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1 Introduction

M@

Fig. 1. Example of the geometric situation.

Many flow problems in physics and applied sciences lead to the incompressible
Navier—Stokes equations with a free capillary surface. From the great variety
of possible applications we mention

e coating flows, see for instance [24,28],
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e flow in semiconductor melts, see e.g. [9,23,25,29,31].

First applications of the method presented here to the simulation of semicon-
ductor melts can be found in [5].

Physically speaking, a capillary boundary condition can be viewed as a bal-
ance of forces on the free surface: normal stresses of the fluid field are balanced
by the surface tension. Mathematically we are dealing with the instationary
Navier—Stokes equations, reading in non—dimensional form:

Let an initial velocity uo and an initial domain (29 be given with 92y =
I'v(0)UI'p and I'v (0) be a closed surface without boundary. Find the velocity
u, the pressure p and the free capillary surface I'v = I'nv(t) (or equivalently
£2(t)) such that for 0 < ¢t < t*

du +u-Vu — V-o=f in () C R,
divu=0 in 02(t) C R?,

u=0 onlp,
ReCav-ocv =k onIN(t), (1)
7,rov=0 onlIn(), i=1,...d—1,
u-v="Vp, on I'n(t),

‘Q(O) = ‘907
u(0,-) =ug in £2(0)
d—1
with K = ) &; the sum of the principal curvatures, i.e. d — 1 times the

i=1
mean curvature, and the convention that x < 0 if {2 is convex. v, 7; are the
unit outer normal and tangential vectors respectively and Vr, is the normal
velocity of the free boundary, see also Figure 1 for notations.

1

0ij = 0(u,p)ij = 7-D(u)ij — p i
is the stress tensor and
D(u);; = J
(U)” (6.CL'J + 6.7;‘,)

the deformation tensor. The Reynolds number Re > 0 and the capillary
number ReCa > 0 are given by
Re =

UL vpU
v’ o

with L a length scale, U a typical velocity, # the kinematic viscosity, p the

density of the fluid and # the surface tension.

There is a great deal of literature concerned with analysis for free boundary

problems involving a capillary free boundary condition, see [6,30,32,34] for a
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small selection. Usually existence of solutions for the time—dependent problem
is shown by fix—point arguments in parabolic spaces. Since for a numerical
treatment of the problem we are interested in a time marching procedure, the
analytical methods do not give direct hints how to discretize problem (1).
Discretizing the above problem, the free boundary conditions in (1) cause
particular problems due to

Treatment of the curvature terms. It is not straightforward how to define
a discrete curvature of the boundary of a triangulation, where the boundary is
C%! only and therefore a pointwise evaluation of the curvature is meaningless.
Numerically this problem is even more involved in 3 space dimensions than
in 2 dimensions.

Stable time discretization. In order to get an unconditionally stable dis-
cretization the curvature terms have to be incorporated in an implicit way.

“Efficiency” of the discretization. The time discretization should result for
each time step in a quasi—stationary system of equations which may be solved
efficiently. It is preferable that the structure of the discrete equations is more
or less the same as in the case without free surface, so that one can extend
standard Navier—Stokes solvers to problem (1).

We present a finite element discretization of problem (1) which is based on
a variational formulation of the mean curvature as a functional, given by an
integration by parts of the Laplace Beltrami operator on I'y, see also [13].
Due to the variational structure of the discretization the scheme works in 2D
as well as in 3D.

The treatment of the curvature terms leads to an additional contribution to
the left hand sides of the equations, which is symmetric and positive semi-
definite, thus providing a nice structure of the algebraic systems to solve.

Stability in energy norms can be proved in the context of a first order in time
space—time finite element discretization. Due to the variational formulation,
the fundamental concept also works for other time—discretizations, which may
be preferable from the point of view of efficiency and accuracy. The numerical
examples presented in Section 7 were computed using the so called fractional
step 6-scheme, see [3] for a more detailed discussion on algorithmical aspects.

Analyzing a discretization of problem (1) opens up additional mathematical
questions:

Geometrical stability. The “natural” norms of the problems are too weak
to control a sharp free surface. Furthermore situations may occur where for
instance the topology of {2 changes, e.g. a splitting when forces are too large.
Moreover, in cases with even low Reynolds numbers formations of (nearly)
cusps etc. may occur, see [22]. Thus an a priori long time control of the
geometry is delicate. This difficulty cannot be overcome —in our opinion—
in the context of finite elements and simple energy estimates. Instead, we
assume geometrical regularity a priori by (A), see Section 2 below, and we
restrict ourselves to the case that the topology of {2 does not change.
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Time—dependent domains. The motion of the domain causes a flux of
energy at the boundary which is balanced by the nonlinearity. In order to get
an energy estimate the discrete scheme should have a similar conservation
property. One way to achieve this is the use of space-time finite elements.
Let us mention some related work:

Frederiksen and Watts [17] use a Galerkin approach for the bulk equations
and couple them implicitly with a finite difference formulation for the curva-
ture terms.

In [9,10] the stationary problem is treated by a finite element method.

For a linearized problem, i.e. linear equations on a fixed domain, in [8,10] a
variational formulation is given. Stability and convergence of the approximate
solutions are shown. The formulation used in this approach is similar to our
formulation.

In [27] a finite element discretization for a stationary, 2D model problem,
i.e. the Navier—Stokes equations in the bulk replaced by a scalar Laplace
equation, is formulated and analyzed.

The rest of this paper is organized as follows:

First we introduce space-time finite elements on (discrete) time-dependent
domains in Section 2. In Section 3 we review some simple differential geome-
try, which is needed to derive the variational formulation. The discretization
of problem (1) is given in Section 4. In Section 5 we give a proof of uncon-
ditional stability of the proposed scheme, Theorem 1. Furthermore we prove
the existence of solutions to the discrete problem in Theorem 2 and show that
one may solve the equations by an iteration which decouples the geometry
problem from the flow problem, Theorem 3. More general geometric situa-
tions, where 'y has a d — 2 dimensional boundary, are treated in Section
6. Finally, in Section 7 we present some numerical examples in 2D and 3D.
As mentioned above, the results were obtained using the fractional step 6—
scheme instead of space—time elements. Although not covered by our theory,
the incorporation of the curvature terms is done in the same way as outlined
below. On the other hand, the fractional step 8—scheme provides an efficient
way to solve the Navier—Stokes equations.

2 Space-time elements

A natural way to discretize problems on time—dependent domains is the use
of space—time elements. We consider time—dependent domains £2(t) C IR?,
d =2 or d = 3, of the following form:

There exists a reference domain 2 C IR? polygonally bounded with 00 =
I'vUI'p and a conforming, regular triangulation 7 such that

2=

TeT



Navier—Stokes equations with a free capillary boundary 5

If not stated otherwise we assume that fN is a closed surface without bound-
ary. Let X' be the d — 1 dimensional conforming, regular triangulation of
['v—faces of T, ie.

Iv=J s

Sex
Let Sp = Si(T) C C°(2,RY) and U, = Up(E) C %Iy, R%) be finite
element spaces with
AlfN:)\EUh for A € Sp.
Furthermore we assume that there exists a continuous extension operator
E:U,— Sy

with (EX) p, = A. That is, Uy is the space of traces (with respect to I'n) of
functions in Sj,.

Let 0 = t9 < t1,... < ty = t* be a partition of the time interval and
Tp 1= tpg41 — tp. For A, € S, n=0,... N, we define

B ¢ [tnytny1] X 2 — R

Pn(t,2) = (1 - t)An(i) + 1?/1"_,_1(.’13), t=—"
N-1 (2)
¢ := Z DX (tn tni]

n=0

Q(t) := B (t,02)  for t € [tn,tny1]-

In order to have a proper space-time domain we pose the following assump-
tion on the geometry:

(A) For 0 < t < t* the transformation &(¢,-) : 2 — £2(t) is

globally injective and inf det D®(t, %) > 0.
€N

Remark 1. i) If Sy, is the finite element space of piecewise linears then 2 can
be chosen as 2(0) and Ag = id. More general choices of S, allow for a higher
order parameterization of the boundary. Usually, A, will be piecewise linear
in the interior of {2 and of higher polynomial order at the boundary only.
ii) By the above construction of the space-time domain we restrict ourselves
to the case that the topological types of 2 and I'y do not change.

For 0 < r < s < t* define G(r,s) := {(t,z)|r <t < s,z € 2)}, G, =
G(tn,tny1) and G := G(0,t*). For T € T and 0 < n < N — 1 we define
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the d + 1 dimensional prism Q,(T) := {(t,®,(t,z) |t € [tn,tnt1],z € T}. By
the construction of G and assumption (A) we have that Q := {@Qn(T)|0 <
n < N-1,T € T} is a conforming partition of G into d + 1 dimensional
space—time prisms, see also Figure 2. For a function v given on G we define

O(t, x) := v(t, D(t,x))-

N
Q G=Go0,t"

Fig. 2. Reference domain §2 and the space-time domain G.

A\ d
Let Vi = Vi(T) C (HL?(Q)) with 97, = 0 for 0 € V; and 91, € Uy, for
b € Vi, Wy, = Wi(T) C L%(2) be finite element spaces for the velocity and
the pressure respectively. We define the space—time element spaces

Vi={v:G— Rd|ﬁ|(tmtn+1] € Po((tn,tnt1]) X Vp, 0<n <N -1},
W:={q:G— 'ZR|q\‘(tn;tn+l] € Po((tn,tnt1]) X Wp, 0<n< N -1}

By this definition V, W are finite element spaces such that 0, § are piecewise
constant in time and may be discontinuous at t¢,,. Note that in general v,q
themselves are not constant in time. For v € V (and analogously for ¢ € W)
we set

" = v(ty, ) = li\r‘r(l)v(tn —€), o"0:= 1{1(1) v(tn +€,-)
and
[v](tn) := v"T0 — o™

In the following a subscript corresponding to a domain in R indicates
space—time integration, for instance

tnt1

(u,v)g, = / / wv dx dt
n ()

and so on.
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3 Some help from differential geometry

Let I" be a closed orientable (d — 1)-dimensional manifold without boundary
embedded in IR? and x a local parameterization of I'. Denote by (9)ij =
gij = Ou; X - Ou; X the metric tensor of I' and g% := (g~ !);;. For a function f
on I' define the tangential derivative V f of f by

Vf = 9784, (f o x) 8u; x
and the Laplace—Beltrami operator
1 -
Af := ———9,, | /det g g7 0, ,
Af = i ( etg g ](fox))

see for instance [11,18]. We will make use of the identity

Aidr =RV
d—1
with v a unit normal vector field on I" and kK = ) k; the sum of the principle
i=0

curvatures (with an appropriate sign according to v, see also the convention
in (1) ). If ¢ is a smooth vector valued function on I' we can integrate by

parts to get
/m/-w:/(éidr)-cpz—/zidr-ch-
r

r r

Note that there are no boundary terms in the above identity, because we
assumed I" to be a closed surface without boundary, compare Section 6 for
a more general case. Now let I" = I'y be part of the boundary of 2 C IR?,
9 = I'yUIp. For smooth functions u, ¢ : 2 — IR? and p : 2 — IR with
divu = 0 one computes

o [ D@ D) — [paive

2 0]

1
= /(—§Au+Vp)-<p + /v-a(u,p)so
Q I'n
for all ¢ with ¢ =0 on I'p. If u, p are smooth functions fulfilling the boundary

conditions in (1), i.e. v-o;, =0fori=1,...d—1 and ReCav-ov = k on
I'y, then the above boundary integral can be transformed into

1
/u-a(u,p)wz/u-a(u,p)uuwp:ReCa/m/wp
I'ny

FN FN

1 1
ReCa / Aidry ¢ =g /—V’d“ ~¥
FN FN




8 Eberhard Béansch

so that
L/D()-D()-/d‘ +L/V'd v
2Re u)r He PEVE T Recu | 0N ¥
[ s N @
= [(~5Au+Vp) ¢
2

for all ¢ with ¢ = 0 on I'p. On the other hand, if (3) holds for a pair of
functions u,p with divu = 0 for all such test functions ¢, then the same
calculation as above shows that the boundary conditions for the normal and
tangential stresses in (1) are fulfilled. Thus (3) is the basis for the variational
formulation of problem (1) in the next section.

We conclude this section by two lemmas. The second one is the basis to
control the curvature terms in the stability estimate Theorem 1.

Lemmal. Letm =1 orm =2, k € IN and z;,y; € R*, i = 1,...m.
Denote by (G(%))ij = i (%) := z; - x; and g = (G1);;. Then:

k m
Vdet G(z) — /det G(y) < /et G(y) D Y «hg(y) (2} — }),

I=1 i,j=1
if G(y) is regular.

Proof:
In case m = 1 the assertion is equivalent to the elementary inequality

X
lz| = Jy| < m-(w—y)-

Case m = 2:

We may assume that G(y) is diagonal. Otherwise there is an orthogonal
matrix S € IR™*™ with D := STG(y)S, D diagonal For | € {1,...k} we
denote by z! := (z},...,2!)) € IR™. Define &' := STzl §' := STyl € R™,
I =1,...k It holds: G(Z) = STG(z)S, G(§) = D, ie. §; - §; = |§:|*0i; and
G(y)™' =SD 18T,

Since
V/det G(z) — v/det G(y) = \/det G(&) — Vdet D
and
k m
Z Z ztg (y) (o} —yé) = Z Z zk [Sird Sy (2 —y] Z:prdrr #—qgt)
=1 i,j=1 =1 ¢,j,r=1

the assertion is equivalent to

VdetG(Z) - VdetD < VdetD Y #ldz! (& — 4.
i
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Furthermore we may assume that det D = dy1d22 = |1 /|?|72|> = 1, otherwise
.’Z’l gjl _ gl
det(D)i74° ¥ Ger(Dy/A

It remains to show

consider #! :=

e — 1 (81 —G1) | B2 (B2 —92)
V0EPlEa? — |81 -2 — 1 < ~ -
9112 [92]?
Wlth |:lj1|2|:ljg|2 =1.
This can be estimated by
.%1 - (.il _Z)l) + i'2 . (I/I:'Q —1132) + 1 — \/|§:1|2|£_2|2 — |.'i'1 _£_2|2
[91[? 92]?
2T N o S T P + 1= |3 |
I S (T 9112 |92
L#2  1)? s
> - + == — |zT1||x
YA |21] | 22|
Ligf | 1 1@ 1. 5.
> ol Sl S 2 2,2 = 0
2 3k T amE  2pE 2l =0
9 1
because |§1|*> = ek 1

Lemma 2. Let m = 1 or m = 2 and I' a m—dimensional, closed, reqular
C%' “manifold embedded in IR*, k € IN. Moreover let X : I' — rg(I") C IR*
be a homeomorphism with DX, (DX)~! € L*. Then it holds:

/zx-z(x—fd) > [X(D)| - |T).

Proof:

Let (wk, xk)kel, Xk : wx € R™ — T, (u1,...,um) = Xk(u1,...,uy,) be
an atlas for I' and (ay)ker a partition of unity subordinate to the cover-
ing (wg)rer- Then (wg, X o xx)rer is an atlas for X (I"). With the notation

(G(xk))ij = 9(Xk)ij = Ous Xk - Ou; Xk (X&) = (G(xr)™")i; one gets

/VX V(X -Id)=>) Z s (X 0 Xk) - By (X 0 Xk = Xk)9(xk) 7 /det G (xi)
kel i,j= 1
(Lemma 1)
/\/detG X o xr) /\/detG Xk) | — |1
kel 5
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4 Discretization

In order to discretize problem (1) we define the following bilinear and trilinear
forms. For 0 < n < N — 1 and u,v,w, ¢ such that 4,9,% € H*(2) N C°(G,)
and § € L?(2) we set:

tnt1
1
a(u,v)g, ::2—Re/ /D(u)
tn Q1)
tnt1
1
b(u;v,w)g, = 5{ / /(u-va—u-va)
tn 2t)
tn41
o] [ e
v-wu vy,
tn I'n(t)
c(g,v)G, = Ta / "0 div o™ t0,
2(tn)
Tn . n n
du,v)a, = [ Tlidry e + ™) 70

I'n(tn)

The term « - Vv w in the definition of b is understood as
u-Vow := Z w' Ol w?.
ig=1
Remark 2. If I'v(t) = 0 then the definition of b(+;-,-)g, is the same as for
instance in [19]. In case H? ! (I'n(t)) > 0, where H?~! denotes the (d — 1)
dimensional Hausdorff measure, we have for v with divu = 0:

tn+1 tn 1
//uVuv—b(uuU //uv (u — u™t0) . v
tn Qt) tn Tn(t)

This identity describes the consistency error introduced by the modification
of the nonlinearity. Note that one expects u — u™*? to be of the order

u—u"0 = 0O(r,)

for t € (tn,tni1].

Before defining the discrete problem we need some auxiliary results.
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Lemma 3. Let k € IN. There is a constant C, depending only on k, such
that

1p(0)] < C / 1p(s)] ds
0

for all polynomials p € Py,.

Proof:
Since P}, is a finite dimensional space, every seminorm is weaker than any
norm. I

For f € L?(G) we define f, to be the L2—projection of f such that f, is
piecewise constant in time. More precisely let 0 < n < N — 1, then f, is
characterized by the following conditions: f, is constant in time on (¢, tp41]
and

(frswe, = (fw)a, (4)
for all w € L?(G,,) with @ constant in time on (,,%,1], or equivalently
tn+1 .
[ fdetD®
A~ tn
fn= tntt . (5)
J det D&
tn

Lemma 4. Let f € L*(G) and f, given by (4), (5). Then
Tn |f7?+0|?2(tn) <C |f|én

Proof:
Because det D®(-,z) is a positive polynomial of degree d in time one can
apply Lemma, 3 to derive:

tn41

012 - (Lemma 3) -
T | F7PO ) = 7 / \fu2 det DE(t,) < C / 1] / det D&
9] 1) tn

tnt1
e / /|fn|2detD45:C|fn|én.
b
Since f, is the L?—projection of f we have
|falG, <|fIG,-
1

The discrete problem now reads: Let f € L%(G), Ag € Sy and ug € L?(§2)
be given. For 0 < n < N —1 find 4,41 € S, and (u,p) € V x W such that
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(ut,v)a, + ([ul, ™)o@,y + bluju,v)a,
+ a(uav)Gn - C(p, U)Gn + d(u,’l))gn (6)

=7 (fpt 0" )0,y forallveV

c(g,u)g, =0 forallgeW (7

X+ = idry ) + mu™0: In(t,) — R

i1 (8)
Ap1 = E(X ° An|fN)

Remark 3. i) Since A, is coupled with 4™0 by (8) the geometry and the
velocity are linked in a nonlinear way.
ii) The discretization of the parabolic term by

(u,v)a, + ([u],v" ).

is a generalization of the methods introduced in [21] and the usual discon-
tinuous Galerkin method, see for instance [15,16]. In case I'v(t) = @ the
discretization of the parabolic term is the same as in [21]. However, the defi-
nitions of the ansatz spaces are different.

iii) Since

d(u, 'U)G,. — szlch / ZXn_H . zvn-i-o
I'n(tn)

we have a semi-implicit discretization of the curvature terms: The tangen-
tial derivatives are evaluated for X™*! whereas the domain of integration
is I'v(tn). This implies a linearization of the highly nonlinear curvature op-
erator. Compare also the discussion in [14] on different time discretization
schemes (explicit, implicit, semi—implicit) for the the mean curvature flow.
Furthermore note that d(-,-)g, is symmetric in the unknowns and positive

semi—definite.
iv) Defining d(-, ), by

n

Tn

d(u7 U)Gn = ReCa

/ Vidry (s, - Yo"
I'n(tn)

one would discretize the curvature terms explicitly. Such a discretization is
conditionally stable only, which is confirmed by numerical experiments, see

[3]-
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Remark 4. Using Lemma 6 below, we may write the momentum equation (6)
in the form

(g — Vii - DS &, det D®b), 4 . xo t busu,v)e, + au,v)q, o)
e 9
- C(p, U)Gn + d(u7U)Gn = Tn (fr?—f_oavn-’_o)ﬂ(tn)-

Equation (9) may be the basis for applying other time discretization schemes
to the above problem. The main difference to the standard Navier—Stokes
equations on a fixed domain with, say, Dirichlet boundary data is the addi-
tional term d(u, v) g, in the bilinear form and the advection term —Vé - D& 1d
accounting for the deformation of the domain. Thus, it is easy to extend stan-
dard Navier—Stokes solvers based on finite element discretization to the case
of problem (1), see also [3].

The direct application of time discretization schemes to (9) instead of using
space—time elements is also referred as ALE (Arbitrary Lagrangian Eulerian
Coordinates), see for instance [20].

5 Stability estimate and existence of the discrete
solutions

Before proving stability of the discretization scheme we need some auxiliary
results.

Lemma 5. Let r < s be real numbers and & € C'([r, s]; C®'(2; IRY)) with
2 C IR? an open domain. Then the divergence of [ad(D@)é] (in the distri-

butional sense) is a function and the following identity holds:
. . d
div (ad(D®)®d) = 7 det D$

with ad(A) = det(A%%);; the matriz of cofactors of A.

Proof:
Let @ be smooth. Then

div (ad(D®)®) = div (ad(DP)) -¢ + tr(ad(DP)DP)
N—————’
=0

= tr(ad(D®)D®) = %det(DqS).

The assertion now follows by approximating ¢ by smooth &,,’s. |
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Lemma 6. Let 0 <n < N — 1, & as in (2) fulfilling assumption (A) and
@ € HY2((tn,tny1) X £2). Then for t € (tn,tni1) and & € (2 it holds:

Opu(t,z) = %ﬂ(t,¢_1(t,w)) = 8yi(t, &) — Va(t, &) - D& (t,z)(t, 2),

. d ) . .
where (Vi - D&71®); = 6@,911’(D95_1)kj¢j, é := 0P and z =
k,j=1 ’
d(t, 7).
Proof:

For & € 2 we have
7 (t,B(t, %)) =&
and therefore
d .
0= 28 '(t,8(t, ) = 0,2 ' (t,2) + D& '(t,2)$(1,2)
which gives .
0,8 (t,x) = —D& '(t,x)d(t, 7).

Thus )
Ou =00+ Vi -6, =84—Vi- DS ',

Since the corresponding meaning will be clear from the context, in the sequel
we shall drop the arguments of & and D& ' for simplicity. This means that
we do not distinguish explicitly by the notation between e.g. &(t,#) and
B(t, 871 (t,x)).

Lemma 7. Let 0 <n <N —1 and u,v € V. Then

1
(utaU)Gn = _{ (un+1avn+1)ﬂ(tn+1) - (un+0:vn+0)9(tn)

2

fnt1 tnt1 (10)
—/ / u-vd-v + / /(uVU—UVu)-iS},

tn FN(t) tn 'Q(t)

. d ..
with uVv - $:= Y u'0;v'P;.

ij=1

tnt1

1 n n F
(), = S {0 o — 0y — [ [ WPE v}

tn I'n(t)
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Proof:
Since 4; = 0 for v € V and Lemma 6 we have u; = 4 — Vi - D&~ =
—Vi-Dé~'é. Then

tnt1 tnt1
/utU:— / /@va-pqs—ldsdequ
tn Q(t) tn
tn+1 tnt1
:_%//dwvuadD@ ——//Wu ad(D®)
tn+1 tnt1
+% / /qu ad(DP)d + —//v 4 div (ad(D®)P)
tnt1
:_%//@@ (D&)d +—// ) - ad(D®)d
tn Iy 2
tnt1
+% / /vu div (ad(D®))
2 =4 det D& by Lemma 5
tng1
:_% / /(@-aad(Dgp)dS)-a
tn Py
tnt1 tnt1
+% / /(ﬁV@—@Vﬁ)-(DQS Yé det DS + —// a%detDQS
th O tn
tntr b1
1 . ;
:5(—/ / u-vd-v + / /(qu—UVu)-dS
tn I'n(t) tn Q(t)

+ (un-{-l’ ,Un—i—l) (un—i-O, U"+0)

2(tn+1) — Q(t"))
since @, ¥ are constant in time on (t,,tp41]- (11) is an immediate consequence
of (10) by setting v = u. 1

Next we show stability of the discretization (6)—(8) in “natural” norms. As
already pointed out these norms are too weak to control the geometry. This
is the reason why existence results are stated and proved in more regular
spaces, usually in Holder or K" spaces, see [6,34]. Furthermore, in general
the time interval of existence for a smooth solution cannot be estimated a
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priori. Thus we will assume that the geometry of the problem is regular, i.e.
we will assume that (A) holds.

Theorem 1. (Stability estimate)

Let f € L*(G) and (u,p, Ay) €V XW x S, 0 <n < N —1 be the solution of
problem (6)—(8). Furthermore assume that (A) holds. Then for 7, < C we
have the following stability estimate:

I D(u

0 {5l + g v Jf| Wl )
scgmg%y+R@uwmwumm}

Proof:

Set v = u in (6) and get

(ue, ), + ([u], " )a,) +blu;u,u)e, +a(u,u)q,
~ ~ y N——
(I) (I1)

- C(p, U)Gn + d(ua U)Gn = Tn (f777,1+07 un+0)9(tn)
— —— N ~ ”
=0 (I11) (av)

With Lemma 7 one concludes

1 1 T
(1) = G0 Bty = 310"y = 5 [ [ WP
tn I'n(t)
1 [Z%]
+§ / / |u|2U'V + (un+0_un,un+0)n(tn)
tn In(t)
tnt1
1 n+12 1 2( F
= S o — 3l ~ [uf? (¢ —u) -v
tn Tn(t)
1 n n+0|2
+§|U —u" o)

By the definition of & and (8) it follows that &(t,%) = u"0 0 A,(2) on Iy
and thus &(t,2) = u™t0 0 A, (%) = u(t,z) with z = &(¢,2) for z € I'n(t).
Therefore:

1 1 1
(1) = §|U"+1|?2(t"+1) - §|u"|?2(tn) + §|Un w00
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Obviously for (II) we have:

tnt1
1
(10 = 7 [ D@,
tn
For (IIT) we have:
d(u,u)q, = R:;nCa / V(idry,) + Tu™t0) - Vu+0
I'n(tn)
T, (X" —idpy(,))
— n Xn—‘,—l . N\ln
ReCa / N ¥ Tn
I'n(tn)

(Lemma 2)
> 1/(ReCa){|X"+1(FN(tn))| - |FN(tn)|}

= 1/(Reca){|FN(tn+1)| - IFN(tn)I}

Term (IV):

V) = (70, u™ ) ot

=1 (00, u™ —u™ o) + T (20, 4™ o)

< 7"(1 + ) o + " —u e + EHW Bt
The first term on the right hand side is estimated by Lemma 4:

(1 + Tn)lfr?+0|?'2(tn) <CQ+m) |f|én

17

We conclude the proof by summing up for n = 0,... N — 1 and using Gron-

wall’s Lemma.

Next we address the question of solvability of the discrete problem (6)—(8).

To this end we transform (6) onto the reference domain (2.

Lemma 8. For 0 <n < N —1 (6) is equivalent to

tnt1

1

Q2 tn Iy

5/a-@(detpqs(tn)+01etDsis(tn+1)) + % / /a-ﬁ[ad(DQS)(a—q's)]

A

-V
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tnt1

tnt1 . L
+%//(GV@—ﬁva)-ad(DQS)(dS—ﬂ) + 2%3@//%
tn O tn @

. Tn 2
— Th / p"Hdive™ ™0 + / Yut0 . vy to

ReCa
Q(tn) I'n(tn)
n n n ,mn Tn . n
= T (f% 0" @) + W0 e, - e / Vidryt,) - Yo"

FN(tn)

for all © € V;, with D(0) := Vioad(D®) + ad(D®)TVeT and where i is
understood to be taken in the time interval (tn,tn4+1]-
d

Again, (4V0) is an abbreviation for (4V0); := Za"aj@".

i=1

Proof:
The proof is similar to the proof of Lemma 7. For example:

(ue,v), + ([ul, 0" ), =

tnl tnl

- // -Gad(DP)B) - v + —//qu—UVu) ad(D®)d

Q
tn+1
1 . .d det D& n+0 n , n+0
+§ CRL et + (@ = u™, 0" ) o)
1 tn+1 tnt1
=-3 / /v tad(DP)P) -0 + — / /uVU—UVu -ad(D®)d
1
+§/@-ﬁ(detDQ§(tn+1) —det D(t,)) + /@-ﬂdet D&(ty,)
[9) 9]
+ (U™, 0" ) g1,
and
1 tnt1 tn41
b(u;u,v)gn=§[/ / w-vu™t0 v + / /(u-Vuv—u-Vvu)]
tn I'n(t) tn Q1)
tn+1 tn+1

=% / / ad D®) 11 / /qu—vVu -ad(D®)i

]
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Note that in the above computations we made use of identities like u-Vuv =
vVuu.
The other terms can be transformed in a similar way. |

Now let the solution be given up to time ¢t = ¢,,.. For the following considera-
tions we assume that f is piecewise constant in time, i.e. f = f,. Define Vi =
{0 € Vi | e(g,v)a, _OVqE Wy} andfor 0 <e< 1anoperatorF Vi — V’
as follows. For ¢ € Vh set

X =idpy,) + 0™ 0 In(ty) - R*

A= EXoAnp,) (13)
(1-1)4, + tA

S
|

/@ o (Jeltn) + Ietnsn) )

tn+1 tnt1 D A D .
//vap PVo) ad(DdS)( 11 2Re // (9): D)

7_

n n+0 ~
FeCa / Vot . Ve 1(p)
I'n(tn)

with J¢(t,z) := max{e, det D®(t,x)},

~ n n n o, .n Tn ; T
1) =10 (F"0, 0" o) + W, 0" ™)) — TeCa / Vidry (1,) V"0
Pa(tn)

+

That means J, is given by the formula in Lemma 8 except for that det D&
is replaced by Je. So, clearly 4 is a solution of (6), (8) for time step n + 1
iff (Jo(@),@) = 0 for all ¢ € Vj since (8) is fulfilled by the definition of &
in (13) and thus (& — ) = 0 on I'y. Note that in general & given by (13)
is not a transformation. This is the reason for introducing the regularization
by J.. Note that even if D@ is singular, the term ad(D®)d makes sense. We
are now looking for a i, such that (F¢(d.),0) = 0 for all & € V},. Such a 4,
exists by Brouwer’s fixpoint theorem for € > 0, since one concludes as in the
stability estimate

> / CHCAFATAN) / / Do

n+02 _ o) >
b [ a6 2 0,

I'y (tn)
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if |0| g is large enough. Clearly, since the above equation gives an identity on
Vi, we also get the existence of p. € W}, such that

(Fe(tie),?) — e(pe,v)g, =0 foral o eV, (14)

In (A) it was assumed that a space-time domain was given. Here, we have
to modify this assumption in order to derive the existence of the space-time
domain. We define:

(A’) Let u,pe be solution of (14). Then there is an ¢y (depending on
h,n, Tn,u™, f) such that J, does not depend on € for 0 < € < ¢
and then &,, is also globally injective.

We conclude the above considerations in the following proposition.

Theorem 2. (Ezistence of the discrete solution)

Let ug, 2 and f € L*>(IR* x IRY) with f piecewise constant in time be given.
Moreover assume (A’). Then there exist u™, p™ solutions of (6)—(8) for 0 <
n<N-1.

In order to solve the discrete equations on a time step n + 1 it is natural
to decouple the geometry problem and the flow problem by the following
iteration.

Let ug = u3+1 be an initial guess for u™*! (usually ug = u™). For k > 1

iterate:

e Step 1: Set
&, :=(1-HA, + tEX" o Anjy)

with
Xn+1 = idFN(tn) + Tnu?f?

e Step 2: Find [tg, pr] € V x W fulfilling (6)—(7) but &,, replaced by @,
from step 1.

We show that this iteration converges locally in a neighborhood of the solution
[un—i-l,pn—i-l]_

Theorem 3. Let [u™!, p"t1] be the solution of the discrete problem (6)—
(8) on time step n + 1. If 7, is small enough (depending on h,n and data)
and if ug“ is close enough to u™T, then the above iteration is well defined

and utt — u"* for k — oo.



Navier—Stokes equations with a free capillary boundary 21

Remark 5. The arguments to prove the above assertion make use of the equiv-
alence of norms (say L2, L, H%?>-norms) in the discrete space V3. Thus the

convergence uj "' — u™*! holds for any norm in V.

Proof of Theorem 3:
For a sufficiently small neighborhood U of the solution 4 we define

F:UXxV,—V,

O
tnt1
1 R R N
+ 3 w goad(D@(w—sﬁ) 1%
tn iy
tnt1
1 . .
+5 / / (ww—ww)-ad(psp)(qs—w)
tn 0
VOGN
1 D(w) : D(p T n+0 n+0
* 2Re // detD& | ReCa / V™ Ve
th O I'n(ts)
- ()
with @ given by
&= (1-1)A, + EE(X" o Ay p ) (15)
and
X" =idry g,y + o™ (16)

If U is sufficiently small, then det D® > 0 and F is well defined and con-
tinuously differentiable. Clearly the solution 4 fulfills F(4,4) = 0. If 7, is
small enough then the derivative of F' with respect to the second variable w,
0w F (4,1) is an isomorphism. To see this note that for ¢ given, all terms in
0w F are of order O(7,) except for the (definite) term of the mass matrix

1
5/ wcﬁ(detDsb(tn)+deth5(tn+1)).
2

By the implicit function theorem, see for instance [12], there is a neighborhood
U C U of 4 and a continuously differentiable function K : if — V}, with

K@)=4 and F(0,K(0))=0 fordel.
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Moreover we observe that the derivative of F' with respect to the first variable,
04 F, is small for small 7,,. Recall that 9; det D®(t,,) = 0 and 93 det DP(tp41) =
O(7,) by the definition of @ in (15), (16). Then

IDK|| = || - (02 F) ' (8: F)ll < g <1,

if 7, is small enough, i.e. K is a contraction with unique fixpoint 4. Then the
assertion is proved, because F(i_1, ) = 0, and therefore K (iiy_1) = .

Remark 6. i) Step 1 in the iteration above is just updating the geometry.
Step 2 requires the solution of the quasi—stationary standard Navier—Stokes
equations on a given geometry with a modified bilinear form. Note that the
additional term in the bilinear form given by d is symmetric and positive
definite.

ii) The arguments in the proof above strongly depend on the discretization
parameters. However, numerical experiments show that it is sufficient to per-
form only one iteration step even for large time steps, see [3].

6 More general boundary conditions

We may also treat more general boundary conditions than in (1). Consider
a geometrical situation as in Figure 3. Here the liquid is in a container
with “closed” bottom, open top and vertical side walls and cross section
' C IR*™'. I'n(t) has now a d — 2 dimensional boundary +(t), which is the
intersection of I'y(t) and the slip boundary I's(t): v(t) = I'n(t) N ['s(t). The
slip boundary I's(t) is assumed to be the “wet” part of the side walls, that
is I's(t) CO' x IRy for all 0 < ¢ < t*.

On the contact line v we have to prescribe a contact angle between I'n(t)
and I's(t) of for instance /2.

To be more precise, additionally to (1) we pose the following boundary con-
ditions

u=0 onlp,
u-vs =0 on Ig(t),
Tsi-ovs =0 onlg(t), i=1,...d—1,
ReCavy -ovy =k on I'n(t), (17)
Tni-ovn =0 onlIn(t), i=1,...d—1,
u-vN =V, on I'n(t),

vy-vs =0

on (t)

with v, Tv,; and vg, Ts,; corresponding to I'y, I's respectively.
In the sequel we will make use of the following identities, which can be found
for instance in [18]: For smooth functions fi, fo and I'y,~y smooth it holds

[Anfuantt =~ [ S Vrant+ [0, 5 pant
FN FN Y
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}

™

Fig.3. I'n, I's and I'p in 3D.

with Qv., f :=uv, -V f. Here v, denotes the intrinsic outer unit normal of I'y
at v = 0I'y, in 3 space dimensions given by

Vy =Vry N Ty,

where 7, is the tangential unit vector of v with appropriate sign. Now pro-
ceeding as in Section 3 we compute for smooth functions ¢

/HVN'SOZ/éidrN'SDZ—/ZidrN'ZSO + /Q.,.,idFN'SO
I'n Y

I'n I'n

=—/Zidnv-2so + /Vv-so,
I'n

v
since qu idry = v,. We decompose ¢ as

d—1

p=¢-vsvs + ZSD'TS,iTS,i on I's.
i—1

Thus, if we test with functions ¢ fulfilling ¢ - vs = 0 on I's we get

/V7'<P=§/(V~,'Ts,i) (Ts,z"w)

ol

Now observe that

vy-Ts; =0 foralli=1,...d—1 onyvy & vn -vs = 0.
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Analogously as in (3) we conclude by these computations that a pair (u,p)
of smooth functions with divu = 0 fulfills

1 . 1 .

Q—Re/D(u) :D(p) — /pdlvcp + m/lﬁdn\, Vo
=/ i Au + Vp) ’ " "
_/ TRV

n

for all ¢ with ¢ =0 on I'p and ¢ -vs =0 on I, iff (17) is satisfied.

This means (18) is a weak formulation of (1) together with (17). Thus we may
take the same bilinear forms as in Section 4 to define the discrete problem.
We just have to modify the definition of the space V;, = Vj({2) in order to
incorporate the slip boundary condition u - vg = 0 on I's. Let us denote this
modified ansatz space by V;°. If V}, consists of finite element functions of
Lagrange type defined in nodal points p € N(T), then V;° may be defined
by

ViS = {vp € Vi | vn(p) - vs(p) = 0 Vp € N(T)}.

Thus we enforce the slip boundary condition pointwise. Note that vg =
(vaqr,0) is time independent, which implies that also V;° is time independent.
Error estimates for finite element solutions using such a type of discretization
in the case of the stationary Navier—Stokes equations and I's = 0f2 can be
found e.g. in [2]. In [2,4] one can also find a simple and efficient way how to
deal with such a boundary condition from an algorithmical point of view.
Note that a similar computation shows that the above considerations also
hold for d = 2.

Let us finally remark that with the above settings Theorems 1-3 remain valid
also for problem (1) with the additional boundary conditions (17).

7 Numerical examples

In this Section we present numerical examples to demonstrate the behavior
of the proposed method. As already mentioned in the Introduction, we do
not use the formulation (6)—(8) based on space-time elements. The use of
space-time elements was necessary to control the bulk energy (term (I) in
the proof of Theorem 1). In practice, such terms do not cause problems.
Numerically the most crucial point is the treatment of the curvature terms.
Due to the variational structure of our approach, it is algorithmically possible
to use other time discretization schemes, see Remark 4. Thus we use the so
called fractional step §—method in a variant as an operator splitting, see for
instance [7,33]. Although not completely covered by our theory, numerical
examples show that also this scheme is stable.

For the space discretization the Taylor—Hood element, i.e. globally continu-
ous, piecewise quadratics for the velocity space V}, and globally continuous,
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piecewise linears for the pressure W}, are used. The free boundary is also
parameterized by piecewise quadratics.

A detailed description of the scheme can be found in [3].

All computations were done using grids obtained by a refinement procedure:
Starting from an initial coarse grid, successive refinement was used to obtain
the final grid. In particular we used the so called bisection method (see for
instance [1]), which implies that d refinement steps yield a triangulation with
halved grid size. For the visualization of velocity and temperature fields in the
subsequent examples the GRAPE visualization package was used, see [26].

7.1 Oscillating liquid drop

As a first example we consider a fluid motion solely driven by capillary forces,
cp. also [30]. As initial domain we take an ellipse in 2D and an ellipsoid in
3D, deformations of the unit ball in IR? and IR® respectively, having different
radii of the main axes, which point in the directions of the coordinate axes.
The fluid is assumed to be at rest for ¢ = 0, i.e. ugp = 0. The mean curvature of
I'y := 012 is larger at the tips corresponding to large radii and smaller at tips
corresponding to smaller radii. By this imbalance of forces there is an onset
of motion and the “drop” starts to oscillate. For Reynolds numbers Re not
too small we expect a periodic or quasiperiodic behavior with some damping
depending on Re. This can be seen from Figures 4-5, where the trajectories
of the tips are plotted. Note that “level” is the number of refinement steps,
N and Ny denote the number of velocity points and free boundary points
respectively, i.e. d x N = dimV}, d x Ny = dimUj,.

1.25

0.95
0

time

Fig. 4. Trajectories of the tips for the 2D drop, level=10, at = 0.0025, Re = 300,
ReCa =1.0.
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1.25

1.2

1151

11r

1.05F

1

0.95F

0.9

. . . . .
0 1 2 3 4 5 6
time

Fig. 5. Trajectories of the tips for the 3D drop with initial radii r1 = ro = 1.0,
rg = 1.2; level=9, at = 0.008, Re = 300, ReCa = 1.0.

1.25

time

Fig. 6. Trajectories of the tips for the 3D drop with initial radii r, = 0.9, ro = 1.0,
rz = 1.2; level=9, at = 0.005, Re = 200, ReCa = 1.0.

To study this numerical experiment in a more quantitative way we compute
the mean frequency f after n periods and the “damping factor” §, defined by

n
f = E;
5. K/rmaxo:n) — (tco)
' Tmax(tO) - T(too) ’

where t,, is the time for n periods, rmax(-) is the trajectory of the tip with
largest initial radius and r(t) is the radius of the ball with the same volume
as 12(0): [By.y| = [£2(0)]. In 2D we set n = 5 and in 3D, because of the
much larger CPU-time required, n = 2.

The damping factor ¢ is an increasing function of the Reynolds number Re.
This is illustrated in Figure 13. There, the damping factor is plotted as a
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Fig. 7. Solution for d = 2 at to = 0.0, t1 = 0.735, to = 1.47, t3 = 2.205, t4 = 2.94
and t5 = 3.675, Re = 300, ReCa = 1.0, level=8, at = 0.01.

function of Re. For values of Re less than about 1.5 no oscillatory behavior
could be observed.

Tables 2-3 report the numerical values of f and § for different discretization
parameters in 2D and 3D.

level||# tets| # N|# Nn
6 384| 729 386
9 3072| 4913| 1538
12 || 24576|15937| 6146

Table 1. Geometry data for the 3D drop.

Fig.8. Clip into the triangulation at t = 0,
level=9.

Since for smaller values of ReCa the influence of the mean curvature on the
flow field is stronger and in this sense the system is “stiffer”, one expects a
higher frequency f for smaller values of ReCa. This is confirmed by numerical
results reported in Figure 12, where the frequency f is plotted versus ReCa.
Numerically we get a relation

f ~ ReCa /2.

The corresponding plot § versus ReCa can be seen in Figure 11.
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Fig. 9. 2(t) for d = 3 with initial radii 71 = 0.9, 7o = 1.0 and r3 = 1.2 at ¢t = 0.0,
t=0.6,t=12andt=1.8, Re =200, ReCa =1.0.

At At
level|| 0.04 | 0.01 {0.0025 level|| 0.04 | 0.01 |0.0025
6 (/0.338]0.339| 0.340 6 ((0.8840(0.9222{0.9311
8 1/0.336(0.338| 0.338 8 (|0.9068(0.9459|0.9564
10 {/0.335|0.338| 0.338 10 {/0.9088|0.9484(0.9593

Table 2. Frequencies f (left) and damping factors § (right) for the oscillating drop
in 2D, Re = 300, ReCa = 1.0.

level|| At | f | )
6 (|0.032|0.411(0.8406
9 1(0.008|0.409{0.9350
12 1{0.002|0.408(0.9664

Table 3. Frequencies f and damping factors ¢ for the oscillating drop in 3D with
initial radii r1 = ro = 1.0, r3 = 1.2; Re = 300, ReCa = 1.0.




Navier—Stokes equations with a free capillary boundary 29

Fig. 10. Velocity field on a clipping plane at t = 0.0, t = 0.6, t = 1.2 and t = 1.8;
initial radii 71 = 0.9, 72 = 1.0 and r3 = 1.2, Re = 200, ReCa = 1.0.

1

0.95F

091

0.85f

0.8

0.75

07 ' '
107 107" 10° 10" 10°
ReCa

Fig.11. Damping factor § versus ReCa for the 2D drop, level=8, Re = 300.

7.2 Sloshing liquid in a container

In this example we consider a situation as in Section 6. The liquid occupies
part of a container with open top. Initially the liquid is at rest but the (upper)
free surface is not in equilibrium. For times ¢ > 0 there will be a motion,
which eventually tends due to the influence of viscosity to the equilibrium
state u = 0 and a planar surface I'y.

The boundary conditions are given by (17). In particular we impose a contact
angle of 7/2. With the notations of Section 6 we set 2’ = B;(0) C IR>. The
results are shown in Figures 14-16.
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10"

10" ¢

10

2

10- -2 -1 ‘ 0 1 2
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ReCa

Fig. 12. Frequency f versus ReCa for the 2D drop, level=8, Re = 300.

1

0.9

0.8

0.7

0.6

0.5F

0.4

2 3

10" 10 10

Re

Fig. 13. Damping factor § versus Re for the 2D drop, level=8, ReCa = 1.

For another example we choose 2' =|0, 1[x]0, 1[. Figure 17 shows the geom-
etry of this example for different times.
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Fig. 16. Height of the free boundary at (z1,z2) = (0,0) as a function of time for
the example from Figures 14-15.
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