermore,
P € Ly (A,C). Moreover, the representation (18) of the uniquely defined
minimal solution yields that P and hence P have to be the minimal elements
of Lx(4,C) and L(A, C), respectively. m

The minimal solution is, by definition, nonnegative definite. Thus, the
previous lemma provides a sufficient condition for a Hermitian solution to
be nonnegative definite. This will prove useful later.

Corollary 3.5 If P € L(A,C) and E>(A) C ker(P), then P > 0.

To define the sequence {P;},, as in (4)—(7), let F € C™*™ be the initial
value and consider, for the first step, the Lyapunov equation

where Ay = A — BFy and C;Cy = FjFy + C*C. A nonnegative definite
solution P; is to be found. Consequently, Ly (Ao, Co) # 0 is a consistency
condition for the initial value Fy; i.e., in order to start the iteration, a matrix
F, admitting a nonnegative definite solution of (20) must be available.

Note that because of Lemma 3.1, the existence of P; is equivalent to the
existence of some matrix Fy € C™*" such that Es(Ag) C ker(Cp). In other
words,

Ln(Ag,Co) #0 <= E>(A— BF) C ker(Fp) Nker(C). (21)

That this condition can be satisfied will be demonstrated again using Ex-
ample 3.2.

Example 3.2 (continued) Let B = [} | and ¢ = 0. Then (A, B) is non-
stabilizable, but (21) is satisfied using Fo = [1, 0].

The following proposition proves that in case (21) is satisfied, the Lya-
punov equation (4) admits a nonnegative definite solution for each i. That
is, the existence of some solution for the first Lyapunov equation guarantees
that the complete sequence is well-defined.



Proposition 3.6 If P11 € Ly (A;, C;) exists for some i > 0, then Piio €
L (Ajy1,Ciy1) also exists, where A;11 and Ciy1 are defined as in (5)-(7).

Proof. From the existence of P11 € Ly (4;, C;) it follows that Fj 11, Ajt1,
and Cjy1 can be defined by (5)-(7). Moreover, analogous to the proof of

Theorem 2.4, P11 € La(Ait1,Citr1) where Ciy1 is given by (8). Hence,
using Lemma 3.1 we obtain that

EZ (Ai—l—l) C kel‘(éi+1). (22)

As ker(Ci41) C ker(Ci41) by (8), the existence of Py € La(Air1,Cit1)
follows from Lemma 3.1. m

Corollary 3.7 If E~(A — BFy) C ker(Fy) Nker(C) for some Fy € C™ ",
then the sequence {P;};», resulting from (4)-(7), is well defined.

Proof. The fact E>(A — BF) C ker(Fy) Nker(C) guarantees the existence
of P € Ly (Ag,Cy) because of (21). Inductively applying Proposition 3.6
proves the assertion. m

Next, we investigate the convergence properties of the sequence {P;},- .
Note that P; > 0 for all i € N and hence for convergence it is sufficient
to prove that the sequence is non-increasing. As in the proof of Theo-
rem 2.4 (7i), the sequence is non-increasing if and only if the difference be-
tween consecutive solutions, D; = P; — P;11, is nonnegative definite. More-
over, as D; € L(A;,F;_1 — F;), the following result is a consequence of
Lemma 3.4 and Corollary 3.5.

Proposition 3.8 The sequence {P;},., is non-increasing if for all i > 0,
the matriz D; is minimal in L (A;, F;_1 — F;). This condition is equivalent
to

B> (4;) C ker(D;).

The previous proposition gives a sufficient condition for the convergence
of the iteration. Now it remains to show that the sequence {P;};>1 can be
defined in such a way that this condition is satisfied. Note that in the ith
iteration, P; € L (4;-1,C;—1) is given and P;;; is chosen as one solution
in Lxr(A4;,C;). As Equation (4) can have several solutions and if P;; €
L (A, C;) is chosen arbitrarily, D; = P;,—F; 1 may not satisfy the condition
in Proposition 3.8.

Working with D; instead of P;;;, that is defining P;1; = P; — D; with
D; € Ly (A;, Fi—1 — F;) minimal, the sequence { P, };>1 is non-increasing due
to Proposition 3.8. However, in this case it is not guaranteed per se that
P11 > 0. Obviously, a necessary and sufficient condition for the existence of
some solution D; € Ly (A;, F;—1 — F;) such that the corresponding matrix
Py = P; — D; be nonnegative definite is that the minimal solution D]* €
Ly (A;, Fi_1 — F;) satisfies P, — D™ > 0. The next proposition shows that
this is always true.

10



Proposition 3.9 If D" € Ly (Ai, Fi—1 — F;) is minimal and furthermore,
P, € Ly (Ai1,Ci 1), then Pryy = P, — D" > 0.

Proof. The existence of the minimal solutions P™ € Ly (A4;,C;) and

1

P, € Ly (Aiy1,Ciq1) follows from the existence of P; and Proposition 3.6.
Moreover, by (8) and (22),

EZ (Az) C ker(CZ) C ker(Fi_l — E) (23)
and hence E> (A4;) C E> (A;—1). Thus, using Lemma 3.4,
Es (A;) = E> (A4;) N E> (A1) C ker (D) Nker (P}") C ker (D" — P").

This fact, together with P/* — D" € Ly (A4;, C;) proves, by Lemma 3.4, that
P" — D" = P,. Therefore, using Corollary 3.5 it follows that P, — D" >
P >0 =

Note that Proposition 3.9 can not be obtained as a consequence of Propo-
sition 3.8: in Proposition 3.9 D" is assumed to be minimal whereas in
Proposition 3.8, D; is defined as P; — P; ;.

Now we can state the convergence result for the Kleinman iteration for
computing nonnegative definite solutions of (1) in case of general, not nec-
essarily stabilizable, systems. The notation in (5)—(7) is maintained in the
following theorem.

Theorem 3.10 If there exists some Fy € C™*™ such that the Lyapunov
equation

AyPr + P Ay + CyCh =0
has a solution P = P; > 0, and we define the sequence {Pi}z‘zl via
Pin =P - D", i>1,
where D" is the minimal solution of the Lyapunov equation
AiDi+ DiAi + (Fio1 — Fy)" (Fio1 — F) =0, i > 1,

then the sequence {P;},~, is well defined and converges to a nonnegative
definite solution of (1).

Proof. For any 7 > 1 the existence of P; implies
Ez(Az) C ker(E-_l — F,)

in analogy to (23). Therefore, the existence of D" follows from Lemma 3.1
which permits us to construct P; ;. As P exists by hypothesis, the sequence
is well defined by induction.

11



Now from Dj® > 0 we get that the sequence {F;},., is non-increasing.
Moreover, as a a consequence of Proposition 3.9 and P; > 0 it follows that
P; >0 for all 4. This shows that P = lim;_,o, P; > 0 exists.

Finally, taking limits in (4) yields that P is a solution of (1) as P; is a
solution of (4). m

Some remarks are in order.

Remark 3.11 (i) According to Lemma 3.1, the assumption on Fy in
Theorem 8.10 can be changed to E>(Ag) C ker(Cp) .

(ii) Note that, for i > 2, we have A; = Aj—1 + BB*D;_1 and the Lya-
punov equation in the ith iteration is equivalent to A;D; + D;A; +
D; 1BB*D;_1 =0. Thus, we can compute D; directly from D;_.

(iii) The limit of the sequence {P;};>1 can be expressed as
P=pr-) D
i>1

The next theorem provides a result analogous to Theorem 3.10 in terms
of the usual Kleinman iteration. The minimality of D; will be guaranteed
by the minimality of both P; and P,y;. Again, the notation from (5)—(7)
will be employed.

Theorem 3.12 (general Kleinman iteration) If there exists an initial
matriz Fy € C™*" such that

EZ (A — BF()) C keI‘(F()) N ker(C)
and P;11 is the minimal solution of the Lyapunov equation
A;FPZ'.H + P14 + CZ*CZ =0

for all i > 0, then the sequence {P;},-, is well defined and converges to a
nonnegative definite solution P of the ARE (1). Moreover,

PL>P,>...Pi>P1>...> P

Proof. The sequence {P;};>1 is well defined because of Proposition 3.6.
Moreover, the minimality of P; guarantees E>(A;) C ker(P;y1) for each 4
due to Lemma 3.4. Hence,

E>(A;) = E>(4i) N E>(Ait1) C ker(Pyy1) Nker(P12) C ker(Diy1),

where the first equality is a consequence of the inclusion E (4;) C E>(A;41)
obtained from (23). Using Lemma 3.4 it follows that D; = P; — P41 is
minimal in Ly (4;, F;—1 — F;). From Proposition 3.8 we get that the se-
quence is non-increasing. As the sequence is bounded from below by zero,
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P =lim;_,o P; exists and is a nonnegative definite solution of the ARE (1)
by taking limits in (4). m

Note that the iteration in Theorem 3.10 is equivalent to the generaliza-
tion of the classical Kleinman iteration given in Theorem 3.12. This is a
consequence of the assertions

P, minimal, D; minimal =—- F;;; minimal
P11 minimal, ; minimal = D; minimal

which are contained in the proofs of Proposition 3.9 and Theorem 3.12.
However, in the first step, Theorem 3.12 requires the minimality of P;
which is not necessary for Theorem 3.10. This is the reason why The-
orem 3.12 permits only the construction of a particular solution of (1),
whereas using Theorem 3.10, all the nonnegative definite solutions of (1)
can be approximated by different choices of P; and using Remark 3.11 (7).

Example 3.13 Let A = [_012] fora>0,a# V2, B= (51, C=11, 0]
Then (A, B) is nonstabilizable. With Fy = [1, 0], for the Kleinman iteration
as given in Theorem 3.12 we obtain the sequence P; := [%i 8], 1=1,2,...,
where

(pitior = 1 5 169 195025 259717522849
Piri>l =9 127 408’ 470832 627013566048 [

The only positive semidefinite solution of the ARE is P = [*1};‘/5 0 ]

Hence the sequence of relative errors obtained by the Kleinman iteration is
{2.07 x107",5.92 x 1073,5.13 x 107,3.85 x 107'%,2.68 x 1076, ... }.

The last example implies quadratic convergence of the sequence generated
by the Kleinman iteration. However, it is not yet clear how the conditions
for the convergence rate of the iteration as investigated in [GL98] for the
case that (A, B) is stabilizable transform to the situation considered here.

The Kleinman iteration as given in Theorem 3.12 can be used to compute
special solutions in Rar(A, B, C). Of particular interest is the minimal ele-
ment of Rar(4, B, C) as this is needed for the solution of the linear-quadratic
optimal control problem without stability [Gee88].

Theorem 3.14 Let the matriz triple (A, B, C) be in Kalman canonical form
and assume the assumptions of Theorem 8.12 hold. Then choosing

Fpb=[0 F, 0 Fy|

such that Ay — BoF5 is stable, the sequence {Pz'}z'21 generated by the Klein-
man iteration converges to the minimal solution of (1) in Ry (A, B,C).

13



Proof. From the assumed properties of Fy we obtain that E> (Ag) C
ker (Fp) Nker (C). By Theorem 3.12, the Kleinman iteration converges to a
nonnegative definite solution. Denote this solution by P,.

By Lemma 3.4 we get that E> (Ap) C ker (P;) by the minimality of P;.
Moreover, from the proof of Theorem 3.12 we now that the sequence {P;};>1
is non-increasing. Hence, ker (P;) C ker (Pj11) C ker (Py). It follows that
EZ (A()) C ker (P)

Moreover, we have V> (A4,C) :=V(A,C)NE>(A) C E> (Ao) because for
allz € V(A,C), z has theformz = [ 21 0 3 0 | and by the choice of
Fy we obtain Az = Agz.

Collecting these results yields V>(A,C) C ker (P;). As the minimal
solution is the unique element of Ry (A, B, C) satisfying ker (P) = V (4, C)
(see [Gee88, Wim95]) and V. (A4,C) := V(A4,C) N E-(A) C ker (P) for all
P e Ry (A, B,C) (see [Wim94)), it follows that P, = Ppin. ®

4 Existence of Nonnegative Definite Solutions of
the ARE

Using Theorem 3.12 or Theorem 3.10 a necessary and sufficient condition
for the existence of nonnegative definite solutions of (1) is obtained from the
existence of some initial value Fy € C™*" satisfying

Ez(A — BF()) C ker(FO) N ker(C)

At least two particular cases are evident. If the system (A, B) is stabiliz-
able then, choosing Fy such that Ay is stable, we have E>(Ag) = {0} C
ker(Fp) Nker(C). In case the unstable part of A is also unobservable, that
is if > (A) C ker(C), then we can choose Fy = 0. The next theorem shows
that a consistent initial matrix Fyy exists if and only if Rar(4, B, C) # 0.

Theorem 4.1 The ARE (1) admits a nonnegative definite solution if and
only if there ezists a matriz Fy € C™ ™ satisfying

E> (A — BF) C ker(Fp) Nker(C). (24)

Proof. If P € Ry (A, B,C) then, choosing Fy = B*P, the ARE (1) can be
written as

AEP-FPA()-FCSCO:O, Ay = A— BFy, CSC():F(;(F()'FC*C,
which admits P as a solution. Thus, from Lemma 3.1 we get
EZ (A — BF()) C keT(C()) = keI(F()) N ker(C)

Conversely, the existence of Fy € C™*" satisfying (24) together with
Theorem 3.12 (or Theorem 3.10) proves the existence of

P = lim (P) € Ry(4,B,C). |

1—00
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Remark 4.2 The following assertions are equivalent to the eristence of
some solution P € Ry (A, B,C):

1. Bs(A) C V(A,C) + R(A, B).

2. {N € Tnv(4) | V<(4,C) C N C Ex(A) C V(A,C),N + R(A, B)} is
not empty.

3. E5(A) C V(A,C) + R(A,B) and dim(E_(H)) = 2dim(V=(4,C)),
where H = [—cfl*c __BA]T] 1s the Hamiltonian matrix corresponding to
(1).

4. E>(A — BFp) C ker(Fy) Nker(C) for some Fy € C™*™.

Condition 1 in Remark 4.2 is contained in [GH90] and Condition 2 can be
found in [Wim94]. The equivalence between Conditions 1 and 2 is obvious,
taking N = V (A, C). Condition 3 can be found in [PH94] for the differential
periodic Riccati equation and in [Wim94] for the ARE. A proof for the
equivalence between Conditions 2 and 3 is given in [Wim94].

The equivalence between Condition 4 and the rest is a consequence of
Theorem 4.1, but a direct proof of this equivalence is particularly inter-
esting because it provides a geometric interpretation for the “consistency
condition” which devises a way to obtain an initial matrix Fy. The direct
proof of the equivalence between Conditions 1 and 4 corresponds to Propo-
sition 4.3 below.

For the following, we may assume without loss of generality that the ARE
(1) is given in this form. Obviously Condition 1 in Remark 4.2 is equivalent
to the stability of the uncontrollable and observable part of (A, B, C), that
is, to the stability of A4 in the Kalman decomposition (2).

Proposition 4.3 There exists a state feedback matriz Fy € C™*" such that
E>(A — BFy) C ker(Fy) Nker(C) if and only if in the Kalman canonical
form of A as given in (2), A4 is stable.

Proof. Suppose that Fy = [ F, F, F3; F, ] is partitioned analogous to
(2). Then the matrix Ay = A — BFj has the form

Ay —BiFy Ay —B\F, Aiz—DBiF3 Ay— BiFy

A — —ByFy Ay — BoFy —ByF3 A9y — By F)
0 0 0 As Ass
0 0 0 Ay

Thus, each eigenvalue X of A4 with nonnegative real part is also an eigenvalue
of Ag. Hence, there exists some z € Ex(Ag) such that 7 = [T 27 21 2T

with z4 # 0. Such a vector satisfies z € E>(Ag) but z ¢ ker (C) =V; @ V3.
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Conversely, if A4 is stable, choosing F5 such that Ay — BoFb is stable
and Fy = [ 0 F, 0 0 ], the matrix Ay = A — BFj is given by

A1 A —BiFy Az Ay

A = 0 A2 — BQFQ 0 A24
=1 o 0 Az Asy
0 0 0 Ay

Then, each z € E>(A) partitioned as above satisfies that x4 € E>(A4) =
{0} and z9 € EZ (A2 — BQFQ) = {0} This implies x € V1 & V3 C keI'(F()) n
ker(C') which completes the proof. m

The proof of Proposition 4.3 shows how a consistent initial matrix Fj
which is needed for starting the Kleinman iteration can be obtained: first,
compute the Kalman decomposition of (A, B, C'). Then stabilize the subsys-
tem (Ag, B2) by a state feedback matrix F5. This can be achieved by some
stabilization procedure as described, e.g., in [Sim96]. The initial matrix is
then given as Fy = [ 0 F, 0 0 }

5 Concluding Remarks

We have shown that the Kleinman iteration (or Newton’s method) for the
ARE (1) may converge to a nonnegative solution of the ARE even if the
underlying system is nonstabilizable. Necessary and sufficient condition for
convergence of the Kleinman iteration to some nonnegative definite solution
of the ARE are derived. These conditions together with the Kleinman itera-
tion can be used to prove the existence of nonnegative solutions of the ARE.
Using the Kalman decomposition of the underlying linear time-invariant sys-
tem, we have also described a constructive way to compute an initial state
feedback Fj from which the Kleinman iteration converges to some nonneg-
ative solution of the ARE. If the initial value is chosen in a special way,
the iteration converges to the minimal nonnegative definite solution of the
ARE. This can be used in order to solve the linear-quadratic optimal control
problem without stability.

The realization of the methods derived in this paper as efficient numer-
ical algorithms requires further study. Most of the results are based on
the Kalman decomposition of the underlying linear time-invariant system.
Computing this decomposition is relatively expensive and is based on crucial
rank decisions. Therefore it will be more appropriate to work with the orig-
inal data without going to the Kalman decomposition. The initialization of
the Kleinman iteration as well as the numerical solution of the Lyapunov
equation in each iteration for the minimal solution without working with the
Kalman decomposition are open problems and future work is needed here.
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