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Abstract. In this article we present numerical results concerning the simula-
tion of semiconductor melts with free capillary surfaces , particularly silicon
crystal growth by the floating zone method. Considering the solid/liquid in-
terface as fixed such a simulation requires the computation of the moving
capillary surface of the melting zone. The mathematical model is a coupled
system which consists of a heat equation and the Navier—Stokes equations
in the melt with a Marangoni boundary condition. We describe an efficient
numerical method for solving this problem and give some results for different
physical parameters.

1 Introduction

Fluctuations of the electrical resistivity due to inhomogeneous dopant dis-
tribution are still a serious problem for the industrial processing of doped
semiconductor crystals. In the case of silicon floating—zone growth, the main
source of these inhomogeneities are time—-dependent flows in the liquid phase
during the growth process. Hence, for optimizing the growth process, it is
of great importance to study the influence of thermocapillary and buoyancy
convection on macro— and microsegregation, see [4-8]. A very practical exper-
imental setup for these investigations is the floating—zone growth in a mono
ellipsoid mirror furnace.

For instance, such a configuration has been successfully used at the Institute
for Crystallography, University of Freiburg, for performing silicon floating—
zone experiments on earth and also under microgravity, see e.g. [5]. A halogen
lamp, positioned in the upper geometrical focus of the ellipsoid, served as a
heat source. Fused quartz ampoules containing the starting material were
placed in the lower geometrical focus. The parameters of the liquid zone were
as follows: 8mm zone height and 12mm zone diameter. Figure 1 shows both,
the surface of the silicon melt and an etched axial cut of the zone showing
the solid-liquid interface.

Due to the opaqueness of semiconductor melts, experimental fluid flow obser-
vation is extremely difficult and expensive in general. Therefore the numerical
simulation of the growth process is an important tool in understanding and
predicting the behavior of the system, see e.g. [6].
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Fig. 1. Silicon floating zone: (a) Surface of the silicon melt, (b) Etched axial cut of
the zone showing the solid-liquid interface

2 Mathematical model

Figure 2 gives a schematic diagram of a floating—zone configuration.
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Fig. 2. Geometry of a floating zone

The heat and mass transfer in the liquid zone is governed by the following
system of partial differential equations (in dimensionless form):
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e Navier—Stokes equations:

1 Ra .
6tu + (u - V)U — EAU + Vp = —mTeg mn Q(t) (1)
Vou=0 in 2(¢t)
e Energy equation:
1 .
T + u-VT — Te PTAT = 0 in 02(¢) (2)

Here u(t,-) : 2(t) - IR?, p(t,-) : 2(t) —» IR and T(t,-) : 2(t) — IR denote
the flow velocity, the pressure and the temperature, respectively.

The interfaces I'sy, and gy, are free boundaries, the first one being subject to
a Stefan condition, the latter one determined by a balance of capillary forces
versus normal stresses of the flow. We simplify the problem by focusing on
the free boundary conditions on I'rg and prescribing a given solid-liquid
interface I'sy, where we impose a homogeneous Dirichlet boundary condition
for w and T (T = 0 the dimensionless melting temperature):

u=0 onlsy, (3)
T=0 OHFSL. (4)

Note that prescribing I'sy, implies that also the d—2 dimensional tripleline (or
triplepoint for d = 2) I' NI sy, is prescribed and fixed. On the free liquid—gas
interface the temperature is prescribed by a given parabolic profile:

T=Tp onlig. (5)

For the velocity and the motion of the free surface the following conditions
hold on I'Lg:

u-n="Vr (slip boundary condition) (6)
n-oT = —%VT -7 (Marangoni condition) (7

= TeCa” + % idr -e; (normal stress condition) (8)

. 1 d d
with o := (g D(u)i; — péij)m{:l the stress tensor, D(u) := (0, u; + Bwjui)m:l
the deformation tensor, x the sum of the principal curvatures, the unit outer
normal vector n, an arbitrary tangential vector 7 and the normal velocity Vi
of the free boundary I'zg.

The system has to be closed by initial conditions for u,T and (2. Note that
in the continuous case we have conservation of volume since the velocity wu is
divergence free.

The dimensionless numbers occurring in the above equations are the Reynolds

L
number Re = UT, the Prandtl number Pr = %, the Rayleigh number
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0T L? T)oTL
Ra = L, the Marangoni number Ma = —M, the capillary
kv kpv
2
number Ca = voU and the Bond number Bo = pgL , with a characteristic

velocity U, a ch;ra,cteristic length L, a characteristic temperature difference
0T, the density p, the surface tension 7y, the thermal coefficient dv/0T of
surface tension, the thermal diffusivity k, the kinematic viscosity v and the
gravitational acceleration g.

Stationary, two dimensional numerical methods for the above free boundary
problem were studied for instance in [4]. However, even if all data are rota-
tionally symmetric or two dimensional according to the physical setup, the
solution may be expected to be 3D and also time-dependent due to sym-
metry breaking. Thus, it is necessary to define a numerical scheme for the
time—dependent case and which works also in 3 space dimensions.

3 Numerical approximation

Discretizing equations (1)—(8), the free boundary conditions (6)—(8) cause
several problems, in particular the treatment of the curvature terms and in
finding a stable and efficient time discretization.

To resolve these problems we use a variational formulation, where the free
boundary conditions are transformed to a boundary integral part of the bi-
linear forms, see [2] for details. To this end we write the momentum part
of the Stokes equations (analogously for the Navier—Stokes equations) in the
strong form, multiply by a solenoidal test function ¢ and integrate by parts.
We get

/{—émmvp}wp:Z—JEG/D(u):D(w)—/pV-w— /n-w-

0 0 2 I'ng

Taking into account the boundary conditions (7,8) yields

Ma Bo .
/HUQOZ—WZ/VTTZQOTZ‘FM ldFLG'egSD‘n
I'ng =g I'ng

1

+Reca//<an-cp. 9)
I'a

Now we make use of the identity
éidFLG =Kn, (10)

where A denotes the Laplace Beltrami operator on I'rg. Recalling that A =
Y -V with V the tangential derivatives, the last term in (9) can be written
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as

/ Kn-o= /Aidpm == / Vidr, . - V. (11)
I'ng I'ng I'tg
Summarizing we get

/{—éAU+Vp}-<p=%G/D(U):D(w)—/pv-so
1

°

Ma
+mz / VT -1 -7

Bo .
“TReCa / idr,g -egp-n (12)

I'na

Time discretization To discretize in time a semi—implicit coupling of the
unknowns for temperature 7', geometry {2 and the flow variables u, p is used.
More precisely, giving the values at the discrete time instant ¢;_; we compute

Step 1: T* by solving (2) on 2! with »*~!

Step 2: uF, p* by solving (1) with boundary conditions (7,8) on 2%~1
and using T* on the right hand side

Step 3: I'Fo by IFo:=IF + (b —ti1) vk -nn

In Step 2 the boundary conditions (7,8) are incorporated into the variational
formulation according to (12). The curvature terms are treated in a semi—
implicit way:

/ Vidre -V = / Vidpe-1 - Vo + (tr _tkfl)/ Vuk - Vo,

k—1 k-1 k-1
;o I'’a I'ia

thus decoupling the flow computation from the determination of the geome-
try. This leads to a stable and efficient treatment of the free boundary con-
ditions, see [2].

The computation of u*, p* is based on the fractional step #—scheme in a vari-
ant as an operator splitting, which decouples two major numerical difficulties,
the solenoidal condition and the nonlinearity, see [1,3].
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Spatial discretization To discretize in space piecewise quadratic, globally con-
tinuous elements for v and T and piecewise linear, globally continuous ele-
ments for p are used on a tetrahedral grid.

4 Nwumerical results

The following two examples show the influence of the hydrostatic pressure on
the shape of a floating zone with aspect ratio h/d = 1.5. Here g = 9.81m s>
denotes the gravitational acceleration on earth.

Example 1 First we consider a 2D—floating zone with buoyancy convection
and no thermocapillary convection, i.e. Ma = 0. The dimensionless parame-
ters are chosen as follows: Re = 500, Pr = 0.02, Ca = 0.0016, Ra = 400 |g|,
Bo =0.18 x|g| with g € {0.5*gg,2.0%gE,3.5*gg}. Figures 3 — 5 show both
the velocity field together with the temperature distribution in the melt and
the corresponding triangulation of the domain (2.

|

Fig. 4. Velocity field, temperature distribution and triangulation for g = 2.0 * gg
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Fig. 5. Velocity field, temperature distribution and triangulation for g = 3.5 * gg

Ezample 2 Now let us consider a 3D-floating zone with Marangoni convection
and no buoyancy convection, i.e. Ra = 0. The other dimensionless parameters
are: Re = 50, Pr = 2, Ma = 150, Ca = 0.016, Bo = 0.18 % |g| with g €
{0,1.0%gg, 2.0 gg}. Figures 6 — 8 show both the velocity field together with
the temperature distribution in the melt and the corresponding triangulation

of the domain (2.

/3

K7 S
R,

Fig. 6. Velocity field, temperature distribution and triangulation for g =0
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Fig. 8. Velocity field, temperature distribution and triangulation for g = 2.0 * gg
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