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Abstract

In this paper we describe a simple observation that can be used to extend two recently
proposed structure preserving methods for the eigenvalue problem for real Hamiltonian
matrices to the case of complex Hamiltonian and skew-Hamiltonian matrices.
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1 Introduction

In two recent papers [4, 5], the authors developed new structure preserving numerical methods
for the computation of eigenvalues and invariant subspaces of real Hamiltonian matrices.
The new methods are a large step into the direction of solving an open problem posed by
Paige/Van Loan [17], i.e., to develop a method for the computation of the Hamiltonian Schur
form having a complexity of O(n?) and being strongly backward stable. Such a method
would compute the exact Hamiltonian Schur form of a nearby Hamiltonian matrix. For real
skew-Hamiltonian matrices a method satisfying the above requirements can immediately be
derived from the method proposed by Van Loan in [18] for determining the eigenvalues for real
Hamiltonian matrices. But this method is not applicable in the complex case and also is not
able to yield certain Lagrangian invariant subspaces of Hamiltonian matrices that are needed
in the context of computing the solution to algebraic Riccati equations or optimal control
problems, e.g., [11, 15]. The new structure preserving methods of [5, 4] also cannot deal
with the case of complex Hamiltonian matrices, but there are several important applications
where the eigenvalue problem for complex Hamiltonian matrices has to be solved, see, e.g.,
[6, 16]. In this paper we therefore discuss structured methods for complex Hamiltonian and
skew-Hamiltonian matrices.

Let us first introduce some notation. We will denote by A(A) the spectrum of a matrix
A, by A4(A), A_(A) the subsets of A(A) of eigenvalues with positive and negative real
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parts, respectively and we will denote by Inv(A), Inv_(A) the invariant subspaces of A
corresponding to Ay(A), A_(A), respectively. Superscripts 7" and H denote the transpose
and the conjugate transpose, respectively.

0 I,

Definition 1 Let J := [ I, 0

], where I, is the n X n identity matriz.

i) A matriz H € C?*?" is called Hamiltonian if (HJ)? = HJ. The Lie algebra of
Hamiltonian matrices in C?™*?" is denoted by Hy,. A Hamiltonian matriz has the

block form [ g _?H ], where F,D,G € C™", D= D" and G =G*".

i) A matriz N € C?*?" js called skew-Hamiltonian if (NJ)! = —NJ. The Jor-
dan algebra of skew-Hamiltonian matrices in C>™*?" is denoted by SHy,. A skew-

Hamiltonian matriz has the block form l g F-.,DI{ ], where F,D,G € C"*", D = —D¥|
and G = —GH.

i) A matriz S € C?"*?" is called symplectic if SJS" = J. The Lie group of symplectic
matrices in C?"*?" is denoted by Say,.

iv) The Lie group of unitary matrices in C"*™ is denoted by U, and the Lie group of
unitary symplectic matrices in C?"*?" is denoted by US,,,.

Hamiltonian and skew-Hamiltonian matrices have certain obvious properties, which follow
directly from the definition.

Proposition 1

i) Multiplication with i :== \/—1 represents an isomorphism between the classes of complex
Hamiltonian and skew-Hamiltonian matrices, i.e., H € Ho, iff itH € SHy,.

i) For H € Hap, if A € A(H), then also —\ € A(H). Furthermore, if H is real, then also
-\ A€ A(H).

iii) For N € SHa,, if \ € A(N), then X € A(N). Furthermore, if N is real, then each
eigenvalue of N has even algebraic multiplicity.

i) Similarity transformations with symplectic matrices leave the classes of Hamiltonian
and skew-Hamiltonian matrices invariant, i.e., if U € So,, H € Hyy,, and N € SHy,,
then U"VHU € Hy,, and U"'NU € SHo,,.

v) If U € USyy,, then U can be partitioned as

_ U1 Us nxn
U—l_UQ U1‘|’ Ui,U € C .



For a Hamiltonian matrix H € Hy, that has no purely imaginary eigenvalues, Paige and
Van Loan [17] showed that there exists a matrix U € USy, so that

QIHQ = [ 1(1)2 —EH ] ) T =T, R is upper triangular, (1)

which is called the Hamiltonian Schur form. The same proof also works for the skew-
Hamiltonian case. For a real skew-Hamiltonian matrix, however, such a form always exists
without any restriction on the eigenvalues [18]. Necessary and sufficient conditions for the
existence of the Hamiltonian Schur form if the matrix has purely imaginary eigenvalues are
given in [11, 13, 14].

Unfortunately, the construction of a method for the computation of this Schur form via
a method that has complexity O(n3) and is strongly stable, i.e., computes the Hamiltonian
Schur form of a nearby Hamiltonian matrix, is still an open problem, although a lot of progress
has been made in recent years [1, 4, 5, 8].

For real skew-Hamiltonian matrices N, Van Loan’s method presented in [18] can be used
to develop a structural QR algorithm as follows. First, a real matrix Q1 € USgy, is computed
such that

P D

atve = | o], @)

where Fy is upper Hessenberg and D; is skew symmetric. Then an orthogonal matrix Q€ U,
is computed by the standard QR algorithm (see, e.g., [9]) such that F} := QY FLQ, is in real
Schur form. Hence, with Q9 := diag(Q2, Q2) € USs, we obtain that

B Ds ] (3)

QR QINQiIQ =:[ 0 Fl

is in skew-Hamiltonian Schur form. But this method is not applicable in the case that N
has a nontrivial complex part, since then the initial step to the Hessenberg-like form (2) is in
general not possible as can be seen from the following example.

—1

Example 1 Let N = [ _Z.l q

] € SHy, then A(N) = {—2,0}. Obviously, N cannot have
a Hessenberg form as in (2).

The methods derived in [4, 5] for the Hamiltonian eigenvalue problem can also not be used in
the complex case. These methods compute in an initial step the symplectic URV decomposition
of a Hamiltonian matrix H, that is, two real matrices U,V € US,, are computed such that

(4)

UTHV = lHl H ]

0 HY
where H; is upper triangular and Hj is upper Hessenberg. It follows (see [5]) that

ﬂmvzl—mm(mmﬁ—m%]

0 (—H3H,)"

has exactly the form (2). But for complex matrices, this initial reduction does not always
exist as the next example demonstrates.



Example 2 Consider the Hamiltonian matrix

H:Q“ _1].

2 1

Since H? = N, where N is as in Example 1, H? cannot have the form (2) and hence H cannot
have the form (4).

In this paper we will study the case of general complex Hamiltonian and skew-Hamiltonian
matrices and show how the method of Van Loan and the new methods of [4, 5] can be
extended to this case. In Section 2 we will first show how to compute eigenvalues of complex
Hamiltonian and skew-Hamiltonian matrices. The obtained algorithm will be the basis for a
method to compute invariant subspaces as presented in Section 3. We will briefly discuss the
complexity of the algorithms and their numerical properties in Section 4. Numerical examples
in Section 5 demonstrate the reliability and performance of the proposed algorithms. Some
concluding remarks are given in Section 6.

2 Eigenvalue Computation

In order to develop a method for the complex case we will first transform the structured
complex eigenvalue problem into a structured real problem of double size. After solving the
eigenvalue problem for this extended matrix, we will recover the eigenvalues of the original
matrix. The method can be viewed as a generalization of the real algorithm proposed in [5]
and we will discuss the relationship to this algorithm in Section 4. The basis for our new
approach is the following simple observation. If we partition N € SHy, as N = Nj + N
with Ny, Ns real, then Ny € SHy,, Ny € Hy,. Moreover, by Definition 1, N; and N» can be
written as

F, D

N, = lGl FF]’ D, =-DT, G, =-G7,
F, D,

N2 = [ G2 _Fgw ‘| ) DQZDg, GQZGg

Thus, if we introduce the unitary matrix

Y2 — @ IZn ZIQ’IL (5)
" 2 I2n _'I;I2n ’
and the permutation matrix
I, 0 0 O
. 0 0 I, O
L 0o I, 0 0 |’ (6)
0o 0 0 I,
then we obtain the real matrix
F, —F D, —Dy
N 0 F R Do D, F| D
N = PHYH = | Yoo P = _. (7
| g N | G, -G, | FT Ff g | Fr @
Gy G, |-Ff FF




It is easy to verify that D = —DT, G = —G7, so N' € SHy, N R*™ 4" and thus we can
apply Van Loan’s algorithm to determine the eigenvalues of N and also to get the real skew-
Hamiltonian Schur form

WINW, = lﬁ" ]ZT] — R, 8)

where R € IR?"*?" is quasi upper triangular, T = —T7, and W; € USy, is real.
By Proposition 1 iii), A(N) = A(N) and it is not difficult to see that

A(N) = A(R). (9)

Hence the eigenvalues of the complex skew-Hamiltonian matrix N can be computed by ap-
plying Van Loan’s method to the double size real skew-Hamiltonian matrix A in (7).

Since Van Loan’s method is strongly backward stable it is clear that the computed eigen-
values of N are the exact eigenvalues of a real skew-Hamiltonian matrix near to N’ and N/
is similar to diag(N, N). Because R is real, A(R) is symmetric with respect to the real axis,
thus also the symmetry of A(N) is preserved.

Unfortunately, in general this method does not determine the skew-Hamiltonian Schur
form of N. Set

Vii Vg
V = Y5, PW; = l Vor Vo ]

Then combining (7) and (8), we obtain

Hf%]vzvlg’é@]. (10)

Comparing the (1,1) blocks on both sides of (10) yields
NVii = ViR

If V11 is nonsingular, then we get the Schur decomposition of N via the QR decomposition of
V11, but if V11 is singular then we only get a certain non-Lagrangian invariant subspace of N
from the basis of range V1.

By the isomorphism in Proposition 1 i) we also immediately obtain a method for the
computation of the eigenvalues of a complex Hamiltonian matrix H € Hy,. Substituting
N =iH into (7) and using iH = —iH, by (8) we obtain with V = Y5, PW; that

VH diag(H,—H)V = —iR, (11)
and by (9), we the get the spectrum of H as
A(H) = —iA(R). (12)

In this section we have shown how we can use a simple observation on the extension of
complex skew-Hamiltonian matrices to a real problem of the same structure to compute the
eigenvalues via the structure preserving method of Van Loan. In the next section we discuss
the computation of invariant subspaces.



3 Computation of Invariant Subspaces

In this section we show how to compute Inv (H) and Inv_(H), the invariant subspaces of a
complex matrix H € Hy,, corresponding to the eigenvalues with negative and positive real
parts, respectively. These are the important subspaces needed in applications from control
theory, see, e.g., [11, 15]. We will assume for simplicity that the Hamiltonian matrices that
we discuss have no purely imaginary eigenvalues such that dimInv, (H) =n = dimInv_(H).
In case there exist purely imaginary eigenvalues, there are several ways to distribute these
eigenvalues in the Schur form and it is still an open question what is the best way to do this.
See [4, 14] for detailed comments.

Under these assumptions, R defined in (8) is in SHy,, has no real eigenvalues, and is in
real skew-Hamiltonian Schur form. Hence, —iR € Hy, is in Hamiltonian Schur form. For
matrices in Hamiltonian Schur form, the eigenvalue reordering procedure of Byers [7, 8] can
be employed to determine a matrix Wy € USy, such that

R T

Wil (—iR)Wo = l 0 _pH

] =: R € Hup, (13)

and all eigenvalues of R have negative real parts, i.e., A(R) = A_(R). Let U := VWs, then
by (11) and (13) we have

UHHI _%]U:fa. (14)

Theorem 2 Suppose that H € Ha, has no purely imaginary eigenvalues and suppose that

g| H 0 5 _ | R T
U [ 0 _FF U=7R = 0 _pH (15)
is in Hamiltonian Schur form with A(R) = A_(R). Partition U = U U accordingly.
21 Up

Then there exist matrices ®,V,0 € Uy, such that

U11 = @[In O](") = [(1)1 0]@,

0 0
- (16)
Uy = \1:[0 Iﬂ]@:: [o xpz]@,

and the columns of ®1, Wy form orthogonal bases of Inv_(H) and Inv (H), respectively.

Proof. From (15) we obtain

HUy = UnR, HUyp = -Unk. (17)

Since A(R) = A_(R), we have

range U1y C Inv_(H), range Uz, C Inv (H). (18)



By assumption H has no purely imaginary eigenvalues and thus Proposition 1 ii) implies that
there are exactly n eigenvalues in A, (H) and n eigenvalues in A_(H). Hence,

dimInv_(H) = dimInvy(H) = n, (19)

and thus
rank U1 < n, rank Us; < n. (20)

On the other hand, U is unitary. Using the CS decompositions [9] of U1; and Us; there exist
®, U, 0 € Uy, so that

X 0 A 0
S P

where 3, A € R™™" are diagonal with nonnegative diagonal elements, ¥ # 0, and X2 +A? = I,.
The first inequality of (20) implies rank ¥ < n. If rank ¥ # n, then rank Uy; > n, which

contradicts the second inequality of (20). Hence rank® = n. Moreover ¥ = I, since
otherwise, A # 0 and thus rank Us; > n which again contradicts (20). This shows (16). The
remaining assertions follow from (18), (19) and the fact that ®H &, = TH ¥y = I,,. 0

In summary we obtain the following algorithm for the computation of Inv_(H).

Algorithm 1 This algorithm computes the (Lagrangian) invariant subspace corresponding
to the eigenvalues in the open left half plane of a complex matrix H € Ho, having no purely
imaginary eigenvalues.

Input: A complex Hamiltonian matrix H € Hy, having no purely imaginary eigenvalues.
Output: ®; € C>»*", with ®®; = I, range ®; = Inv_(H).

Step 1 Set N = iH and determine the matrix A as in (7). Apply Van Loan’s algorithm [18]
to N to compute the real skew-Hamiltonian Schur form,

R T
WINW, = l“ RT] = R,

where Wi € USy,, and R is quasi upper triangular.

Step 2 Determine a matrix Wo € USy, by using Byers’ unitary symplectic reordering
method [8] applied to iR, so that

R
0

WH(—iR)W, = [ A ] =R
with A(R) = A (R).

IZn

SetUH::[IQn O]U[ 0

] , where U = Yo, PW{Ws.

Step 3 Compute ®;, an orthogonal basis of range U1, using any numerically stable orthog-
onalization scheme, for example a rank-revealing QR-decomposition; see, e.g., [9].

End



The same algorithm can also be used to compute Inv (H). In this case we need to form
Us1, the (2,1) block of U and then compute an orthogonal basis of range Us; .

Remark 1 There are still some improvements possible in the described algorithm. First it
would be nice if it could be performed completely in real arithmetic and second, it would be
ideal if the additional structure in the blocks F,D,G could be exploited. At this writing, we
are not aware how to achieve this.

Remark 2 In [}] a similar method for the eigenvalue problem of real Hamiltonian matri-
ces was proposed. The method uses a new matriz factorization, called the symplectic URV
decomposition, to compute the Hamiltonian Schur form of the extended matriz

0 H
o [51)

or equivalently, the extended Hamiltonian matriz B := PTBP. The invariant subspace of H
is then updated from the Lagrangian invariant subspace of B or B. Hence this method shares
the same methodology with Algorithm 1. On the other hand they use different techniques.
When Algorithm 1 is applied to a real Hamiltonian matriz H it still needs to compute the
complex Hamiltonian Schur form of the extended Hamiltonian matriz —iN . So it may not be
cheap compared to the real QR algorithm directly working on H.

Note that with the complex unitary symplectic matriz X = diag(Il,, —il,, I, —il,), we get

—iN = XH1BX,

i.e., we obtain that the Hamiltonian matrices B and —iN are symplectically similar.

4 Complexity and Error Analysis

The computational complexities for the three steps of Algorithm 1 are given in Table 1.
Following [9], any floating point operation (+, —, *, /, va ) is counted as a flop. Note that
in Step 1, only real operations are involved. The flop counts are based on the estimated
computational cost of the standard numerical linear algebra algorithms as given in [9] and
the estimated flops for Van Loan’s algorithm as given in [3, 18]. We assume that the structure
of (skew-)Hamiltonian and orthogonal symplectic matrices as given in Definition 1 i), 4) and
Proposition 1 v) is fully exploited and that in Step 3, a QR factorization with column pivoting
is used. The total flop count is based on the assumption that one complex flop is roughly as
expensive as four real flops.

Step 1 2 3 total
flops | 3975n° (real) | 40n® (complex) | 182n? (complex) || ~ 158n® (complex)

Table 1: Flop counts for Algorithm 1

These numbers compare with 205n% complex flops for the computation of the same in-
variant subspace via the Schur method as suggested in [12]. If only eigenvalues are required,
then only Step 1 of Algorithm 1 is performed without accumulating the similarity transfor-
mations. This requires about %n?’ real flops for the computation of the skew-Hamiltonian



Hessenberg form and %nfg for the Hessenberg QR algorithm [9], altogether 160n3 real flops.
The computation of the eigenvalues of a complex 2n X 2n matrix using the nonsymmetric QR
algorithm needs about 80n3 complex flops.

In [4] we have given the error analysis for the proposed structure preserving method for the
0 H
H 0
invariant subspaces of the real Hamiltonian matrix H. By Remark 2 the same error analysis
can be carried out for the complex case. Let W = W1 Wy € USy,, where W1, W € USy, are
updated in Algorithm 1. Let R be the finite precision analogue to the Hamiltonian triangular
matrix R computed by Algorithm 1. We have

Hamiltonian Schur form of the extended Hamiltonian matrix B = PT ] P, and the

WHCNW = R+E,  EcHu €] <celH], (21)
where | . || is the spectral norm, e is the machine precision, and c is a constant.
By (1) there exists a unitary symplectic matrix @ such that
S L
Q"HQ = [ s ] CAS) = A(H), (22)
Let K € USy,, be such that
—8" 9 ~-5H L 2
H _ _
K l I S]K— l 0 S], A(S) = A_(H). (23)
Then using the separation between two matrices as defined by (see, e.g., [9])
. |AX — XBj
sep(A,B) := min———
P =
and employing o
§ := min{sep(S¥,—S),sep(S,—S¥)}, (24)

we obtain as in [4] the following result.

Theorem 3 Let S, L, S, L be defined in (22) and (23) and & be as in (24). Let € be the
error matriz as in (21). Furthermore, let ®1 be the output of Algorithm 1 in exact arithmetic
and let ®, be the computed output in finite arithmetic. Denote by & € R™ ™ the diagonal
matriz of canonical angles between range ®1 and range ®.. If

81€](6 + max{| L], |L]}) < 6%,

then

| siné| < cs@ < csce@, (25)

V10 + 4
V10 + 2

Remark 3 The above theorem essentially shows that the invariant subspace computed by
Algorithm 1 is as accurate as to be expected from a numerical backward stable method as long as
the condition numbers of the stable and unstable H-invariant subspaces given by sep(SH, —S)
and sep(S',—S’H), respectively, are approzimately equal. The fact that the accuracy of the
computed invariant subspace is affected by the conditioning of the complimentary subspace
can be expected as Algorithm 1 basically computes both subspaces at the same time. A more
detailed perturbation analysis of the Hamiltonian Schur form can be found in [10].

with ¢ = 8 ~ 11.1.



5 Numerical Examples

We have implemented the computation of the real skew-Hamiltonian Schur form of the matrix
N as in (7) and the computation of the eigenvalues of complex Hamiltonian matrices in
Fortran 77. We present two examples demonstrating the numerical accuracy and performance
of the algorithm.

The test results reported here were obtained on a Sun Ultral0 with 512 MByte main
memory and a 299 MHz UltraSPARC-IIi CPU using IEEE double precision arithmetic. All
subroutines were compiled using standard optimization and double-word alignment (compiler
flags -0 -dalign). The standard public domain versions of LAPACK and BLAS [2], com-
piled with the same compiler flags, were used. It should be noted that on the used machine,
the cost of complex arithmetic compared to real arithmetic using Fortran 77 code does not
follow the model used to estimate flops earlier in this paper. For matrix multiplication of
n X n matrices as implemented in the BLAS Level 3 subroutines DGEMM and ZGEMM for
real and complex arithmetic, respectively, the complex version required less than twice the
time of the real version for n = 100. The ratio even becomes smaller as n is increased. The
tests were confirmed by results obtained on a PC with a 200 MHz AMD K6 CPU.

We will compare the subroutine ZHAEV for computing eigenvalues of complex Hamilto-
nian matrices using the method presented in Section 2 to the LAPACK driver routine ZGEEV
for computing eigenvalues of general non-Hermitian matrices based on the QR algorithm.

Example 3 [18, Example 2] This example was used in [18] to demonstrate the possible loss
of accuracy in the method for computing the eigenvalues of real Hamiltonian matrices. We
have turned the example into a complex problem, still having the same real eigenvalues.

Let A = diag(1, 1072, 107%, 1076, 1078). Then a Hamiltonian matrix H is obtained by

H:Ungl _ZH]U,

where U € USyg is randomly generated by five real symplectic rotations and five complex
reflectors. Thus, A(H) = {£1,+1072,+10~4,4+107%,+1078}.

In Table 2 we present the absolute errors of the eigenvalues A computed by ZHAEV and
ZGEEV. For demonstration purposes, we also give the results obtained by the implementation
of Van Loan’s method described in [3] applied to the above example where the transformations
accumulated in U are all chosen real.

B ZHAEV | ZGEEV [3]

1 1.7x 10717 | 1.6 x 10715 | 1.2 x 1071°
102 (11x10°Y7 | 25x 10717 | 1.0 x 10717
107% || 2.6 x 10717 | 3.3 x 10717 | 1.3 x 10~
1076 | 3.9 x 10717 | 3.2 x 10717 | 1.7 x 10714
1078 || 1.8 x 10717 | 3.0 x 10717 | 4.3 x 107!

Table 2: Example 3, absolute errors |\ — X|.
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Here, the loss of accuracy of order |H|2/|A| in Van Loan’s method is obvious while both
ZHAEV and ZGEEV compute all eigenvalues to full accuracy.

Example 4 We tested our subroutines for randomly generated Hamiltonian matrices with
entries distributed uniformly in the interval [—1, 1]. The eigenvalues computed by ZHAEV
are as accurate as for ZGEEV. In Figure 1 we present the minimum singular value of H — Moy,
denoted by ouin(H — May,), for an n = 50 example and all eigenvalues in the closed right half
plane (in this case, these are 52, i.e., 4 eigenvalues are located on the imaginary axis). The
given error measure is the backward error of the computed eigenvalues X in the sense that it
equals the 2-norm of the perturbation matrix E € €2"%2" of smallest 2-norm for which X is
an exact eigenvalue of H + E. It can be seen from Figure 1 that both methods compute the
eigenvalues accurately with no significant preference of one algorithm over the other.

x — ZGEEV, o — ZHAEV
10712

14 <

10 - < =

0min (H - |2n)
X
X
X

10 b ke x < > -

1071 L I L L :
50 60

20 30 40
)\j sorted by magnitude of real parts

Figure 1: Example 4, backward error of computed eigenvalues (n = 50).

We also measured the CPU times required by ZHAEV and ZGEEV for H € C?"*?" with
n varying from 50 to 500. For each value of n, we recorded the CPU seconds of execution time
required to solve 10 randomly generated Hamiltonian eigenvalue problems. Table 3 shows the
mean CPU seconds of execution time measured on the Sun UltralO.

n 50 | 100 | 150 | 200 | 250 | 300 | 350 400 450 500
ZGEEV | 0.41 | 3.1 | 11.7 | 28.8 | 56.8 | 99.5 | 157.9 | 238.1 | 339.7 | 470.6
ZHAEV || 0.22 | 1.7 | 7.1 |20.6 | 47.8 | 77.9 | 126.5 | 193.5 | 276.8 | 386.5

Table 3: Example 4, average CPU seconds of execution times for ZHAEV and ZGEEV across

10 trials.

The table shows that for these Hamiltonian matrices, ZHAEV requires about half of the
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execution time of ZGEEV for small n and tends to 80% of the execution time of ZGEEV
for larger n. This varying ratio of execution times can be explained by the varying ratio of
CPU times required for complex operations compared to real operations. Moreover, ZHAEV
is implemented using non-blocked algorithms while ZGEEV benefits from its block-oriented
(BLAS Level 3 based) implementation in particular for larger n.

Besides the faster computation of the eigenvalues, ZHAEV returns the right pairing of the
eigenvalues as +;, 1 = 1,...,n. Since ZGEEYV treats a Hamiltonian matrix like an arbitrary
nonsymmetric matrix, small perturbations can and do cause computed eigenvalues with small
real parts to cross the imaginary axis. Moreover, it is difficult to decide whether eigenvalues
are on the imaginary axis or not. In contrast to this, purely imaginary eigenvalues computed
by ZHAEV come out having exact real part zero as these are real eigenvalues of R in (8).

6 Conclusion

We have demonstrated a simple trick that allows to use Van Loan’s method for the compu-
tation of Hamiltonian Schur forms of real skew-Hamiltonian matrices to be extended to the
case of complex Hamiltonian and skew-Hamiltonian matrices. For this modification we have
proved backward stability and also shown its connection to other recent structure preserving
methods. Numerical experiments demonstrate that the accuracy of the proposed algorithm
for computing eigenvalues is as good as to be expected from the error analysis. The per-
formance of the method in comparison to unstructured methods shows that some benefit is
gained from exploiting the structure.
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