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THE PARAMETERIZED SR ALGORITHM FOR SYMPLECTIC
(BUTTERFLY) MATRICES

H. FABBENDER*

Abstract. The SR algorithm is a structure-preserving algorithm for computing the spectrum
of symplectic matrices. Any symplectic matrix can be reduced to symplectic butterfly form. A
symplectic matrix B in butterfly form is uniquely determined by 4n — 1 parameters. Using these
4n — 1 parameters, we show how one step of the symplectic SR algorithm for B can be carried out
in O(n) arithmetic operations compared to O(n?) arithmetic operations when working on the actual
symplectic matrix. Moreover, the symplectic structure, which will be destroyed in the numerical
process due to roundoff errors when working with a symplectic (butterfly) matrix, will be forced by
working just with the parameters.
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1. Introduction. Symplectic (generalized) eigenvalue problems occur in many
applications, e.g., in discrete linear quadratic optimal control, discrete Kalman filter-
ing, the solution of discrete algebraic Riccati equations, discrete stability radii and
H-norm computations (see, e.g., [16, 18] and the references therein) and discrete
Sturm-Liouville equations (see, e.g., [5]). The solution of the symplectic (generalized)
eigenvalue problem has been the topic of numerous publications during the last 30
years. Even so, a numerically sound method, i.e., a strongly backward stable method
in the sense of [6], is yet not known. The numerical computation of an invariant
(deflating) subspace is usually carried out by an iterative procedure like the QR (QZ)
algorithm; see, e.g., [18, 20]. The QR (QZ) algorithm is numerically backward stable
but it ignores the symplectic structure. In order to develop fast, efficient, and reliable
methods, the symplectic structure of the problem should be preserved and exploited.
Then important properties of symplectic matrices like spectral symmetries will be
preserved and not destroyed by rounding errors.

Recently there has been renewed interest in constructing structure-preserving
methods for the symplectic eigenproblem based on the SR method [10, 17]. This
method is a @QR-like method based on the SR decomposition. In an initial step,
the 2n x 2n symplectic matrix is reduced to a more condensed form, the symplectic
butterfly form, which in general contains 8n — 4 nonzero entries. As in the general
framework of GR algorithms [21], the SR iteration preserves the symplectic butterfly
form at each step and converges to a form from which eigenvalues and invariant
(deflating) subspaces can be read off. The SR algorithm for symplectic butterfly
matrices has been fully described and analyzed in [4, 11]. Due to unavoidable roundoff
errors the symplectic butterfly structure will be lost in the numerical process. The
very compact butterfly form allows one to restore the symplectic structure whenever
necessary.

A 2n x 2n symplectic butterfly matrix is determined by 4n — 1 parameters. As
will be shown in this paper, the SR algorithm can be rewritten in a parameterized
form that works with 4n — 1 parameters instead of the (2n)? matrix elements in each
iteration. Thus only O(n) arithmetic operations per SR step are needed compared to
O(n?) arithmetic operations when working on the actual symplectic matrix. More-
over, the symplectic structure, which will be destroyed in the numerical process due
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to roundoff errors when working with a butterfly matrix, will be forced by working
just with the parameters. No additional action have to be taken as in the course of
the symplectic butterfly SR algorithm.

The development of the parameterized butterfly SR algorithm has been guided
by the unitary case, which the symplectic case resembles to some degree. There has
been an earlier attempt by Flaschka, Mehrmann and Zywitz [12] to exploit this resem-
blance. They proposed a structure-preserving symplectic SR algorithm for symplec-
tic J-Hessenberg matrices. Such matrices (like symplectic butterfly matrices) depend
uniquely on 4n — 1 parameters. A single shift SR step that is purely based on these
parameters is derived in [12]. No numerical results are reported, but the authors note:
It forces the symplectic structure, but it has the disadvantage that it needs 4n—1 terms
to be nonzero in each step, which makes it highly numerically unstable. ... The nu-
merical instability due to extra 2n inversions ... seems an unreasonable price to pay
compared with the gains in efficiency.[12, p. 186, last paragraph].

In this paper we will develop a parameterized SR algorithm for computing the
eigeninformation of a symplectic matrix based on the initial reduction to a symplectic
butterfly matrix.. First we will see that, like unitary Hessenberg matrices, any sym-
plectic butterfly matrix B has a unique factorization exhibiting the 4n — 1 parameters
which uniquely determine B. One step of the SR algorithm with shift polynomial ¢
applied to a matrix B € R*"*>" may be described as follows: Factor ¢(B) = SR with
S symplectic and R J-triangular. Then put B=25§" 1BS If B is an unreduced sym-
plectic butterfly matrix, then so is B. Hence, B and B can be given in parameterized
form. We will derive formulae which given the 4n — 1 parameters of B compute the
4n — 1 parameters which determine B without ever forming B, B or S explicitly. If
desired, the transformation matrix S can be computed explicitly. But, unfortunately
S does not have the same structure as the matrix being transformed. S is symplectic,
but not of butterfly form. Therefore, S can not be given in parameterized form.

In Section 2 unreduced butterfly matrices, the reduction of symplectic matrices to
butterfly form and the butterfly SR algorithm are reviewed. Like unitary Hessenberg
matrices, symplectic butterfly matrices have a unique factorization exhibiting 4n — 1
parameters which uniquely determine B. Such factorizations are introduced in Section
3. There we also discuss the basic idea of an implicit SR step that makes use of such a
factorization. The details of the parameterized butterfly SR algorithm are presented
in Section 4. The overall process is discussed in Section 5. In Section 6 numerical
examples are presented.

2. Preliminaries. A matrix M € R*"**" ig called symplectic (or J-orthogonal)

if
(2.1) MIMT =J
(or equivalently, MTJM = J) where

0 I,
o [0 b

and I, is the n xn identity matrix. Symplectic matrices are nonsingular; their inverses
are given by M ! = JM?T J*. The spectrum of a symplectic matrix is symmetric with
respect to the unit circle. Or, in other words, the eigenvalues of symplectic matrices
occur in reciprocal pairs: if ) is an eigenvalue of M with right eigenvector , then A~1
is an eigenvalue of M with left eigenvector (J z)T. Further, if A € C is an eigenvalue
of M, then so are A, \™1, \=1.
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A symplectic matrix

B:[Bn 312]: AN
P B2 LINON

is called a butterfly matrix if By11 and B are diagonal, and B and Bag are tridiag-
onal. Banse and Bunse-Gerstner [1, 2] showed that for every symplectic matrix M,
there exist numerous symplectic matrices S such that B = S~'MS is a symplectic
butterfly matrix. An unreduced butterfly matriz is a butterfly matrix in which the
lower right tridiagonal matrix is unreduced, that is, the subdiagonal elements of By
are nonzero. Using the definition of a symplectic matrix, one easily verifies that if B
is an unreduced butterfly matrix, then Bs; is nonsingular, see [3, 11]. This allows the
decomposition of B into two simpler symplectic matrices:

B:K—lN:[Bz_l1 Bu ] [0 _I]

where B;; € R™*",

0 By I T
_ 1 -
a;l by
-1
— anp bn, -1
(23) = a1 1 c1  d2 ’
d2
an
dn,
L 1 dn cn |

where T = Bj;' By, is tridiagonal and symmetric. Hence 4n — 1 parameters that
determine the symplectic matrix can be read off directly. Obviously, the diagonal
elements of By; have to be nonzero. If any of the n — 1 subdiagonal elements of
T is zero, deflation can take place; that is, the problem can be split into at least
two problems of smaller dimension, but with the same symplectic butterfly structure.
For the SR theory, the unreduced butterfly matrices play a role analogous to that of
unreduced Hessenberg matrices in the standard QR theory [3, 4, 11].

Eigenvalues and eigenvectors of symplectic butterfly matrices can be computed ef-
ficiently by the SR algorithm [7], which is a Q R-like algorithm in which the @ R decom-
position is replaced by the SR decomposition. Almost every matrix A € R***?" can
be decomposed into a product A = SR where S is symplectic and R is J-triangular.

A matrix
R= [ Ri1 Ryo ] _ q q
" | Ra1 Ry | OY] il

is said to be J-triangular if the submatrices R;; are all upper triangular, and Ry, is
strictly upper triangular. (If one performs a perfect shuffle of the rows and columns
of a J-triangular matrix, one gets an upper triangular matrix. The product of J-
triangular matrices is J-triangular. The nonsingular J-triangular matrices form a
group.) The SR algorithm is an iterative algorithm that performs an SR decompo-
sition at each iteration. If B is the current iterate, then a spectral transformation
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function q is chosen (such that ¢(B) € R*"**") and the SR decomposition of ¢(B) is
formed, if possible:

¢(B) = SR.

Then the symplectic factor S is used to perform a similarity transformation on B to
yield the next iterate, which we will call B:

(2.4) B =S"'BS.
If rank(q(B)) = 2n and B is a symplectic butterfly matrix, then so is B in (2.4) 1, 2].

If rank (¢(B)) = 2n — v =: 2k and B is an unreduced symplectic butterfly matrix,
then B in (2.4) is of the form (see [3, 11] for a proof)

_ N - A A
\ D \ D By R Bys R 1k
~ B22 B24 }n —k
\ % 31 33
By By | In—Fk
k n—-k k n-—k
where
. Lzll §13 is a symplectic butterfly matrix and
B31  Bss
e the eigenvalues of 522 §24 are just the v shifts that are eigen-
12 By
values of B.

The algorithm is made compact and efficient by using Laurent polynomials, instead of
standard polynomials, to drive the iterations. The shifts should be chosen according to
the generalized Rayleigh-quotient strategy. The resulting algorithm is typically cubic
convergent. For a detailed discussion on the choice of the spectral transformation
function ¢, the choice of the shifts and convergence properties see [4, 11].

An algorithm for computing S and R explicitly is presented in [8]. As with explicit
QR steps, the expense of explicit SR steps comes from the fact that ¢(B) has to be
computed explicitly. A preferred alternative is the implicit SR step, an analogue to
the Francis QR step [13, 14, 15]. The first implicit transformation S; is selected so
that the first columns of the implicit and the explicit S are equivalent. That is, a
symplectic matrix S; is determined such that

S tq(B)er = aey, a € R.

Applying this first transformation to the butterfly matrix yields a symplectic matrix
S;7'BS, with almost butterfly form having a small bulge. The remaining implicit
transformations perform a bulge-chasing sweep down the subdiagonals to restore the
butterfly form. That is, a symplectic matrix S, is determined such that Sy *S; ' BS;Sa
is of butterfly form again. Banse presents in [1] an algorithm to reduce an arbitrary
symplectic matrix to butterfly form. The algorithm uses the following elementary
symplectic transformations:
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e symplectic Givens transformation

Iy 1
C S
In—k
G(k,c,s) = T ;
—S$ (&
Infk
e symplectic Householder transformation
Iy ‘ r
P vy
H(k,'l)) = ‘ Tr s , where P = In_k+1 — 2m,
P
e symplectic Gauss transformation
S -
c d
c d
Lk, ¢,d) = In—t

L Infk B

The symplectic Givens and Householder transformations are orthogonal, while the
symplectic Gauss transformations are nonorthogonal. Algorithms to compute the en-
tries of the abovementioned transformations can be found, e.g., in [19] and [9]. The
Gaussian transformations can be computed such that among all possible transfor-
mations satisfying the same purpose, the one with the minimal condition number is
chosen.

Let us briefly describe the algorithm to reduce an arbitrary symplectic matrix
to butterfly form. Zeros in the rows of M will be introduced by applying one of
the above mentioned transformations from the right, while zeros in the columns will
be introduced by applying the transformations from the left. Of course, in order to
perform a similarity transformation, the inverse of each transformation applied from
the right/left has to be applied from the left/right as well. The basic idea of the
algorithm can be summarized as follows

forj=1ton

bring the jth column of M into the desired form

bring the (n + j)th row of M into the desired form
The remaining rows and columns in M that are not explicitly touched during the
process will be in the desired form due to the symplectic structure. The algorithm
for reducing an arbitrary symplectic matrix to butterfly form as given in [1] can be
summarized as given in Table 2.1 (in MATLAB-like notation). Note that pivoting is
incorporated in order to increase numerical stability.

3. The Basic Idea. The key to the development of a butterfly SR algorithm
working only on the parameters is the observation that at any point in the implicit SR
step only a certain, limited number of rows and columns of the symplectic butterfly
matrix is worked on. In the leading part of the intermediate matrices the butterfly
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Algorithm: Reduction to Butterfly Form

Given a 2n x 2n symplectic matrix M compute its reduction to butterfly
form. M will be overwritten by its butterfly form.
forj=1:n-1

fork=n:-1:7+1
compute G}, such that (G M)pyn,; =0
M = Gy MGT

end

ifj<n-1

then compute H; such that (H;M)jt2:n; =0

M= HjMHjT

end

compute Ljq such that (Lj;1M)j41,; =0

M =L ML

if [M(j, )| > [M( +n,j)]

thenp=j+n

elsep=

end

fork=n:-1:5+1
compute Gy, such that (MGg)pr =0
M = GIMG;,

end

ifj<n

then compute Hj such that (MHj)p,j+2+n;2n =0

M = HI MH,
end
end

TABLE 2.1
Reduction to Butterfly Form

form is already retained and is not changed any longer, while the trailing part has not
been changed yet. Hence, from the leading part the first parameters of the resulting
butterfly matrix can be read off, while from the trailing part the last parameters of the
original butterfly matrix can still be read off. Recall the implicit SR step as described
in Section 2. The first implicit transformation S; is selected in order to introduce a
bulge into the symplectic butterfly matrix B. That is, a symplectic matrix Sy is
determined such that

S 1q(B)e; = aey, a €R,

where ¢(B) is an appropriately chosen spectral transformation function. Applying
this first transformation to the butterfly matrix yields a symplectic matrix S;*BS;
with almost butterfly form having a small bulge. The remaining implicit transforma-
tions perform a bulge-chasing sweep down the subdiagonals to restore the butterfly
form. That is, a symplectic matrix S is determined such that S, 'S;*BS; S, is of
butterfly form again. If B is an unreduced butterfly matrix and rank(g(B)) = 2n,
then B = S, 18,1 BS; S, is also an unreduced butterfly matrix. Hence, there will be
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parameters ay, - . - ,6n,gl, .. ,Zn,El, -evyCn, JQ, e d,, which determine B. During the
bulge-chasing sweep the bulge is successively moved down the subdiagonals, one row
and one column at a time. Consider for simplicity a double shift implicit SR step. As
discussed in [4, 11] for a double shift the shift polynomial ¢2(B) = (B + B~!) — 8I
should be chosen where 8 =p+p tif u€ Ror 3 =pu+nfor uye C,|ul =1. The
shift p is chosen corresponding to the generalized Rayleigh-quotient strategy. The
bulge is introduced by a transformation of the form

a B
7(n—2)

(3.1) S

J(n—2)

In a slight abuse of notation, we will call matrices of the form (3.1) symplectic House-
holder transformations in the following, although they are the direct sum of two
Givens transformations. Whenever a transformation of the form (3.1) is used in the
following, one can just as well use a symplectic Householder transformation as defined
in Section 2.

Applying a transformation of the form (3.1) to B to introduce a bulge, results in
a matrix of the form

r + r x +
+ T T z
x + T T x
x xr T
—1pgo _
SlBSl_a:+ r z +
+ =z r T x
x +  x x
x r T

Now a symplectic Givens transformation to eliminate the (n + 2,1) element and a
symplectic Gauss transformation to eliminate the (2,1) element are applied, resulting
in

r -+ r z + T
T r T T
+ z + T T =
T r
r + r z +
T r T T
+ + x T x
x r T T

This bulge is chased down the subdiagonals one row and one column at a time. The
(1,1) and the (n + 1,1) element are not altered in any subsequent transformation.
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Hence, at this point we can already read off a; and by. The bulge-chase is done
using the algorithm for reducing a symplectic matrix to butterfly form as given in
Table 2.1. In a first step, a sequence of symplectic Givens, Householder, and Gauss
transformations is applied resulting in

T r T
r + r x T -+
x r T z
+ z + z =z

x r T
r + r xr T -+
x r T T
+ =z + z =z

Next the same sequence of symplectic Givens, Householder, and Gauss transforma-
tions (of course, operating in different rows and columns as before) is applied in order
to achieve

T T z

T r T T

r + r T T -+

T r T T

+ =z + z =z

T r T

T r T

r + r Tr T +

T r T T

+ z + T =z

During this step, rows 2 and n + 1 and columns 1 and n + 1 are not changed anymore.
The parameters as, by, ¢1, and ds of the resulting matrix B can be read off. In general,
once the bulge is chased down j rows and columns, the leading j rows and columns
of each block are not changed anymore. The parameters ay,...,a;,b1,...,b;,¢1,...,
Cj—1, Jz, . ,Jj of the resulting matrix B can be read off.

In the following we will derive an algorithm that computes the parameters a;,

oy A, b1, ooy bpyCryetyCpyda, oo, dy of B one set (that is, @jy1,bj41,65,dj4+1)

at a time given the parameters ai,...,a,,b1, ..., by, c1,...,¢n,da, ... ,d, of B. The

matrices B and B are never formed explicitly. In order to derive such a method, we

will work with the factorization B = K~!N (2.3), as the parameters of B can be read

off of K and N directly. Fortunately, K and N can be expressed as products of even
simpler matrices.

K~ can be decomposed into a product of simple symplectic matrices

X1 Xy X, =K1
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where

J(k—1)

a,;l br
J(n—k)
Xp = 7R=1)
ag
J(n—k)
Similarly, N can be decomposed
Y, Vi1 YiJE =N
where
r7(k—1) T
1
1
J(n—k-1)
Y = FiGY) >
—Ck —dp41 1
—dp41 1
I(n—k—l)
7(n—1) ‘
1
Yo = =D
L —Cp 1

Because of their special structure, most of the Xy, Y%, the symplectic Givens trans-
formations G, the symplectic Householder transformations Hj;, and the symplectic
Gauss transformations L; as defined in Section 2 commute:

X]'Xk = XkX] for all j,k,

Vi, = YWY; for all j, k,

Xij = Yka forj;ék,j#k—l,

Gij = XkGJ fOI‘j #k,

H; X, = XH; for j#k,j#k+1,

Lij = Xij fOI‘j;ék,j;ék—l,

Gij = Yij fOI‘j#k,j#k—].,

HY: = YiH, for j#kj#k—1j#k+1,
Lij = Yij fOI‘j#k,j#k—l,j;ék‘l‘]..

Here we assume that Hy = diag(It*~D, p,1(»—*=1) [(k=1) p [(n=k=1)y where P €
R?*? is a Givens transformation, as all H, considered in this section are of this special
form. Hence, we can write

(32) B =X YpXn_1Yn_1 - XoVo X1 V1 J7.

Now let us take a closer look at a double shift bulge chase. We will start with
an unreduced symplectic butterfly matrix B decomposed as in (3.2). The resulting
matrix B will have a decomposition of the same form as B,

E = jén?n}?n—lffn—l T 'XZEXIﬁJTa
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As noted before, the bulge is introduced by the transformation S;*BS; with a
matrix S; of the form (3.1). This leads to a matrix of the form

® @ ® ® @
O ® ® ® ®
€T O ® ®
X r X
Sr'BS1 = ® @ -®®ea —|
O ® ® ® ®
x O ® x
i r X

where z denotes desired entries in the butterfly form, 4+ undesired entries, and ® and
@ desired and undesired elements that are changed by the current transformation.
As S is a symplectic Householder transformation, S; and most of the factors of B
commute:

S7'BS) = XY, --- X3Y3ST Xo Yo X0 Vi J TSy
Since S, is unitary and symplectic, we have S;! = S and J7S; = S;J7. Hence,
SIBS, = XY, --- X3V3 ST X0 Vo X, Y18, JT.

Next a symplectic Givens transformation G is applied to zero the (n + 2, 1) element:

r @ r ® +
® ® ® ® ®
® =z + ® T =z
T r T
GaSIBSI1Gs = | —— P
0 ® ® ® ®
O =z + ® =z =z
T r T

As G5 and most of the factors of B commute and as G2 is unitary and symplectic
(hence, JTG¥ = G¥JT) we obtain

G2STBS,GY = X,.)Y;, - - X3Y3Go ST Xo Vo X, Y18,GT J7T.

Now a symplectic Gauss transformation Ls is chosen to eliminate the (2,1) element
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such that
[ @ & ® ® & i

0 ® ® ® ®
D D ® T =z
T T X

BY .= [,G-STBS,GTL;" =

26251 BSI1Gy Ly ® @ ® ® @

® ® ® ®
D z O & x x
X X xr

At this point the actual bulge, which is chased down the subdiagonal, is formed. That
is, now a sequence of symplectic Givens, Householder and Gauss transformations is
applied to successively chase the bulge of the above form down the subdiagonal.

L, is symplectic, but not unitary. Hence, J'L;' = LI JT. Moreover, as Ly and
most of the factors of B commute, we have

BW = [,GySTBS1GY Ly = X, Yy, - - X3 V3 LG ST X0 Yo X118, GE LT T

The (1,1) and the (n + 1,1) elements of B(") are not altered by any subsequent
transformation. Therefore, at this point we can read off a; and b, of the final B. In
other words, we can rewrite

LyGoST X0 Yo X1 Y1 8,GE LT JT

in terms of X; times an appropriate symplectic matrix Z; times J7. That is,

(3.3) LG ST X0 Ve X1 V1S, GT LT JT = X, 2,7,
where Z; is symplectic. Moreover, as X commutes with Xnyoooy X3, Yo, ..., Y3 we
obtain

BW = XX,V - X3Y3 Z1JT.

Now the bulge is chased down the subdiagonals one row and one column at a time.
This is done using the algorithm for reducing a symplectic matrix to butterfly form as
given in Table 2.1. First a symplectic Givens transformation is applied to eliminate
the (n + 1,2) element. This yields

z 0 r ® -+
& ® ® ®

D x + ® x

T T x

GgB(l)GQ: z 0 r ® + ’

® ® ® ®

D z + ® z z

xXr X X
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or in terms of B
GITBMG, = X1 XY, - - XsYsGE 2,GoJ7 .

Then a symplectic Householder transformation H, is used to zero the (n + 1,n + 3)
element:

[z z ® 0 1

® @ ® ® ® @
e ® e ® ® ®

T ® ® =z

HyGIBWGHy = | — P

® @ ® ® ® @
e ® e ® ® ®

x ® & =x

Using again the commuting properties and the fact that Hs is unitary and symplectic,
we obtain

HIGIBWGyHy = X1 X,)Y,, - - - XaYaHY XsYsGE Z1GoHyJT.

A symplectic Givens transformation G5 annihilates the (n+ 3,2) element. This yields

x r T
r D r z ® +
e & b ® ® ®
@ z + & =

GgHgGgB(l)GszGg = z - T T : )
r & r z & -+
0 ® 0 ® ® ®
e x + ®

and
GsHIGTBWG,H,GT = X1 X, Yy, - - - X4 YaGs HY X5Y3GT Z,Go HoGT J T

Finally, a symplectic Gauss transformation L3 to eliminate the (3,2) element com-
pletes the bulge chase: B®) := L3G3HJ GTBMGyH,GT L3 is of the form

T r &
® @ ® ® ® @
0 ® 0 ® ® ®
e x o & x
B(® —
x r ®
® @ ® ® ® &
® ® ® &
@ z & ® =z
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The bulge has been chased exactly one row and one column down the subdiagonal
in each block. The form of B? is the same as the form of B(!), just the bulge can
be found one row and one column further down in each block. The same sequence
of symplectic Givens, Householder and Gauss transformation as in the last four steps
can be used to chase the bulge one more row and column down in each block.

Furthermore, due to the commuting properties and the symplecticity of Ls we
have

B® .= L3G3H§G§B(1)G2HQG§L§1
= X1 X, Yy X4Y, LsGsHY X3Y3GY 2, Go Ho G LT JT.

In subsequent transformations the elements of B() in the positions (2,2), (n + 2,2),
(Ln+1), (1,n+2), (2,n+1), (n+1,n+1), (n+1,n+2) and (n+2,n+1) are not
altered. Hence, at this point we can read off as, b2, ¢1, and dy of the final B. Note
that X2 and Y1 do not commute. In other words, we can rewrite

L3GsHY X3Y3GY Z1GoHoGE LY JT
in terms of X»Y; times an appropriate symplectic matrix Z times J7. That is,
L3GsH] X3Y3GY Z,Go HoGY LT JT = XoY1 Z, 7.
As X, and Y; commute with most of the factors of B we obtain
B® = X, XoV1 X, Y - X4YaZo JT.
Continuing in this fashion, we obtain for j =2,...,n—1
BY .= L;1GHf G BU VG, H;GT\ L},
and
BY := Lj1Gjp H] GTBYVG;H;GT,, L3},
=X XV Voo XaYa - Xy Ve -
J+1GJ+1H XJ+1YJ+1G ZJ IG i Hj G]+1 ]+1JT
=X, XXV Y Y 0 X Y X oY 2,07,
where X, 41 = Yp41 = I. Thus,
B Y .= .G, HT ,GT B G, _H,_,GTL?",
and

BY =X, ...X, V1Y, 27, 1JT.

One last symplectic Givens transformation has to be applied to B(=1) t0 obtain the
new butterfly matrix B

GTB"VG, =B

Hence,

;l

GTZn—lGn = Xni}n—l

n

and
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4. The Details. How can the above observations be used to derive an algorithm
which works solely on the parameters that determine B without forming B, B or any
of the intermediate matrices? Let us start with (3.3),

LyGyST XoYa X1 YV18,GY LT = X1 Z4.

X1,X5,Y:1, and Y; are known. S; is determined by the choice of the spectral trans-
formation function which drives the current SR step. As discussed in [4, 11] for a
double shift the shift polynomial go(B) = (B + B~!) — 8I should be chosen where
B=p+ptifpeRorB=p+pfor ue C,|ul = 1. Here the shift u is chosen
corresponding to the generalized Rayleigh-quotient strategy. This implies

¢2(B)er = (b1 + arc1 — by, — ancy)er + ardaes.

Hence, for Sy as in (3.1), a and 3 have to be determined such that

a -0 bi +aici —bp—ancy, | _ | *
B« a1ds o]

Next a symplectic Givens transformation G2 has to be determined such that
(GzSlTXzszﬂ/lSleT)(nw,nﬂ) =0.
This implies that G2 = G(2, a2, 82) has to be chosen such that

ar P (STX2Y2X1Y151)2,n41 _ *]
B2 o (STX5Y2X1Y151) nt2,n41 0

where

(SEX5Y2X1Y151)2.ne1 = Ba(by — ba),
(51TX2Y2X1Y151)n+2,n+1 = ﬁa(fh - (12)-

Now a symplectic Gauss transformation Ly = La(71,1%1) is used such that
(LaGo ST X5 Vo X1Y181GELYYs i1 = 0.

Hence, we have to compute 7; and v; such that

Py G2STXoYs X1Y191GE )1 1

(
(0 (G281 XY X1Y151G3 )anp1
(G28] X2Y2 X1Y181G3 ) nt1,ni1

O X O X

= |
-
o

where

(G2ST X2Y2 X1 181G )1,ns1 = @by + 37Dy,
(G287 X2Ya X1Y151G3 )o,nt1 = aa(Ba(bi — b2)) + Ba(Ba(ar — a2)),
(G281 XoYo X1 V181G ny1,n1 = @Par + as.

Now we can read off a; and b,

@ = (0®ay + BPaz) /72, by = by + Bbs.
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Moreover, LyGoST X5Y> X1Y1S1GT LT is a matrix of the form

Now we form

[z z =z T T i
T T T
T

T Tz T T
T T T

T T T T
a;t by

~ J(n—1)

X = =
ai

I(n-1)

and build Z; = X, ' LyGo ST X2Y> X1 Y181 GT LY. This is a matrix of the form

1
021 OG22 do3 €22
1
pi1 pi2 Ha3 1 G
M21  M22  M23 Co2
MH31  U32 (32

where the entries that will be used in the subsequent transformations are given by

H11
H12
H13
H22
H23
32

(r2g1 + Y1mihe) [(aPay + B2by),

11 + 12hs [ (aPar + B2by),
—T1ﬁd3a2/(a2a1 + ﬁzbl),
ashz + Bahy,

(B2ab2d3 — avaudsas) /11,
—Tazads,

a2g2 + 293, ha
293 — Bago, hy
az94 + faaf(ar — az), he

5 =
g2 =
g3 =
94 =

da2
da3
€22
C12
Co2
(32

2 (ashy + Boha) + 191 hs,
—T10(204b2d3 — Tlﬁgad3a2,
—f2h1 + asha + ¢1he /T,
hg/(a2a1 + ﬁzbl),

(=B2hs + ashs) /7L,

Brods /T4,

Oéz(ﬂle + Olzbz) + 62(62611 + a2a2),
Oéz(ﬂzal + a2a2) - 62(/62[)1 + (12b2),
042045((11 - az) - 5294,

—a?aicr + afdz(ar — az) — BPesas,

B2(a;' —bic1) — aBdz (b + bs) + a?(ay ' — baca),
—R2arc1 — afda(ar + az) — a?azes,

—a?ayds + aff(caaz — aicy) + B2asds.
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Next we have to consider
L3GsHY X3Y3GY Z,GoHoGE LT JT.

First a symplectic Givens transformation G eliminates the (n 4+ 1,n + 2) element of
Zy. This implies that Gy = G2(as, 3) has to be chosen such that

az B3
4.1 =[x 0].
@ e Gal| %5 2| =1 o
The resulting transformed matrix is given by
-1 -
1 1 1 1
551) 552) 553) 552)
1
GTZ G = ’
S I S L
N%11) N%lz o3 %%)
H31”  H3o 32 1
where the relevant entries are
uﬂ) = aspiz — P3Ci2,
1
By = Qs + Bacs(0a2 — (on) — fleas),  pby = Pabas + apins,
(4.2) 5%) = a2l — a3fs(ea2 + p22) + B3 (oo, ugﬁ’ = ogusz — B3(32,
892) = a§€22 + Bzaz(d22 — Co2) — 53%,“22), 5%) = 3023 — B3l2s,
S = 3G + sl (pas + £22) + 300, § = Paus+ sl
The (1,1) and the (1, 3) entry are not altered by this transformation: uﬁ) = p11 and
1 _
Hig = H13

Next a symplectic Householder transformation Hj is used to zero the (n + 1,3)
element of GI Z;G5. H, is a matrix of the form (3.1); we denote its entries by ay and
B4- The scalars a4 and (4 have to be chosen such that

1 [0
(4. e A R
This results in
- 1 b
A B
2 2 2 2 2 2
5&1) 5§2) 5:&3) 6&4) 5&2) 5%3)
1
HEX3}%G5Z1G2H2 = 2) (2) 1 )
" PE o o @ )
fa ME My M ()
H31” Hzo M3z  Hzg 32 33
@ | ® 1
Hao Ha3
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where the relevant entries are given by

5% = of(ag" —bscs) + aufy (N%) bs + 5%)) + 63 5%);
N% = al;iu%% — auba(py + N%))%) - fi’(clt)303,
(4.4) Hag = Gk +aufy (0303(1')*' N22(2)_ Bi sy s
By = —agascs + asfa(pgg + sy az) + Bipsy
ey = afely —asBu(lybs + B3bs,
ey = adby +auBuCybs + +63ely,
and
57 = —asbsdy, ey = ai(ybs +auBa(ely — bs),
my = aupty) = fasy, G = 0dG) —aufigas + 47,
45) 4 = Piasds, 2 = auba(Cy) —as) — B3¢ as,
R
Mgz = —oudy, 35 = ajaz + asfalzyas + By -

The (1,1) entry is not altered by this transformation: ,uﬁ) = ,Uﬁ) = M11.

17

A symplectic Givens transformation G3 is employed to zero the (n + 3,n + 2)
element in H) X3Y3GY Z,G2H,. This implies that G3 = G3(as, 85) has to be chosen

such that
8 (2)
(4.6) [_04655 az][fzg)]:[g].

The resulting matrix G3 HY X3Y3GE Z1GyHoGY is given by

F 1
IS S A 1 esy) €y
o) 0% of)  a%y ely ey
1
3 3 )
Hé; H% ) ® e o
S O 20
ng) N%33) H3q :«ég)
Hao M43 43 1

where the relevant entries are given by

5%) = 0%5%) + asBs (ngg) + 5%23)) + B3 ?%)7 5%) = 0455%) + ﬂsﬂgzi):

v I Wvon S s I Sl Mow

(4.7) s = O3lgs +asPs(Cas’ — 033 ) — Baegy, Mys = Qspys + OsCas s
: (3) (2) _ 5(2) (3) _ (2)

T osk PO, o L8 T The

36:3&) = a§C33 —asfs(puzs +e33) + 53533 s Gy = asle3 — Bspiog

—Bs Mz(123) :
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Some of the relevant entries do not change: sgg) = 5&22), ,uﬁ) = Hﬁ) = Hﬁ) = 1,
3 2 3 2 3 2 3 2
Mg2) = :U/§2)a Mg2) = :U/g2)a Ng4) = Ng4)a and 42(2) = 52)-

Finally the (3,n +2) element of G3 HI X3Y3G¥ Z,GoHoGY is annihilated using a

symplectic Gauss transformation Lz. Hence, we have to compute 75 and %2 such that

T2 ¢2 5%32; *
T: 3 0
49 B =]
2 22
! 0
2 0

651? RIS esy  eby

5y oy ol el

1

4 4 )
Méi; Méf; TR Y
s S - S 7 200

Ha M K )

Hgo Mgz 43 1

where the relevant entries are given by

TN S Q)
Mg2) = Ng2)+¢2C§3)/T2’ ug3) = ug3)+¢2ﬁ2(2)/T2,
“ _ 0B € )]

MIZ = Hiy T2, N2§ N2?:1 /T2,

o Ty Yy

33 = C3g /73, @) i3 = G /T2

ey = &5y + Ul /m.

Again, some of the relevant entries are not altered: s%) = 5%32 = 5%22), ,uﬁ) = uﬁ) =

p 4 3
ui? = ufy = pn, and ply) = pl).

Now the parameters 62,52,51, and 672 can be read off:

@ o=y, bo=e =6y, = -u) = —p, b= -4
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Forming X,Y; we see that Zy = ¥; ' X5 ' LsGs HT X3Y3GT Z,Go HyGT LT is given by

-1 -
1
5 5 5 5
5&2) 5&3) 5&4) 5&3)
1
Z2 = 1 )
e 5
Mgy Hy3 43 1
where only the elements
@10) ) = &9y, ul) = uSdy, k=234

changed.

Comparing Z; and Z,, the bulge has been chased down exactly one row and
column in each block. The same sequence of symplectic Givens, Householder and
Gauss transformations as in the last four steps can be used to chase the bulge one
more row and column down in each block. Therefore, renaming

022 = 5;? ) 023 = 5;2) ) €22 = 5553) ) M1 = ,u§52) )
-, -, -, -,
Hi2 = [a3, 13 = Hag, H22 = ,u353 > H23 = M354 )
5 5
p2 = piy, G2 = &, G2 = &, G2 = (13,
and repeating the computations (4.1) — (4.10) we obtain
~ 4 Y 4 ~ 4 g 4
as = 2(2) ’ by = Eg2)7 2 = _:ugl) ) dz = _/l‘g2) .
Tterating like this, the parameters ai, ..., dp_1, 51, .. ,gn_l, Cl,...,Cn_g, and gg, RN

dn_1 can be computed.
For the final step of the algorithm, let us consider the matrix Z,, 1. It has the
form

7(n—2)
1
6 6 €
7(n—2)
pop 1 ¢
pop ¢

A symplectic Givens transformation G,, has to be applied to zero the (2n — 1,2n)
entry of Z,, ;. The transformation GL Z,, ;G,, does not cause any fill-in. Hence, the
remaining parameters a,, b,, ¢, 1, Cn, and d,, can be read off, as

- [(n-2) .
1
-~ = —bndn a7t —bn b,
XnYn—IYn = - = = I(n—2) = )
—Cn1 —d, 1
i —apdy, —anCn an |
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and GT 7, 1G,, are symplectic butterfly matrices of the same form.
Using the same renaming convention as above, this implies that for the Givens
transformation G,,, the scalars ag and ¢ have to be determined such that

(12 Gio] [ _agﬁ e ] =[x 0].

(o7}

Applying the transformation, the following matrix entries change:

2 = agpi2 — Bz,

p22 = Be(agdaz — Bec22) + ag(aepaz — B6(22),
G = ag(Bepaz + aeCaa) + Bs(Bsd2e + ageaz),
€22 = ag(f6d22 + aser2) — Po (P22 + a6(22),
822 = agdas — agBe(ean + poo) + B (oo

The parameters @y, by, ¢y—1,Cn, and d,, are given by

an = (o2, b, = &2, Ch1 = —pa1,
Cn = —p22/an, dn = —pa2.

REMARK 4.1.

a)

b)
¢)

No ’optimality’ is claimed for the form of the algorithm as discussed above
either with regard to operation counts or numerical stability. Variants are
certainly possible.

The development of a parameterized quadruple shift SR step is possible.

The presented parameterized double shift SR algorithm can not be used to
mimic o quadruple shift. For a quadruple shift the spectral transformation
function

N =A+A" = (u+p +EH DA+ ()@ -2

should be used. The shift p should be chosen according to the generalized
Rayleigh-quotient strategy as explained in [4, 11]. That is, for a quadruple
shift, the eigenvalues of the 4 x 4 symplectic matriz

—1
bn—l bn—lcn—l - an—l bn—ldn
-1
a= b bndn bnen —a,
An—1 an—-1Cpn—1 an—1dn
an andn ancn

are chosen. We can not work with a double shift step in the case that the
matriz G has eigenvalues p, i, u~t, p=t € C, |u| # 1. One might have the
idea to first apply o double SR step with the driving polynomial

¢ = (B — uI)(B - EI)B~!
followed by a double shift SR step with the driving polynomial
¢’ =(B—p (B -p DB

as this is equivalent to applying a quadruple SR step. The vectors qgl)el and

q§2)el are of the form

&rer + &en + zenqa.
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But the parameterized double shift SR step relies on the fact that for the
driving polynomial ¢ we have

g2(B)er = cre1 + qes.

5. The Overall Process. By applying a sequence of parameterized double shift
SR steps to a symplectic butterfly matrix B, it is possible to reduce the tridiagonal
blocks in B to diagonal form if B has only real eigenvalues or eigenvalues on the
unit circle. The eigenproblem decouples into simple symplectic 2 x 2 eigenproblems.
Decoupling occurs if d; = 0 for some j. Therefore it is necessary to monitor the
parameters d; in order to bring about decoupling whenever possible. We proceed
with the process of applying double shift SR steps until the problem has completely
split into subproblems of dimension 2. That is, until all parameters d; are equal to
zero. The complete process is given in Table 5.1. In a final step we then have to solve
the small subproblems.

In case the (2, 1) entry is zero, the problem is already in the desired form; but we
might have to reorder the eigenvalues on the diagonal such the smaller one is in the
(1,1) position. Assume we have

e
0 a—l )

where |a| > 1. The reordering can be done as described in [14, Section 7.6.2] using a

] is zero.

Givens rotation @ p such that the second component of QT I:a—fx—l

Otherwise, the subproblems are of the form

-1
bj bjCj - aj :|
aj a;c;j

The eigenvalues are given by Ay = (ajcj + bj)/2 £ /(aic; +b;)2/4 — 1. If these
eigenvalues are real, choose the one that is inside the unit circle and denote it by A.
The corresponding eigenvector is given by

[ A— a;Cj ]
a; ’
Then the orthogonal symplectic matrix
Q — 1 [ A— a;Cj —aj; ]
(A = ajcj)? + a3 aj A —ajc

transforms M into upper triangular form
A
T —
arme= |4 4.

In case |Ay| = 1, we leave M as it is. Embedding @ into a 2n x 2n symplectic
Givens transformation in the usual way, we can update the 2n x 2n problem. The
above described process computes the real Schur form of M using a (symplectic)
Givens transformation. In our implementation we use the MATLAB routine ’schur’ for
this purpose instead of the above, explicit approach. In this case we might have to
order the eigenvalues on the diagonal as there is no guarantee that ’schur’ puts the
eigenvalue inside the unit circle into the (1,1) position.
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Algorithm: Parameterized Double Shift SR Algorithm for Butterfly Matrices

Given the parameters ai,...,an,b1,...,bn,¢1,...,Cn,da,...,d, of a symplec-
tic butterfly matrix B, the following algorithm computes the parameters
A1y ey 0nyb1y. .y bn,Clye .y Chyda, ..., dy of a symplectic butterfly matrix B that
is similar to B. All d; are zero. Thus the eigenproblem for B decouples into
2 x 2 symplectic eigenproblems. B is assumed to have only real eigenvalues or
eigenvalues on the unit circle.

Assume that d; = 0.

g=n+1lp=1
repeat until g = p
set all d; to zero that satisfy d; < e
find the largest nonnegative ¢ and the smallest nonnegative p such that

di=---=dp=0#dpp1 dy_1#dg=---=dp, =0
ifg#p
perform a parameterized double shift SR step on
Ap41,-- .,aq_l,bp+1, . -7bq—1;cp+17 .. .,Cq_l,dp+1, . -7dq—1
end
end
solve the 2 x 2 subproblems as described in the text
TABLE 5.1

Parameterized Double Shift SR Algorithm for Butterfly Matrices

6. Numerical Examples. The parameterized butterfly SR algorithm for com-
puting the eigenvalues of symplectic matrices was implemented in MATLAB Version
5.1. Numerical experiments were performed on a SPARC Ultra 1 creator workstation.

For the tests reported here n x n diagonal matrices D were generated using
MATLAB’s 'rand’ function. Then a symplectic matrix S was constructed such that
S = MT diag(D, D™')M where M € R?™?" are randomly generated symplectic or-
thogonal matrices. This guarantees that all test matrices have only real-valued pairs
of eigenvalues {u, =1}, 4 € R. Hence, using only double shift Laurent polynomials
to drive the SR step, the corresponding butterfly matrices can be reduced to butterfly
matrices such that the (1,2) and the (2,2) block is diagonal (that is, all parameters
d; are zero).

In order to detect deflation in the parameterized SR algorithm, parameters d;
were declared to be zero during the iteration when

d; <10-n-eps

was fulfilled, where the dimension of the problem is 2n x 2n and eps ~ 2.2204% 10716 is
MATLAB’s floating point relative accuracy. Deflation in the double shift SR algorithm
was determined by a condition of the form

(6.1) |hp+1,p| <10-n- ePS(|hpp| + |hp+1,p+1|)-

While symplecticity is forced by the parameterized SR algorithm, its has to be en-
forced after each double shift SR step. Otherwise symplecticity is lost in the double
shift SR algorithm.
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All tests showed that the parameterized SR algorithm and the double shift SR
algorithm (with symplecticity enforced after each SR step) compute the eigenvalues
to about the same accuracy. But the parameterized SR algorithm converged slightly
faster than the double shift SR algorithm, exhibiting the same cubic convergence
behavior (see [4, 11] for a discussion and numerical examples). Figure 6.1 shows
the average number of iterations needed for convergence using the parameterized SR
algorithm and the double shift SR algorithm.

"=": double shift SR, "-..-..": parameterized SR
T T T T

80 B

70

B a D
(=} o o
T T T

w
o
T

average number of iterations

20

10

0 | | | | | | | |
0 5 10 15 20 25 30 35 40

n

F1G. 6.1. average number of iterations, 100 examples for each dimension

In order to compute the average number of iterations needed for convergence,
100 symplectic matrices S for each of the dimensions 2n x 2n for n = 4 : 40 were
constructed as described above. It was observed that the parameterized SR algorithm
converges typically slightly faster then the double shift SR algorithm. For most of the
test examples, the parameterized SR algorithm was as fast or faster than the double
shift SR algorithm. Just for very few examples, the parameterized SR algorithm
needed more iteration than the double shift SR algorithm; and than only up to 3
iterations more. Mostly this was due to the fact that the deflation criterion for the
parameterized SR algorithm is somewhat more strict than the one for the double shift

SR algorithm. Similar results were obtained for test matrices S = M T [OD Di] M,

where D, F' are random diagonal n x n matrices and M is as before.

7. Conclusions. In this paper we have derived a parameterized version of the
butterfly SR algorithm that works only on the 4n — 1 parameters which uniquely de-
termine a butterfly matrix. Symplecticity is forced in every step of the algorithm. The
parameterized butterfly SR algorithm is an efficient structure-preserving algorithm
for computing the eigenvalues of symplectic matrices. Using Laurent polynomials as
shift polynomials cubic convergence can be observed. The parameterized butterfly
SR algorithm converges slightly faster than the SR algorithm. The eigenvalues are
computed to about the same accuracy.



24 Heike Fabender

Acknowledgments My thanks go to Volker Mehrmann and Hongguo Xu for
their hospitality in Chemnitz. Sharing his office with me, Hongguo endured my grind-
ing out the details of the parameterized SR.

REFERENCES

[1] G. BANSE, Symplektische FEigenwertverfahren zur Lésung zeitdiskreter optimaler
Steuerungsprobleme, PhD thesis, Fachbereich 3 - Mathematik und Informatik,Universitat
Bremen, Bremen, Germany, 1995.
[2] G. BANSE AND A. BUNSE-GERSTNER, A condensed form for the solution of the symplectic
eigenvalue problem, in Systems and Networks: Mathematical Theory and Applications,
U. Helmke, R. Menniken, and J. Sauer, eds., Akademie Verlag, 1994, pp. 613-616.
[3] P. BENNER AND H. FASSBENDER, The symplectic eigenvalue problem, the butterfly form, the
SR algorithm, and the Lanczos method, Linear Algebra Appl., 275-276 (1998), pp. 19-47.
[4] P. BENNER, H. FASSBENDER, AND D. WATKINS, SR and SZ algorithms for the symplectic
(butterfly) eigenproblem, Linear Algebra Appl., 287 (1999), pp. 41-76.
[5] M. BOHNER, Linear Hamiltonian difference systems: Disconjugacy and Jacobi—type conditions,
J. Math. Anal. Appl., 199 (1996), pp. 804-826.
[6] J. BuNCH, The weak and strong stability of algorithms in numerical algebra, Linear Algebra
Appl., 88 (1987), pp. 49-66.
[7] A. BUNSE-GERSTNER, Matriz factorizations for symplectic QR-like methods, Linear Algebra
Appl., 83 (1986), pp. 49-77.
[8] A. BUNSE-GERSTNER AND V. MEHRMANN, A symplectic QR-like algorithm for the solution of
the real algebraic Riccati equation, IEEE Trans. Automat. Control, AC-31 (1986), pp. 1104—
1113.
[9] A. BUNSE-GERSTNER, V. MEHRMANN, AND D. WATKINS, An SR algorithm for Hamiltonian ma-
trices based on Gaussian elimination, Methods of Operations Research, 58 (1989), pp. 339—
356.
[10] J. DELLA-DORA, Numerical linear algorithms and group theory, Linear Algebra Appl., 10
(1975), pp. 267-283.
[11] H. FASSBENDER, Symplectic Methods for Symplectic Eigenproblems, Habilitationsschrift, Uni-
versitdt Bremen, Fachbereich 3 — Mathematik und Informatik, 28334 Bremen, Germany,
1998.
[12] U. FLASCHKA, V. MEHRMANN, AND D. ZYWIETZ, An analysis of structure preserving meth-
ods for symplectic eigenvalue problems, RAIRO Automatique Productique Informatique
Industrielle, 25 (1991), pp. 165-190.
[13] J. FrANcIS, The QR transformation, Part I and Part II, Comput. J., 4 (1961), pp. 265-271
and 332-345.

G. GOLUB AND C. VAN LOAN, Matriz Computations, Johns Hopkins University Press, Balti-
more, 3rd ed., 1996.

V. KUBLANOSKAJA, On some algorithms for the solution of the complete eigenvalue problem,
U.S.S.R. Comput. Math. and Math. Phys., 3 (1961), pp. 637-657.

[16] P. LANCASTER AND L. RODMAN, The Algebraic Riccati Equation, Oxford University Press,
Oxford, 1995.

[17] V. MEHRMANN, Der SR-Algorithmus zur Berechnung der Eigenwerte einer Matriz, Diplomar-
beit, Universitat Bielefeld, Bielefeld, FRG, 1979.

, The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution,
no. 163 in Lecture Notes in Control and Information Sciences, Springer-Verlag, Heidelberg,
1991.

[19] C. PAIGE AND C. VAN LOAN, A Schur decomposition for Hamiltonian matrices, Linear Algebra
Appl., 14 (1981), pp. 11-32.

[20] T.PAPPAS, A. LAUB, AND N. SANDELL, On the numerical solution of the discrete-time algebraic
Riccati equation, IEEE Trans. Automat. Control, AC-25 (1980), pp. 631-641.

[21] D. WATKINS AND L. ELSNER, Convergence of algorithms of decomposition type for the eigen-
value problem, Linear Algebra Appl., 143 (1991), pp. 19-47.




Berichte aus der Technomathematik ISSN 1435-7968

http://www.math.uni-bremen.de/zetem/berichte.html
— Vertrieb durch den Autor —

Reports Stand: 26. Februar 1999

98-01. Peter Benner, Heike Faflbender:
An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Figenvalue Problem,
Juli 1998.

98-02. Heike Falbender:
Sliding Window Schemes for Discrete Least-Squares Approzimation by Trigonometric Poly-
nomials, Juli 1998.

98-03. Peter Benner, Maribel Castillo, Enrique S. Quintana-Orti:
Parallel Partial Stabilizing Algorithms for Large Linear Control Systems, Juli 1998.

98-04. Peter Benner:
Computational Methods for Linear-Quadratic Optimization, August 1998.

98-05. Peter Benner, Ralph Byers, Enrique S. Quintana-Orti, Gregorio Quintana-Orti:
Solving Algebraic Riccati Equations on Parallel Computers Using Newton’s Method with
Ezact Line Search, August 1998.

98-06. Lars Griine, Fabian Wirth:
On the rate of convergence of infinite horizon discounted optimal value functions, November

1998.

98-07. Peter Benner, Volker Mehrmann, Hongguo Xu:
A Note on the Numerical Solution of Complexr Hamiltonian and Skew-Hamiltonian Eigen-
value Problems, November 1998.

98-08. Eberhard Biansch, Burkhard Héhn:
Numerical simulation of a silicon floating zone with a free capillary surface, Dezember 1998.

99-01. Heike Faflbender:
The Parameterized SR Algorithm for Symplectic (Butterfly) Matrices, Februar 1999.



