UNIVERSITAT

BREMEN Zentrum fiir Technomathematik
Fachbereich 3 — Mathematik und Informatik

Balanced Truncation Model Reduction
of Large-Scale Dense Systems on
Parallel Computers

Peter Benner Enrique S. Quintana-Orti
Gregorio Quintana-Orti

Report 99-07

Berichte aus der Technomathematik

Report 99-07 September 1999

Balanced Truncation Model Reduction of Large-Scale Dense
Systems on Parallel Computers?

Peter Benner
Zentrum fir Technomathematik
Fachbereich 3 — Mathematik und Informatik
Universitat Bremen
D—28334 Bremen
Germany
benner@math.uni-bremen.de

Enrique S. Quintana-Orti Gregorio Quintana-Orti
Departamento de Informatica
Universidad Jaime I
12080 Castellén
Spain
quintana@inf.uji.es gquintan@inf.uji.es

IPartially supported by the DAAD programme Acciones Integradas Hispano-Alemanas. Enrique
S. Quintana-Orti and Gregorio Quintana-Orti’s research is funded by a Bancaixa research project.

Abstract

Model reduction is an area of fundamental importance in many modeling and control appli-
cations. In this paper we analyze the use of parallel computing in model reduction methods
based on balanced truncation of large-scale dense systems. The methods require the compu-
tation of the Gramians of a linear-time invariant system. Using a sign function-based solver
for computing the Cholesky factors of the Gramians yields some favorable computational as-
pects in the subsequent computation of the reduced-order model, particularly for non-minimal
systems. As sign function-based computations only require efficient implementations of basic
linear algebra operations readily available, e.g., in the BLAS, LAPACK, and ScaLAPACK,
good performance of the resulting algorithms on parallel computers is to be expected. Our
experimental results on a PC cluster show the performance and scalability of the parallel
implementation.

1 Introduction

Consider the transfer function matrix (TFM) G()\) = C(M — A)~!B + D, and the associated
stable, but not necessarily minimal, realization of a linear time-invariant (LTI) system,

#(t) = Az(t)+ Bu(t), t>0, z(0)=a1°, .
y(t) = Cz(t) + Du(t), t>0 (1)

with A € R**" B € R"™*™_ (C € RP*" and D € RP*™. The number of state variables n is
said to be the order of the system.
We are interested in finding a reduced order LTI system,

ir(t) = Az(t) + Bru(t), t>0, z,(0) =z,)
yr(t) = Crzp(t) + Drup(t), t>0 (2)

of order r, r < n, such that TFM G,(\) = C.(A[— A,)"'B, + D,, approximates (1).
A large class of model reduction methods rely on similarity transformations, where given
Y = [17,L7]" € R™" and Y~! = [T, L,], with T; € R"™™ and T, € R**", the reduced-
order model is determined as A, = T}AT,, B, = T;B, C, = CT,, and D, = D. In this paper
we will focus on these methods. Moreover, hereafter, we assume that A is a (Hurwitz) stable
matrix, i.e., the spectrum of A as denoted by A(A) is contained in the open left half plane.
This implies that the system (1) is stable, that is, all the poles of G(s) have strictly negative
real parts.

There is no general technique for model reduction that can be considered as optimal in an
overall sense since the reliability, performance and adequacy of the reduced system strongly
depends on the system characteristics. Model reduction methods usually differ in the measure
they attempt to minimize. The methods considered here are all based on balanced truncation
(BT) methods [33, 38, 40, 41]. They belong to the family of absolute error methods, which
try to minimize [|Ay]|lco = |G — G;||0o- Here, ||G||o denotes the L- or Hoo-norm of a stable,
rational matrix function which is defined as

|Glloo = €s8 SUp Omax(G(3w)), 3)
weR, w>0

where 7 := /=1 and omax(M) is the largest singular value of the matrix M.

Model reduction of large-scale systems arises, among others, in control of large flexible
mechanical structures or large power systems as well as in circuit simulation and VLST design;
see, e.g., [15, 16, 20, 34]. LTI systems with state space dimension n of order 102 to 10* (and
higher) are common in these applications. All balanced truncation model reduction methods
for LTI systems with dense coefficient matrices A have a computational cost of O(n3) floating-
point operations (flops). Large-scale applications thus clearly benefit from using parallel
computing techniques to obtain the reduced system.

A review of the most common approaches to compute reduced order models is given in
Section 2.

BT model reduction methods are strongly related to the controllability Gramian W, and
the observability Gramian W, of the system (1). The Gramians are given by the solutions of
two “coupled” (as they share the same coefficient matrix A) Lyapunov equations

AW, + W AT + BBT = 0, (4)
ATW,+W,A+CTC = o. (5)

As A is assumed to be stable, W, and W, are positive semidefinite and therefore can be fac-
tored as W, = ST.S and W, = RT R. The factors S and R are called the Cholesky factors of the
Gramians. The BT model reduction methods described in Section 2 use one of the products
W.W, or SR” for computing the reduced-order model. Hence, all the methods considered
have in common that in the first step, they compute the solutions to the Lyapunov equa-
tions (4) and (5). Traditional algorithms for solving these equations are the Bartels-Stewart
method [4] which computes the solution of a Lyapunov equation explicitly and Hammar-
ling’s method [24] which computes the Cholesky factors in equations of the form (4) or (5)
directly without computing the solution matrix. Both methods share an initial stage where
the real Schur factorization of A has to be computed by means of the QR algorithm [23]. The
parallelization of the QR algorithm on parallel distributed memory architectures has been
reported several times in the literature as a difficult task [13, 21, 39]. The algorithm itself
is not scalable [27], and the parallelization results [27, 28] are far from those of usual matrix
factorizations [11, 17].

In Section 3 we describe a different technique, based on the matrix sign function, for
solving Lyapunov equations as in (4) and (5). We will focus here only on BT model reduction
methods using the product SR” and hence describe algorithms for computing the Cholesky
factors directly. This algorithm only requires efficient and scalable parallel kernels such as
matrix factorizations, triangular linear system solvers, etc. Moreover, it has the advantage of
returning full-rank factorizations of the Gramians. That is, if the system is not minimal, i.e.,
W, and/or W, are singular, then the Cholesky factors computed by this method are full-rank
matrices having less rows than columns in contrast to Hammarling’s method which returns in
this case square but singular matrices. This saves some computational cost and workspace in
the subsequent computations for computing the reduced-order model. This approach may also
have some advantages regarding numerical robustness if the McMillan degree and a minimal
realization of the system is to be determined using the Cholesky factors of the Gramians.

The model reduction techniques described here are based on a singular value decompo-
sition (SVD) of the product SR”. Hence, in Section 4 we describe several approaches for
computing the SVD of the product of two matrices with enhanced accuracy.

The parallel implementations of the algorithms employ the kernels in ScaLAPACK [11].
This is a public-domain library for parallel computers which provides scalable parallel dis-
tributed subroutines for many matrix algebra kernels in LAPACK [1].

Our experimental results in Section 5 report the performance and scalability of the parallel
implementations on a parallel distributed cluster based on Intel Pentium-II processors. These
results can be extended to many similar model reduction algorithms proposed in the literature
as they usually require the solution of the same types of computational problems. Finally, in
Section 6 the conclusions of our work are outlined.

2 Balanced Truncation Model Reduction Methods

In this section we review three model reduction algorithms based on BT methods. Serial
implementations of these algorithms can be found in the Subroutine Library in Control The-
ory — SLICOT! [8]. We also consider a modification of the algorithms by replacing the
Cholesky factors of the Gramians by full-rank factors, resulting in a smaller arithmetic cost
and workspace requirement in case of non-minimal LTT systems.

! Available from ftp://wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT.

Equations (4) and (5) have a unique pair of solutions as assuming A to be stable guarantees
that A; +; # 0 for all \;, A\; € A(A). Moreover, as BBT and CTC are semidefinite matrices,
the Gramians are also semidefinite and can be decomposed as W, = ST and W, = RTR.
The factors S, R € R"*™ can be chosen triangular and are called the Cholesky factors of the
Gramians.

In [40] it is shown that BT model reduction can be achieved using SR instead of the
product of the Gramians themselves. The resulting square-root (SR) algorithm avoids working
with the Gramians as their condition number can be up to the square of the condition number
of the Cholesky factors. In these algorithms equations (4) and (5) are initially solved for the
Cholesky factors without ever forming the Gramians explicitly. This can be achieved, e.g.,
by the algorithms described in [24, 6]. Then the SVD of the product

1 0 v
T 1 1
s =i g || V])
is computed. Here, the matrices are partitioned at a given dimension r with ¥; = diag (o1, ...,0,)
and X9 = diag (0y41,...,0,) such that

012022 ...0;, > 041 2 0py2 > ... 2 0 2 0. (7)

If o, > 0 and 0,41 = 0, i.e., 39 = 0, then r is the McMillan degree of the given LTI system.
That is, r is the state-space dimension of a minimal realization of the system.

For model reduction, r should be chosen in order to give a natural separation of the states,
i.e., one should look in the Hankel singular values o, kK = 1,...,n, for a large gap o, > 0,41
[40].

Notice that the SVD in (6) can be obtained without explicitly forming the product of the
Cholesky factors using the techniques in [19, 25]. Finally, defining

T, =%, "?V'R and T, =S"Ux; "%, (8)
the reduced system is given by
A, =T,AT,, B,=TB, C,=CT,, and D = D,. (9)

In case that ¥; > 0 and X9 = 0, (9) is a minimal realization of the TFM G(X) [40], i.e.,
r is the minimum dimension of the state-space for which a realization of G()\) in the form
of an LTI system (1) is possible. Hence, choosing r in (6) maximal such that o, > 0 and
or+1 = 0, this procedure can be used to compute minimal realizations. Of course, the decision
if 0,41 = 0 has to be based on a numerically reliable criterion.

It can further be proved that for a stable LTI system, choosing any partitioning in (6)
such that o, > 0,41 yields a stable, minimal, and balanced reduced model. The Gramians
corresponding to the resulting TFM G, (\) are both equal to £;. See [40] for a proof.

As the reduced model in (9) is balanced, the projection matrices in (8) tend to be ill-
conditioned if the original system is highly unbalanced, resulting in inaccurate reduced-order
models. An alternative here are the balancing-free (BF) algorithms [38]. Here, the reduced-
order model is not balanced. In these algorithms, after solving equations (4) and (5) for the
Gramians, an orthogonal matrix Q € R"*" is computed such that

QWCWOQT =S (10)

is in upper real Schur form.Using an eigenvalue reordering procedure as described, e.g., in [23],
a pair of orthogonal matrices @y, Q¢ € R**™ is computed such that the diagonal blocks in
QTW.W,Q, and QchWon are ordered, respectively, in ascending and descending order of
the absolute magnitude of the eigenvalues. Let Q, = [Qq,, Qa,], and Qq = [Q4,, Qa,], With
Qay> R, € R™7 then the SVD

T
0 Qa, = [U1 U2 [2(})1 2?2 } [“;;T] ; (11)

provides the orthonormal matrices that allow the construction of the reduced system as in (8)
and (9). The development of the periodic QR algorithm [12, 26] allows to compute the
factorization in (10) without explicitly constructing the product W,.W,. The method can also
be adapted to work on the Cholesky factors thus providing a square-root algorithm.

Balancing-free square-root (BFSR) algorithms combine the best characteristics of the SR
and BF approaches [41]. BFSR algorithms share the first two steps (solving (4) and (5) for
the Cholesky factors and computing the SVD in (6)) with the SR algorithms. Then, two QR
factorizations are computed,

A~

STU1=[P1P2][]§], RTVlZ[QlQﬂ[?],

where P;, Q; € R™ " have orthonormal columns, and R, R € R"*" are upper triangular.
Note that P, Qo are not needed such that it is sufficient to compute the “skinny” QR
decompositions STU; = PR and RTV; = Q1R.

The reduced system is then given by the projection matrices

T,=QTP)'Qf, T =n,

and (9).

For the implementations reported in this paper we chose the SR and BFSR algorithms as
the BF algorithm usually shows no advantage over BFSR algorithms with respect to model
reduction abilities. Moreover, the BF approach is potentially numerically unstable. For one,
it uses the product W,W, rather tan SR”, leading to a squaring of the condition number
of the matrix product. Second, the projection matrices 7) and T, computed by the BFSR
approach are often significantly better conditioned than those computed by the BF approach
[41]. Furthermore, both SR and BFSR algorithms can be implemented efficiently on parallel
computers while the BF method needs a parallel implementation of the QR algorithm (see
Equation (10)) and re-ordering of eigenvalues which present severe difficulties regarding its
parallel implementation as described in the introduction. For these reasons, we avoid the
implementation of the BF algorithm.

Both, the SR and BFSR method can be used to compute minimal realizations of the
given LTT system by choosing 7 in (7) as the McMillan degree of the system. Though the
BFSR method is numerically more reliable than the SR approach (the computed projection
matrices are usually better conditioned than those in (8)), the SR method is implemented
here as the reduced-order model in (9) is balanced. A balanced realization is needed when
computing reduced-order models based on optimal Hankel-norm approximation (HNA) [22].
The reduced-order models computed by either one of the SR or BFSR approaches can also be
used to compute a singular perturbation approximation (SPA) [32] of the given LTI system.

Parallel versions of the SPA or HNA methods can be easily obtained based on the imple-
mentations of the SR and BFSR methods described here analogously to the corresponding
SLICOT routines ABO9BD? and ABO9CD?, respectively, [42]. Only matrix products and sums
as well as the solution of linear systems are required to obtain SPA or HNA models from the
models obtained by the SR or BFSR methods.

The main goal is here to show how parallel computing can be used to compute reduced-
order models that can be easily handled, in a second stage, on a single-processor machine.

So far we have assumed that the Cholesky factors S and R of the Gramians are square
n X n matrices. For non-minimal systems, we have rank (S) < n and/or rank (R) < n. Hence,
rather than working with the Cholesky factors, we may use full-rank factors of W, W,. As
W, and W, are positive semidefinite, there exist matrices § € R%*" R € R%*" guch that
W, =S8TS, W, = RTR, and

ne := rank (S’) = rank (S) = rank (W,),

n, := rank (R) = rank (R) = rank (W,) .

The full-rank factors S, R, hereafter sometimes also referred to as Cholesky factors, can be
obtained from S and R by omitting the trailing rows of the factors that must be zero due to
the triangular form of S and R. (For non-triangular factorizations, it is sufficient to compute
QR factorizations of S and R.) A more efficient way is to compute S and R directly, e.g.,
with the algorithm described in Section 3. In the latter case, S and R can be defined by
S:=[8 0],R:=[R 0]. The SVD in (6) can then be obtained from that of SRT as
follows. Here we assume n. > n,, the case n. < n, can be treated analogously. Then we can
compute the SVD

~

SRT = [j [? :| VT’ %= diag (017"'7an0)’ (12)

where U € ReXne |/ ¢ Rt Xno_ Partitioning U = [Uy U,] such that U; € R X% the
SVD of SRT is given by

T U, | Uy 0 21‘0 VT‘ 0
SR = [o\o rn_ncHo\oH 0 [Tons | (13)

Then the decision on the index r yielding the McMillan degree of the system or the size of
the reduced order model can be based on the singular values of $1. Note that the subsequent
computations can also be performed working with U, 31, and V rather than using the
data from the full-size SVD in (13). This amounts in a significant savings of workspace and
computational cost. For example, using the Golub-Reinsch SVD (see, e.g., [23]), (6) requires
22n? flops and workspace for 2n? real numbers if U, V are to be formed explicitly while (12)
only requires 14n.n2 + 8n3 flops and workspace for n2 + n2 real numbers. In particular, for
large-scale dynamical systems, the numerical rank of W., W, and S , R is often much less than
n; see [35, 36] and Remarks 3.1, 3.3 below. Suppose that (numerically) n, = n, = n/10 (which
can quite frequently be observed when the system comes from the spatial discretization of
parabolic or hyperbolic partial differential equations), then the computation of (12) is 1000

2 Available from ftp://wgs.esat.kuleuven.ac.be/pub/WGS/SLICOT/libindex.html#A

times less expensive than that of (6) and only 1% of the workspace is required for (12) as
compared to (6). Some more savings are obtained from the cheaper computation of the
projection matrices yielding the reduced-order models.

In the next section we show how the full-rank factors S and R can be computed directly
without having to compute S, R or even W,, W, first.

3 Computing the Cholesky Factors of the System Gramians

All the model reduction methods in the previous section require, as a first stage, the solutions
(or their Cholesky factors) of two Lyapunov equations. In this section we describe Lyapunov
equation solvers based on the matrix sign function. Details of the algorithms can be found in
[9]. These are specially appropriate for parallel distributed memory computers. Some minor
modifications of the algorithms in order to address some properties of the Lyapunov equations
corresponding to model reduction are described here.

Consider a matrix Z € R"*" with no eigenvalues on the imaginary axis and let Z =

S [JO_ J0+] S~! be its Jordan decomposition [23]. Here, the Jordan blocks in J~ € RF*K

and JT € R(@=k)x(n=k) contain, respectively, the eigenvalues of Z in the open left and right

complex planes. The matriz sign function of Z is defined as sign (Z) := S [_OI’“ In(ik] S
where I;, denotes the identity matrix of order k. Note that sign (Z) is unique and independent
of the order of the eigenvalues in the Jordan decomposition of Z. Many other definitions of
the sign function can be given; see [29] for an overview.

The matrix sign function has proved useful in many problems involving spectral decom-
position as (I, —sign (Z))/2 defines the skew projector onto the stable Z—invariant subspace
parallel to the unstable subspace. (By the stable invariant subspace of Z we denote the
Z-invariant subspace corresponding to the eigenvalues of Z in the open left half plane.)

Applying Newton’s root-finding iteration to Z2? = I,,, where the starting point is chosen
as Z, we obtain the Newton iteration for the matrix sign function:

1
Zo + Z, ZH1+§QQ+ZfL k=0,1,2,..., (14)
Under the given assumptions, the sequence {Z;}32 , converges to sign (Z) = limy_, Z [37].
Although the convergence of the Newton iteration is globally quadratic, the initial con-
vergence may be slow. Acceleration is possible, e.g., via determinantal scaling [14],

_1

Zy < cply, Ccp= |det (Z]c)‘ n,

where det (Z)) denotes the determinant of Z;. Other acceleration schemes can be employed;
see [2] for a comparison of these schemes.

Roberts [37] was the first to use the matrix sign function for solving Lyapunov (and
Riccati) equations. In the proposed method, the solution of the stable Lyapunov equation

ATX + XA+ Q =0, (15)

is computed by applying the Newton iteration (14) to the Hamiltonian matrix H = [3 72@]

corresponding to (15). The solution matrix X* can then be determined from the stable Z—
invariant subspace given by the range of the projector (I, —sign (H))/2. Roberts also shows

in [37] that, when applied to H, the Newton iteration (14) can be simplified to

1
A() < A, Ak+1 < 5 (Ak +A/;1)’
k=0,1,2,... (16)

Qo & @ Qun ¢ o (Qut (A7) QALY

and that X = % limy_y00 Qk. The sequences for A and Q}, require 6n3 flops per iteration so
that 56 iterations are as expensive as the Bartels—Stewart method [4].

Iteration (16) can be applied to (5) directly by setting Qo := CTC in order to obtain
the observability Gramian as W, = Q4 /2. For (4), we just have to replace A by AT while
setting Qo := BBT. Both iterations can be combined so that W, and W, are computed
simultaneously as follows

Ay:= A, Py:=BBT, Q,:=CTC.
FOR k= 0,1,2,... until convergence

_1

¢k |det (Ag)[7w,

1 2 41—1
Ak+1 < E (Ak- +ckAk),

Pk+1 — (Pk + CiAEIPk (A;I)T),

2k
1 _ _
Qr+1 E (Qk + C%(Ak l)TQkAk 1)’

At convergence, W, = Py /2, and W, = Qoo /2.

Efficient convergence criteria for these iterations have been proposed in [9, 6]. As A is a
stable matrix, Ay, = limy_,o, A = —I, and a suitable convergence criterion for the iterations
is to stop when the relative error in the A-iterates drops below a tolerance threshold, i.e., if

|4k + Inlloo < 7l[Aglloo

for a user-defined tolerance 7. In our implementations we employ 7 = ny/e, and perform
two additional iterations once the convergence criterion is satisfied. Due to the quadratic
convergence of the Newton iteration, this is usually enough to reach the attainable accuracy.

Iteration (17) has been used in [30] as the first step in a balanced model reduction algo-
rithm and was extended for generalized Lyapunov equations in [5].

In [31, 9] iteration (16) was modified to obtain the Cholesky factors rather than the
solutions themselves. The basic idea is that if Q = CTC and Cy = C, the iterations for the
symmetric matrices @ can be written in factored form as

1 C r C
Qrk+1=Cly1Cry1 = [§] [§] ,

E CkaAlzl CkaAlzl
yielding
1 C,
Cri1 — —— 1 - 18
T Vaa [ckCrAg "] (%)
Similarly, for iteration (16) with By := B we obtain
1
Byy1 — ——|[By, cA 1B 19
1 \/2719[ks CkA) By] (19)

7

Using (18) and (19), the workspace required to store the By’s, C’s is doubled in each iteration
step. This can be avoided by computing in each iteration step an LQ factorization of By
and a QR factorization of Cy; such that

R
Byy1 = [Sk+10lUg+1, Crt1 = Vi [IBH] :

As
ByBl = 5,SF, CFc, = RIR,,

it is sufficient to store the triangular factors in By, C%. The orthogonal factors need not be
accumulated, but still the amount of work required in each iteration step is increased by these
factorizations. Therefore, in [9] a compromise is proposed: first, fix the available workspace
for the Cy’s (here also for the By’s). A reasonable amount is a 2n x n array (or n x 2n for the
By’s) as the rank of the required Cholesky factor R (and S) cannot exceed n. Therefore, we
may use (18) and (19) as long as Cy € RPt*™ for p;, < n and By € R"*™k for my < n, and
then switch to working with the triangular factors obtained by the factorizations. Hence, we
perform k < log, 7 iterations with (19) and [< log, 7 iterations with (18) before starting to
compute factorizations in each step and work only with the triangular factors. If convergence
is achieved before the switch, we have to compute final factorizations to obtain the Cholesky
factors.

Here, we propose a slightly different strategy taking into account that for large-scale
non-minimal systems, the Cholesky factors are often of low (numerical) rank such that we
can save some workspace and arithmetic work by not allowing the iterates for the Cholesky
factors to become rank-deficient. That is, in each step we compute a rank-revealing QR
decomposition of the matrix in (18), using a QR decomposition with column pivoting [23].
The rank-revealing LQ decomposition in (19) is obtained as a QR decomposition with column
pivoting of B;{H. The rank of the iterates is then determined using an incremental condition
estimator [10] resulting in the following decompositions:

1 [Ck] — Vo [(Rrk+1)11 (Rik+1)12] e
ckaA,;1 + 0 (Rg41)22
1

V2c

_ Sii) 0
B Al — 1B [(k—i—lll]U _
\/2%[k> kA D] KU1 (Spa1)ar (Skyi)oe | FFE

Here, V41, Ugy1 are orthogonal matrices, ch+1 and HEH are permutation matrices, (Rg11)11 €
R'e+1 XTk+1 and (Sk+1)1T1 € R%k+1%%k+1 gre upper triangular matrices where 71, Sk41 are the
estimated ranks of the iterates, and (Rgy1)22 ~ 0, (Sks1)22 = 0. Setting (Rgi1)22 = 0,
(Sk+1)22 = 0, we can proceed with the new iterates

Crr1 [(Reg1)11 (Rpgr)12|TIg,, € RFEC1XT,

Sk+1)11
Byt + H1?+1[Esk1321 € RM*Sk+1

Using the notation in Section 2, we have that limg_, o, By = ST and limy_, oo C) = }AB, i.e., the
iterates converge to the full-rank factors of the Gramians. As in most applications, m,p < n
and the numerical rank (see, e.g., [23]) of the Cholesky factors S, R of the system Gramians is
also usually much smaller than n, this technique quite often saves a large amount of workspace

and computational cost compared to using the technique described above where the workspace
for the iterates is increased up to size n X n. As outlined in Section 2, the product SRT is
a small size, in general rectangular, matrix for which the subsequent computations needed
for model reduction are much cheaper than for the full or triangular n x n Cholesky factors
as obtained by Hammarling’s method which is used in the implementation of the balanced
truncation model reduction algorithms described in [42].

The Lyapunov solvers described above are iterative procedures composed of LU and QR
factorizations, triangular linear systems, and matrix inversions (see, e.g., (17) and (18)). These
matrix operations are of wide appeal for computer architectures that can take advantage of
block-partitioned algorithms, and specially for parallel distributed architectures [11, 17].

In our experiments, we base our rank decisions on a relative tolerance threshold 10ne,
where n is the size of the matrix and ¢ is the machine precision.

Remark 3.1 By allowing ||(Rg+1)22|| and ||(Sk+1)22|| to become larger or by fizing the number
of allowed columns in Ry and Sy, the above procedure can also be used to obtain low-rank
approzimations of the Cholesky factors. In particular for LTI systems having Gramians with
fast decaying eigenvalues, such low-rank approximations often yield all relevant information
needed for model reduction. This is also used in [35] for the model reduction algorithms
developed there for LTI systems with sparse coefficient matriz A.

Remark 3.2 The full-rank factors of the system Gramians can also be used directly to com-
pute a reduced-order model using the dominant subspace approach proposed in [35].

Remark 3.3 The above algorithm can be used to compute a numerically minimal realization
and the corresponding state-space dimension Tuyin, ¢.e., the numerical McMillan degree, of
an LTI system in the presence of rounding errors. Here, we denote quantities computed with
finite precision arithmetic with a “tilde”. Having computed the Cholesky factors S and R
of the Gramians using the algorithm described above, and computing the SVD of SRT as in
(6), we obtain the Hankel singular values {01,...,0,}. In analogy to the numerical rank of a
matriz (see, e.g., [23, Chapter 2]), we define Timin by

012 ...0f, > €01 2 Ofi41 = - 2 Op.

A numerically minimal realization can then be computed by any of the methods described in
Section 2 by splitting the SVD in (6) such that ¥, = diag (d1,...,0m,,,)-

As with any rank decision, the accuracy of the computed singular values is crucial to
the successful determination of the numerical McMillan degree. Therefore we review in the
next section some methods that can be used for computing an SVD of SRT with enhanced
accuracy.

4 Computing the SVD of SRT with Enhanced Accuracy

The SR and BFSR algorithms require the computation of the SVD of the matrix product
SRT (see equation (6)). The most direct method is to construct the matrix product and then
compute the SVD.

The accuracy of the computed SVD can be improved if the SVD is computed without
forming the explicit product [19, 25]. The main drawback of this approach is the lack of
efficient parallel routines for its computation.

A recent method [18] allows an accurate computation of the SVD in case S and R are
full-column rank matrices. The algorithm, adapted for the matrix product SR, works as
follows:

Input : S € RX" R € R¥*"? rank(S) = rank (R) = n.

Step 1. Compute Ag = diag (||Se;||2), with e; the i-th column of T,,.
Set S = SAG! and R = RAg.

Step 2. Compute a QR decomposition with column pivoting of R

r-ql * .

Ok—n,n

Step 3. Compute the matrix product F = STIRT.

Step 4. Compute the SVD of F' by means of the Jacobi method

T _ by
U ' FV = [Ornn |

Output: The SVD of SR’ is given by

\%4 On k- by O0p ke
UT SRT n,k—n _ n,k—n
()Q [Ok—n,n Ik—n,k—n :| [Ok—n,n Ol—n,k—n

Unfortunately, the above algorithm requires both S and R to be full-column rank matrices
and hence can only be applied in our situation if both Gramians are nonsingular, that is, if
the LTI system represents a minimal realization of the TFM G(\). This is rarely the case
in practice; in particular in model reduction one frequently starts with just any realization.
Moreover, as mentioned before, the computed numerical rank of the Cholesky factors may be
smaller than expected.

ScaLAPACK [11] provides a parallel routine for computing the SVD of a general matrix.
As no parallel routine is available in ScaLAPACK (version 1.6) for computing the SVD of a
matrix product without forming the product explicitly, this will be our method of choice in
case S or R are column rank-deficient matrices, that is, if we want to work with the full-rank
factors §, R and compute the SVD in (12).

Otherwise, we will use an adapted version of the above algorithm. The implementation of
the algorithm is direct on parallel architectures if we replace in Step 4 the Jacobi SVD with
the implementation provided in ScaLAPACK. Note that this implementation is based on the
Golub—Kahan method (see, e.g., [23]) and hence the favorable error bounds in [18] may not
hold. Still, the modified algorithm will yield better numerical results than just computing the
SVD of the explicit matrix product SRT. See [3] for details.

5 Experimental Results

In this section we evaluate the accuracy and performance of our parallel model reduction
algorithms for continuous-time LTT systems:

10

— PDGECMSR: The SR method for model reduction.
— PDGECMBS: The BFSR method for model reduction.

For this purpose, we compare these parallel routines with the analogous serial algorithms
in SLICOT. This library includes the Fortran 77 routine ABO9AD which implements, among
others, the SR and BFSR methods.

All the experimental results in this section were obtained on Intel Pentium-II machines,
using Fortran 77 algorithms, and IEEE double-precision floating-point arithmetic (¢ = 2.2204 x
10716).

5.1 Numerical accuracy

We first illustrate the reliability of the parallel model reduction algorithms by means of two
examples of moderate order.

We employ the difference in frequency response between the TFMs of the original system
and the reduced system to measure the reliability of the model reduction algorithms. An
upper bound for this difference is given by [40]

n
|G — Grlloo <2 Z o =: 6,

i=r+1
where o, Kk = 1,...,n, are the Hankel singular values of the system, r is the order of the
reduced model, and || . ||o here denotes the L -norm of a TFM. In routine ABO9AD, r is

determined such that o, < 7, with 7 a user-supplied tolerance threshold. The recommended
value for model reduction is 7 = co; with ¢ € [10_5, 10_3]. In case a minimal realization is
required it is suggested to use a tolerance threshold 7 = neo;. We employ the same thresholds
in our parallel algorithms.

Example 1 This is Example 18 from [7]. The system matrices in this example come from a
linear-quadratic optimal control problem of one-dimensional heat flow. The system is single-
input/single-output (m = p = 1) and the order n is of arbitrary size. Increasing n results in a
finer grid for the underlying finite-element (FE) approximation scheme of the space variable.
Here, we report results for n € {100,500,1000}. The system is parameterized by the tuple
(a,b, ¢, B1,P2,71,72) that we set in our example to (0.001,1,1,0.2,0.3,0.2,0.3). Note that
transforming the discretized system to a LTI system as in (1) results in a system with dense
coefficient matrix A although the FE matrices are sparse.

As there is no significant gap between any two consecutive Hankel singular values of the
system we obtain a reduced model of fixed order r = 6 and n = 100, 500, 1000.

Algorithm ABO9AD relies on Hammarling’s method to solve the Lyapunov equations for the
Cholesky factors. The factors S and R computed with this method are square of order 100.
The explicit product SRT (a n X n matrix) is then constructed and the SVD is obtained by (a
slightly modified version of) the Golub—-Kahan method. Our parallel algorithms instead solve
the Lyapunov equations for the Cholesky factors using the Newton iteration for the matrix
sign function. The full-rank factors S and R thus obtained are of size ne X n and n, X n,
respectively, with n, = 34,32,32 and n, = 36,38,37 for n = 100, 500,1000. The product
SRT € Rnexmo g explicitly constructed and the SVD is computed using the Golub—Kahan
method. Table 1 shows the Hankel norm and the difference § obtained with the serial and

11

| n | subroutine | o1 =|G(s)||lu ‘]
100 ABO9AD/SR | 7.22939244096230e-1 | 9.69240669317034e-5
PDGECMSR | 7.22939244096153e-1 | 9.69240669316399¢-5
500 ABO9AD/SR | 7.23152354428920e-1 | 1.01290748783967e-4
PDGECMSR | 7.23152354400824e-1 | 1.01290748735695e-4
1000 ABO9AD/SR | 7.23159123599860e-1 | 1.01548816539096e-4
PDGECMSR | 7.23159123524023e-1 | 1.01548811421665e-4

Table 1: Hankel norm and difference of the reduced models for Example 1.

parallel algorithms. We only report the results for the SR algorithms as they are identical to
those obtained for the BFSR algorithms.

Table 2 reports the norms of the matrices defining the original system and of those defining
the reduced-order models obtained with the serial and the parallel algorithms for n = 100.
The results for n = 500, 1000 are omitted here as they show no significant difference.

| | lAlloo 0r [[Arlloo [[IBllso 0r 1Brlloc | [ICllso or [[C:loo
system 1.224e+2 1.183 9.901e-3
ABO9AD/SR | 1.2924697511577e+1 | 2.0142237527450e-1 | 2.0142237527450e-1
PDGECMSR 1.2924697511571e+1 | 2.0142237527451e-1 | 2.0142237527451e-1
ABO9AD/BFSR | 1.2998109448472e+1 | 2.0271109120962e+0 | 2.0037682847113e-2
PDGECMBS 1.2998109448466e+1 | 2.0271109120963e+0 | 2.0037682847114e-2

Table 2: Matrix norms of the system and the reduced models (r=6) for Example 1.

Figure 1 reports the absolute errors in the frequency response on the imaginary axis
between the original system and the reduced models computed by the serial and parallel
algorithms. The absolute error is computed as the maximum singular value of the error
system at jw, i.e.,

1G(jw) — Gr(jw)ll2 = omax(G(jw) — Gr(jw)),

where || . ||2 denotes the matrix 2-norm, and G(\), G,(\) are the TFMs of the original and
the reduced model, respectively. Note that here, omax(G(jw) — Gr(jw)) = | G(jw) — Gy (jw) |
as the example is a single-input, single-output system. Recall that, corresponding to (3),

|G — Grlloo = ess sup [|G(jw) — Gr(jw)|2-
weR, w>0
Hence, from the plots in Figure 1 one can estimate |G — Gr| o = ¢ for all sizes of n. The
upper limit ¢ is attained for small frequencies whereas the absolute error decreases for larger
frequencies.

All the results we have reported show that there is almost no difference in the obtained
accuracy for the serial and the parallel model reduction routines. Also note that there is no
visible difference in the reduced-order models obtained by either the SR or BFSR methods
in this example. Moreover, reducing the meshsize of the FE discretization which usually
increases the accuracy of the computed solution of the underlying partial differential equation
does not change the system dynamics here — the r = 6 model is almost identical for all sizes
of n and approximates the system behavior satisfactorily.

12

SR methods, n =100 BFSR methods, n = 100
T

107 . i . 10 ‘ ‘

1o 5 10 3
_d0’r E _#107 E
3 3
\jh Dh
e o
T 10k 4 T 10°F E
3 3
= =
o 5]
=107} E =107 E

10°F B 107} E

1079 L L L L L 1079 L L L L L

10° 10™ 107 10° 10° 10" 10° 10° 10™ 107 10° 10° 10* 10°
frequency w frequency w
SR methods, n = 500 BFSR methods, n = =500
-3 -3

10 ; ; : : : 10 : ! .

10" 5 0" e
_do”’F E _d0CE |
<y g
= >
110 1 O ol i
3 €l
S 5
=107k E =107 q

5 y
10° E 10k |
07 6 - = s = " 6 10° . 3 : : :
10 10 10 10 10 10 10 10° 10 107 10° 102 10° 10°
frequency w frequency w
SR methods, n = 1000 BFSR methods, n = = 1000
3 -3

10 ! ! : 10 ! : !

10" 5 0" 3
6o’ E _s10°F E
3 3
S =2
o y

1 10°F E (? 10°F E
3 3
= =
5] 5]
=10 E =107} E
10°F E 10°F E
1079 L L L L L 1079 L L L L L
10° 10" 107 10° 10° 10° 10° 10° 10" 107 10° 10° 10 10°
frequency w frequency w

. . TR L

Figure 1: Absolute frequency response errors of the reduced models. Legend: “—” = upper

bound given by §, “— =7 = PDGECMSR/PDGECMBS, “--” = ABO9AD.

13

5.2 Parallel performance

In this subsection we analyze the performance of the parallel algorithms on a parallel dis-
tributed cluster of 25 nodes. Each node consists of an Intel Pentium-II processor at 300 MHz,
and 128 MBytes of RAM. We employ a BLAS library, specially tuned for the Pentium-II
processor, that achieves 200 Mflops (millions of floating-point operations per second) for the
matrix product (routine DGEMM). The nodes are connected via a Myrinet crossbar network
and the communication library BLACS is based on an implementation of the communication
library MPI specially developed for this switch. The performance of the interconnection net-
work was measured by a simple loop-back message transfer resulting in a latency of 33 usec
and a bandwidth of 200 Mbit/sec. We made use of the LAPACK, PBLAS, and ScaLAPACK
libraries whenever possible.

To evaluate the performance of our parallel model reduction algorithm we generate random
LTT systems as follows. First, we generate a random positive semidefinite diagonal Gramian
W, = diag (X¢,, g5, 04y, 0g,), where 3, € RI1*% contains the desired Hankel singular values
for the system and X4, € R?>*%, Then, we construct a random positive semidefinite diagonal
Gramian W, = diag (24,,04,,X¢;,04,), with Xy, € R%*9_ Next, we set A to a random stable
diagonal matrix and compute F = —(AW, + W.AT) and G = —(ATW, + W, A). Thus,

F = diag(f1, f2- - fai+a2 Ogstaa) »
G = diag(glaQQa---,gql,oa---aO,gq1+qz+1"--,gq1+q2+q3,0q4)'
A matrix B € R**(@1+42) gych that F = BB? is then obtained as

B = diag (VI ViV Fura)

The procedure for obtaining C' is analogous. The LTI system is finally transformed into
A := UTAU, B := UTB, and C := CU by a random orthogonal state transformation
U € R"*™. The system thus defined has a minimal realization of order r = ¢;. The Cholesky
factors satisfy rank (S) = ¢1 + ¢2 and rank (R) = ¢1 + gs.

We first evaluate the reduction in the execution time achieved by the serial and parallel SR
algorithms, ABO9AD and PDGECMSR, respectively. We omit the results for the BFSR algorithms
as they were closely similar. In the example, we set n = 1000, and choose several different
values for m, p, q1, g2 and ¢g3. Figure 2 compares the execution times of the serial and the
parallel algorithms as the number of nodes, n,, is increased.

The figures show a considerable acceleration achieved by the parallel algorithm PDGECMSR
when compared to the serial algorithm ABO9AD (see results on 1 node). This is partially due
to the efficiency of the Lyapunov solvers used in our algorithms which only need to compute
low rank approximations of the Cholesky factors. Comparison of the results on 2 and 4 nodes
shows the parallelism of the PDGECMSR algorithm. The execution time is reduced by a factor
of almost 2 (the number of resources, that is nodes, is doubled). Using 10-12 nodes does not
achieve a significant reduction of the execution time in this case due to the small ratio n/,/n,.

As the memory of our system does not allow to test the serial algorithm on larger problems,
next we evaluate the scalability of the parallel algorithms. In the experiment we fix the
problem size per node using n/,/n, = 800, m/,/n, = 400, p/,/n, = 400, and ¢/,/n, = 200
for ¢ = q1, g2 and ¢3. In Figure 3 we report the Mflop ratio per node for the parallel algorithms
PDGECMSR and PDGECMBS.

The figure shows a high scalability of the algorithms as there is only a minor decrease
in the Mflop ratio per node as the number of nodes is increased up to 25 (a problem of

14

600

600
Q
500F ¢ 500 i
\\ \
\
- \ - '
& 400F \ $ 400 |
k2 \) \
) | @ \
£ | £ '
B 490l = 300l \
=300 \ =300 |
g \ i) '
5 \ 5 !
] . o s
> 200(Q % 200
) w
100} O . o 100 R L S
e -
0 o
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of processors Number of processors
600 600
(S
~Q
Q \
\ .
500 \ 500
N \
\ \
—~ \\ ~ \
S a00t \ ¢ 400t '
2 ! 3 \
Q él [} \b
E | E
= 3001 = 300¢ S.
k] S S~
5 5 e o
3 N 2 S,
> 200(o~ __ * 200(
) ——— w
~eo---m
Tte
100- 1001
0 o
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of processors Number of processors

Figure 2: Execution time vs. number of nodes of the serial and parallel SR algorithms. Top
left: m = p = 100, g1 = g2 = g3 = 50; top right: m = p = 100, ¢1 = g2 = ¢35 = 98; bottom
left: m = p = 200, g1 = g2 = g3 = 100; bottom right: m = p = 400, ¢ = g2 = g3 = 200.

size n=4000). The scalability confirms that a larger problem can be solved by increasing
proportionally the number of nodes employed.

6 Concluding Remarks

In this paper we have described the design and use of parallel algorithms for model reduction of
large-scale systems. The methods are based on balanced truncation methods and benefit from
low numerical rank of the Cholesky factors of the Gramian matrices. Using these algorithms
it is possible to obtain a low-order approximation of large dense systems. Employing these
reduced-order models, more advanced model reduction techniques can be applied to further
reduce the system order.

Our experiments report similar numerical results for reliable serial model reduction al-
gorithms from the SLICOT library and our model reduction approach, based on the matrix

sign function. The results on a cluster of Intel Pentium-II nodes show the performance of our
model reduction approach and the scalability of the parallel algorithms.

15

al
=]

[} B »
a1 o a1
T T

1
|
@
I
I
|
I
!
I
I
I
|
o+
|
I
I

w
=]
T

Normalized Mflop ratio per node
= = [N nN
£ 9 ¢ o

4]
T

o

9 16 25
Number of processors

Figure 3: Scalability of the parallel algorithms with n/,/n, = 800, m/,/n, = 400, p/,/n, =

400,
--+---” for PDGECMBS.

“,

and ¢q/,/n, = 200 for ¢ = g1, g2 and ¢3. Legend: Symbols “——o0——" for PDGECMSR and

Acknowledgments

We would like to thank Thilo Penzl for many helpful discussions. Observations on the decay
rate of Hankel singular values and their use in model reduction algorithms for systems with
sparse coefficient matrices are reported in [35, 36].

References

[1]

2]

3]

[4]

[5]

[6]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, second edition, 1995.

Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I.
In R.F. Sincovec et al, editor, Proceedings of the Sizth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, 1993. See also: Tech. Report CSD-92-718, Computer
Science Division, University of California, Berkeley, CA 94720.

J. Barlow. More accurate bidiagonal reduction for computing the singular value decom-
positon. Technical report, Department of Computer Science and Engineering, Penn-
sylvania State University, University Park, PA 16802, USA, 1998. Available from
http://trantor.cse.psu.edu/ barlow/papers.html.

R.H. Bartels and G.W. Stewart. Solution of the matrix equation AX + XB = (-
Algorithm 432. Comm. ACM, 15:820-826, 1972.

P. Benner, J.M. Claver, and E.S. Quintana-Orti. Efficient solution of coupled Lyapunov
equations via matrix sign function iteration. In A. Dourado et al., editor, Proc. 3™
Portuguese Conf. on Automatic Control CONTROLQO’98, Coimbra, pages 205-210, 1998.

P. Benner, J.M. Claver, and E.S. Quintana-Orti. Parallel distributed solvers for large
stable generalized Lyapunov equations. Parallel Processing Letters, to appear.

16

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. Benner, A.J. Laub, and V. Mehrmann. A collection of benchmark examples for the
numerical solution of algebraic Riccati equations I: Continuous-time case. Technical
Report SPC 9522, Fakultat fir Mathematik, TU Chemnitz—Zwickau, 09107 Chemnitz,
FRG, 1995. Available from http://www.tu-chemnitz.de/sfb393/spc95pr.html.

P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga. SLICOT - a subroutine
library in systems and control theory. Applied and Computational Control, Signals, and
Circuits, 1:505-546, 1999.

P. Benner and E.S. Quintana-Orti. Solving stable generalized Lyapunov equations with
the matrix sign function. Numer. Algorithms, 20(1):75-100, 1999.

C.H. Bischof. Incremental condition estimation. STAM J. Matriz Anal. Appl., 11(2):312—
322, 1990.

L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaL A-
PACK Users’ Guide. STAM, Philadelphia, PA, 1997.

A. Bojanczyk, G.H. Golub, and P. Van Dooren. The periodic Schur decomposition;
algorithms and applications. In Proc. SPIE Conference, vol. 1770, pages 31-42, 1992.

D. Boley and R. Maier. A parallel QR algorithm for the unsymmetric eigenvalue problem.
Technical Report TR-88-12, University of Minnesota at Minneapolis, Department of
Computer Science, Minneapolis, MN, 1988.

R. Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear
Algebra Appl., 85:267-279, 1987.

J. Cheng, G. Ianculescu, C.S. Kenney, A.J. Laub, and P. M. Papadopoulos. Control-
structure interaction for space station solar dynamic power module. IEEE Control Sys-
tems, pages 4-13, 1992.

P. Y. Chu, B. Wie, B. Gretz, and C. Plescia. Approach to large space structure con-
trol system design using traditional tools. AIAA J. Guidance, Control, and Dynamics,
13:874-880, 1990.

J.J. Dongarra, A. Sameh, and D. Sorensen. Implementation of some concurrent algo-
rithms for matrix factorization. Parallel Comput., 3:25-34, 1986.

Z. Drmag. Accurate computation of the product-induced singular value decomposition
with applications. SIAM J. Numer. Anal., 35(5):1969-1994, 1998.

K.V. Fernando and S.J. Hammarling. A product induced singular value decmoposition
for two matrices and balanced realization. In B.N. Datta et al., editor, Linear Algebra
in Signals, Systems and Control, pages 128-140. STAM, 1988.

L. Fortuna, G. Nummari, and A. Gallo. Model Order Reduction Techniques with Appli-
cations in Electrical Engineering. Springer-Verlag, 1992.

17

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G.A. Geist, R.C. Ward, G.J. Davis, and R.E. Funderlic. Finding eigenvalues and eigen-
vectors of unsymmetric matrices using a hypercube multiprocessor. In G. Fox, editor,

Proc. 3rd Conference on Hypercube Concurrent Computers and Appl., pages 15771582,
1988.

K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and
their L norms. Internat. J. Control, 39:1115-1193, 1984.

G.H. Golub and C.F. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, third edition, 1996.

S.J. Hammarling. Numerical solution of the stable, non-negative definite Lyapunov equa-
tion. IMA J. Numer. Anal., 2:303-323, 1982.

M.T. Heath, A.J. Laub, C.C. Paige, and R.C. Ward. Computing the SVD of a product
of two matrices. STAM J. Sci. Statist. Comput., 7:1147-1159, 1987.

J.J. Hench and A.J. Laub. Numerical solution of the discrete-time periodic Riccati
equation. IEEE Trans. Automat. Control, 39:1197-1210, 1994.

G. Henry and R. van de Geijn. Parallelizing the QR algorithm for the unsymmetric
algebraic eigenvalue problem: myths and reality. SIAM J. Sci. Comput., 17:870-883,
1997.

G. Henry, D.S. Watkins, and J.J. Dongarra. A parallel implementation of the nonsym-
metric QR algorithm for distributed memory architectures. LAPACK Working Note 121,
University of Tennessee at Knoxville, 1997.

C. Kenney and A.J. Laub. The matrix sign function. IEFE Trans. Automat. Control,
40(8):1330-1348, 1995.

W. Lang and U. Lezius. Numerical realization of the balanced reduction of a control
problem. In H. Neunzert, editor, Progress in Industrial Mathematics at ECMI9/, pages
504-512. John Wiley & Sons Ltd and B.G. Teubner, New York and Leipzig, 1996.

V.B. Larin and F.A. Aliev. Construction of square root factor for solution of the Lya-
punov matrix equation. Sys. Control Lett., 20:109-112, 1993.

Y. Liu and B.D.O. Anderson. Controller reduction via stable factorization and balancing.
Internat. J. Control, 44:507-531, 1986.

B. C. Moore. Principal component analysis in linear systems: Controllability, observ-
ability, and model reduction. IEEE Trans. Automat. Control, AC-26:17-32, 1981.

C.R. Paul. Analysis of Multiconductor Transmission Lines. Wiley—Interscience, Singa-
pur, 1994.

T. Penzl. Algorithms for model reduction of large dynamical systems. Submitted for
publication, 1999.

T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric
case. Submitted for publication, 1999.

18

[37]

J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation by
use of the sign function. Internat. J. Control, 32:677-687, 1980. (Reprint of Technical
Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department,
1971).

M.G. Safonov and R.Y. Chiang. A Schur method for balanced-truncation model reduc-
tion. IEEE Trans. Automat. Control, AC-34:729-733, 1989.

G.W. Stewart. A parallel implementation of the QR algorithm. Parallel Computing,
5:187-196, 1987.

M.S. Tombs and I. Postlethwaite. Truncated balanced realization of a stable non-minimal
state-space system. Internat. J. Control, 46(4):1319-1330, 1987.

A. Varga. Efficient minimal realization procedure based on balancing. In Prepr. of
the IMACS Symp. on Modelling and Control of Technological Systems, volume 2, pages
42-47, 1991.

A. Varga. Model reduction routines for SLICOT. NICONET Report 1999-
8, The Working Group on Software (WGS), June 1999. Available from
http://www.win.tue.nl/niconet/NIC2/reports.html.

19

Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 10. September 1999

98-01. Peter Benner, Heike Fafibender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:

On the rate of convergence of infinite horizon discounted optimal value functions, November
1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complex Hamiltonian and Skew-Hamiltonian Eigen-
value Problems, November 1998.

98-08. Eberhard Bansch, Burkhard Hohn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Falbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.

99-02. Heike Faflbender:
Error Analysis of the symplectic Lanczos Method for the symplectic FEigenvalue Problem,
Marz 1999.

99-03. Eberhard Béansch, Alfred Schmidt:

Simulation of dendritic crystal growth with thermal convection, Mérz 1999.
99-04. Eberhard Bansch:

Finite element discretization of the Navier-Stokes equations with a free capillary surface,

Marz 1999.

99-05. Peter Benner:
Mathematik in der Berufsprazis, Juli 1999.

99-06. Andrew D.B. Paice, Fabian R. Wirth:
Robustness of nonlinear systems and their domains of attraction, August 1999.

99-07. Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Comput-
ers, September 1999.

